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Feature identification and manual inspection is currently still an integral part of
biological data analysis in single-cell sequencing. Features such as expressed genes
and open chromatin status are selectively studied in specific contexts, cell states or
experimental conditions. While conventional analysis methods construct a relatively
static view on gene candidates, artificial neural networks have been used to model
their interactions after hierarchical gene regulatory networks. However, it is
challenging to identify consistent features in this modeling process due to the
inherently stochastic nature of these methods. Therefore, we propose using
ensembles of autoencoders and subsequent rank aggregation to extract
consensus features in a less biased manner. Here, we performed sequencing data
analyses of different modalities either independently or simultaneously as well as
with other analysis tools. Our resVAE ensemble method can successfully
complement and find additional unbiased biological insights with minimal data
processing or feature selection steps while giving a measurement of confidence,
especially for models using stochastic or approximation algorithms. In addition, our
method can also work with overlapping clustering identity assignment suitable for
transitionary cell types or cell fates in comparison to most conventional tools.
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Introduction

A plethora of tools have been developed over the years for the analysis of high-throughput
single-cell data (scRNA-seq, scATAC-seq, CITE-seq etc.) and made great contributions
towards enabling the exploration and analysis of the omics landscape of different tissues
and organs at an unprecedented resolution. Yet regardless of the tools or methods, human
intervention is required to validate or further elucidate the hypotheses through the
identification of markers or characteristic features (expressed genes, open chromatin peaks
etc.) for the different cell populations clustered by cell type, perturbation, or other conditions
and labels. Conventional methods and tools primarily perform highly variable genes (HVGs) or
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differentially expressed genes (DEGs) analyses based on the different
clusters through statistical testing that often generate an extensive list
of genes that are ranked according to their logarithmic fold change
values or significance scores (Robinson et al., 2010; Love et al., 2014;
Ritchie et al., 2015). These include tools such as Monocle (Cao et al.,
2019), Scanpy (Wolf et al., 2018) and Seurat (Stuart et al., 2019) for
scRNA-seq data, as well as ArchR (Granja et al., 2021), Signac (Stuart
et al., 2021) and snapATAC (Fang et al., 2021) for scATAC-seq data.
These lists are often cut on arbitrary values that are deemed
meaningful in the different clusters within the studied biology,
where the reduced lists of features still contain overwhelming
numbers of genes even after manual curation. Removing outliers or
specific features through prior knowledge could improve the analysis
by restricting the scope at the cost of introducing certain biases. A
complementary systematic approach could retain potentially
interesting or novel features in a less biased manner.

These conventional analysis techniques backed by sound statistical
tests and methods remain the gold standard for well-established tasks
they excel at. However, machine or deep learning methods that can
complement the nature of biological data are increasingly being
applied as the complexity of these single-cell data increases. In
contrast to statistical methods that look at genes in isolation,
methodologies involving the use of deep learning techniques are
context-aware and can deal with non-linearities. Moreover, as we
gain access to new technologies and techniques that make new data
collection possible, it is even more crucial to ensure that these data can
be studied and analyzed using similar tools. In particular, the
characteristics of variational autoencoders (VAE) make them
suitable to address some of the most common tasks in analyzing
single-cell sequencing datasets, especially when it involves the
comparison or identification of cell populations (Way et al., 2020).
A typical approach is to compare individual or a group of these cells
and identify the features that characterize the populations. This can be
performed by VAEs, where the model learns from the input data and
identifies features that characterize the given annotations, which can
consist of cell-state or cell-type identities, experimental batches,
clinical metadata or perturbations etc. (Lotfollahi et al., 2019).

However, neural networks are non-deterministic during training,
as they make use of random partitioning of data, initialization of
weights, sampling in each iteration, regularization in terms of
dropouts etc. (Scardapane and Wang, 2017). This randomness can
contribute to robustness and improve the performance of these
models, at the cost of making it difficult to identify consistent
features as no two neural networks will be alike even if trained
with the same parameters on the same data. Simpler models can
usually reach convergence, but becomes challenging with more
complex datasets or models, especially when the rankings of the
outputs are taken into consideration. Thus, even if the identified
features overlap across the different runs, their rankings are almost
certainly not guaranteed to be consistent.

We previously introduced the restricted latent variational
autoencoder (resVAE) neural network architecture that enables the
decomposition of single-cell transcriptomic data into population-
based features in a hierarchical manner that closely resemble
biological systems (Lukassen et al., 2020). Our intention is to
provide a supportive tool for additional knowledge mining on top
or as a part of the user’s preferred analysis method. Here, we introduce
resVAE ensemble with the use of rank aggregation to better address
the consistency and confidence of feature identification in single-cell

analysis. In contrast to conventional tools that focus on discrete cluster
assignment, resVAE ensemble can be used on cell populations with
transitory or partial cluster assignments. Most importantly, the
introduction of deep ensembles allowed us to measure the
consistencies or confidence metrics of the extracted features as
determined by the different models.

Results

With an ensemble, multiple models can be combined to produce
better results than what an individual model alone could achieve.
Meanwhile, rank aggregation allows us to retain the ranking
information from the different ranked results and combine them
into a single ranking. We trained multiple resVAEmodels on the same
inputs to learn the cluster-specific features independently. Next, we
combined the outputs of all the models and introduced different rank
aggregation algorithms that could reduce them into a single ranked
consensus, which results in more robust and consistent outputs as
compared to using only a single model (Figure 1A). Furthermore, we
also showed that resVAE ensemble can be applied on various single-
cell data modalities such as simulated data, scRNA-seq transcript
counts data and scATAC-seq peaks data to identity features for further
analysis (Figures 1B, C).

Advantages of resVAE ensemble on simulated
dataset

To demonstrate that resVAE ensemble can identify features
relevant to the experiment based on the input data and
annotations, we first performed the analysis on a simulated
synthetic dataset used to model myeloid differentiation in
hematopoiesis as previously described by Krumsiek et al., 2011. In
this dataset, common myeloid progenitors (Prog) are simulated to
branch off into four different cell fates with distinct expression profiles,
namely megakaryocytes (Mk), erythrocytes (Ery), granulocytes
(Granu) and monocytes (Mono). In this simulated experiment,
resVAE ensemble was performed on the obtained synthetic counts
data and annotated labels to identify features that characterize the
different cell fates.

The UMAP of this data (Figure 2A) shows the different cell fates
populations, where progenitors can be seen in the middle of the figure
and branch off into the different main cell fates. In our findings,
resVAE ensemble was able to identify the corresponding transcription
factors that are relevant for each of these cell populations (Figure 2B).
For instance, in the Erythrocytes andMegakaryocytes clusters, resVAE
ensemble identified EKLF and Fli-1 as the defining feature for each of
these clusters, respectively, as expected. Additional findings that
conformed to experimental data were recapitulated too, such as
GATA-1 being identified in both Erythrocytes and Megakaryocytes
clusters. Similarly, features in the Monocytes cluster were identified
consistently, with PU.1, cJun, EgrNab and C/EBPα standing out in
comparison to the rest. In the Granulocytes cluster, resVAE ensemble
identified Gfi-1 as the definitive feature, though it did not seem to
consider PU.1 and C/EBPα. The consistency of the various trained
models can be visualized using a parallel coordinate plot, where highly
consistent clusters display thick uniform lines and vice versa
(Figure 2C).
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Additionally, to demonstrate the advantages of the ensemble, we
also investigated the different resVAE models within the ensemble
individually. While the resVAE model is quite robust in general, it is

inevitable that models can get stuck at some local minima or overfit
during training where major differences and variations between
individual resVAE models can be observed (Figure 2D). On the

FIGURE 1
The variational autoencoder based resVAE architecture allows each label to have its own label-specific latent space for label-specific features
identification. (A) shows the overall design of the resVAE ensembleworkflow. (B) shows the use case of the resVAE ensemblemethodology that can be applied
to various forms of single-cell data with their corresponding cluster identities, including simulated data, scRNA-seq counts and scATAC-seq peaks. (C)
highlights the overview of this manuscript. We highlighted the application of the resVAE ensemble methodology on simulated data and single-cell
sequencing datasets of different modalities to identify features that could be used for further analysis.
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FIGURE 2
Results of resVAE ensemble on two simulated datasets. (A–D) correspond to the simulated PBMC dataset, while (E–I) correspond to the simulated
bifurcation model dataset. (A) shows the UMAP of the cells from the simulated myeloid differentiation dataset provided in Scanpy (Krumsiek et al., 2011; Wolf
et al., 2018). (B) shows the result of resVAE ensemble (right) in comparison the summarized expression levels of the 11 features present used to model the
simulation (left, Krumsiek et al., 2011). (C) the lines show the weight mappings of these features in their corresponding clusters across all trained resVAE
decoders. (D) shows the overall performance of two example models from the ensemble. (Ery: Erythrocytes; Mk: Megakaryocytes; Mono: Monocytes; Granu:
Granulocytes; Prog: Progenitors). (E) shows the UMAP of the seven different cell states from the simulated bifurcation trajectory dataset. (F) shows the
Andrews curves that highlight the structures of the resVAE decoders’ weights mappings of two different clustering analysis methods in two example
populations, sEndC and sBmid. (G) shows the features identified by resVAE ensemble for the two different cluster assignment methods across all clusters. (H)
shows themedian weightsmappings of the transcription factors across all models for the two cluster assignmentmethods. (I) shows the features identified by
resVAE ensemble and their scores. Themagenta and gray bars above the heatmaps correspond to transcription factors and housekeeping genes, respectively.
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one hand, we have Model 0 (Figure 2D, left) that did not manage to
associate the EKLF feature with the Erythrocytes cluster as well as
performing badly for the other clusters. On the other hand, Model 10
(Figure 2D, right) successfully identified relevant features for all the
different clusters. With resVAE ensemble, these events can be detected
and rescued by producing a consensus that showed reliable results
(Figure 2B, right), where most of the identified features are valid and
relevant, even if a few might be misidentified in some cases. Moreover,
we also compared the performance of the different models trained
with a combination of different hyperparameters (Supplementary
Figure S1) in the Erythrocytes and Granulocytes clusters as an
example. 10 individual models for each selected hyperparameters
combination were trained separately to illustrate the differences
that can arise from the training, even if the inputs and the
hyperparameters are kept identical. In the Erythrocytes cluster, we
observed that the different ReLU models tend to vary more, while
models with a different activation function (Mish) hyperparameter are
more consistent (Supplementary Figure S1). The Granulocytes cluster
seems to pose a challenge for resVAE ensemble, as the different models
display much more variety in comparison to the Erythrocytes cluster
(Supplementary Figure S1). Interestingly, models with different
hyperparameters seem to be able to identify different features
better, for example the Mish activation function models identified
SCL, FOG-1 and GATA-1 much more consistently in the Erythrocytes
cluster and Gfi-1 in the Granulocytes cluster, in comparison to the
ReLU models.

In summary, with this experiment we showed that resVAE can
extract meaningful features from the simulated dataset, while the
ensemble can aid in identifying and selecting features that are
consistently identified. We also note that resVAE ensemble was
able to identify these features without performing highly variable
or differential expression comparisons.

Advantages of resVAE ensemble that enable
novel cluster assignment to cells on trajectory
data with transitory cell populations

Next, we demonstrated a major advantage of resVAE ensemble that
enables the use of soft or partial cluster assignments in addition to the hard
or discrete cluster assignment that is performed routinely. Essentially, cells
can be assigned partial identities consisting ofmixed archetypes aswould be
expected in transitory cell states or developing cell types.

To demonstrate this, we constructed a synthetic trajectory data
with interdependent hierarchical features simulating the roles of
transcription factors-regulated gene expressions and investigated
the performance of resVAE ensemble on this dataset
(Supplementary Figure S2). In this bifurcation model, cells are
simulated to transition from an initial state sA and fork into one
of two distinct populations sC and sD under the influence of
antagonistic regulators (Figure 2E). While a total of seven
populations were defined in our simulation, we also show that it is
possible to determine the optimal number of clusters using resVAE by
measuring different clustering metrics (Supplementary Figure S3).
Here, resVAE reported an optimal cluster number between 3 and
6 based on various scoring metrics, which seems reasonable based on
the UMAP (Figure 2E). We then investigated and compared the
performance of resVAE ensemble on two distinct (soft and hard)
clustering and analysis methods.

Our findings in this simulated dataset again demonstrated that
resVAE ensemble can identify population-specific features regardless
of the cluster assignment methods. resVAE ensemble performed
comparably using either method based on clustering evaluation
metrics (Silhouette Coefficient of 0.52 vs. 0.55; Calinski-Harabasz
score of 377.44 vs. 305.11; Davies-Bouldin score of 0.75 vs. 0.71).
The main differences are most apparent in populations that are more
heterogeneous and less consistent in terms of expression profile. This
is most evident in sBmid which is not only very close and similar to sB,
but would also incorporate similar cells belonging to the sC and sD
populations in the soft clustering method (Figure 2E). In clusters that
are more well defined such as sEndC, the structures of the trained
resVAE decoders’ weights mappings are very consistent and highly
overlapping regardless of the assignment method (Figure 2F, top).
Meanwhile, the structure of the sBmid population is visibly
disharmonized and misaligned in the models trained on the two
different cluster assignment methods, indicating that the learned
features are more different (Figure 2F, bottom). In the hard
clustering-derived discrete clusters, these identified features are
mostly exclusive to their own corresponding clusters, though some
features are shared across clusters that are close to each other, as seen
with clusters sA, sB and sBmid (Figure 2G, left). This is largely
applicable to the soft clustering-derived clusters as well, though
there are slightly more shared features identified due to the mixed
or partial identities of some cells (Figure 2G, right).

In addition, resVAE ensemble successfully recapitulated meaningful
results as defined in the transcription factors of the simulation
(Figure 2H). For example, among the different module-specific
transcription factors, the initialization of the sA state relies solely on
the Burn1-4, B4 and B5 modules. This was captured strongly in the
discrete cluster models (Figure 2H, top), as resVAE ensemble was able to
identify the four Burn modules as well as the B4 and B5 modules
specifically. Most of the differences in the soft cluster assignment
method can be attributed to the fuzzier sB and sBmid populations
(Figure 2H, bottom). The partial cluster models can better separate the
effects of the A and B modules in the sBmid populations. Curiously,
resVAE ensemble identified the D6 module in the sBmid population in
the partial cluster models (Figure 2H, bottom), which could be explained
by the proximity of a group of sD cells in the sBmid cluster. In the hard
clustering method, this nuance is lost as these cells would not be included
in the sBmid cluster. Regardless of the clustering methods used, the
modules for the post-fork populations (sC, sD, sEndC, sEndD) were
successfully identified, where the strong antagonizing interactions of these
features can be observed. In both models, the B2, B6, B9, B10 and
B11 modules that push sBmid to transition towards sC are identified in
the sC and sEndC populations as expected. Similarly, the B3, B7, B12,
B13 and B14 modules that push sBmid towards sD are likewise identified
correctly. In addition, B8 that is present in both branches are identified,
while terminal populations (sEndC and sEndD) tend to have stronger
emphasis on their population-specific modules in comparison to the pre-
terminal populations (sC and sD).

Regardless of the cluster assignment methods used, resVAE
ensemble consistently identified not only features that can
distinctly separate dissimilar populations, but also features that can
be used to distinguish similar sub-clusters. Unsurprisingly, the
features identified by resVAE ensemble can be affected by the
fluidity of the clusters. In the case of hard clusters assignment, the
identified features are more pronounced in the relevant clusters,
whereas in the case of partial or mixed identities, the identified
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FIGURE 3
Results of explorative analyses using resVAE ensemble on the IFN-beta stimulated PBMC dataset. (A) shows the UMAP of the IFN-beta stimulated PBMC
dataset with artificially introduced partitions shown in different shades. (B) shows the heatmap highlighting the significance scores of overlaps in genes
identified by resVAE ensemble across the different clusters and partitions. (C) shows the number of overlapping identified genes between the different
clusters. (D) shows the Andrews curves of the decoders’median weights mappings described by the leftmost andmiddle Venn diagrams in (C). (E) shows
some selected examples of biologically meaningful genes missed by Seurat but identified by resVAE ensemble. (F) shows the comparison of the number of
identified genes using resVAE ensemble, Seurat and MAST as well as how much they overlap.
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features are not as pronounced and tend to bleed into similar clusters
(Figure 2I). Depending on the homo- or heterogeneity of the cells
within their defined clusters, the number of features identified by
resVAE ensemble could decrease or increase accordingly as the
compositions of the clusters vary (Supplementary Figure S4).

In short, we successfully demonstrated that resVAE ensemble can
be used with both discrete and mixed or partial cell identities that
could characterize transitory cell types or cell states more accurately.

Evaluating resVAE ensemble in real interferon
β-stimulated PBMCs biological dataset

To further investigate and demonstrate the performance of resVAE
ensemble in gene sets identification tasks in actual biological data, we next
applied the methodology on interferon (IFN) β-stimulated human
peripheral blood mononuclear cells (PBMCs) scRNA-seq counts data
(Figure 3A), which are mostly immune cells consisting of T cells, B cells,
monocytes etc. (Kang et al., 2018).

To assess the performance of resVAE ensemble in elucidating
cluster identities, we artificially split all the clusters into two partitions
of equal sizes (Figure 3A). In total, 30 artificial cell type clusters were
generated from 15 original cell type clusters. While not exactly
comparable, under- or over-clustering occurs frequently during
analysis depending on the granularity of the annotations. We
systematically compared the different clusters and their identified
genes by performing hypergeometric tests (Figure 3B). The results
showed that neither the large numbers nor the similarities between the
clusters affected the performance of resVAE ensemble.

In fact, we were able to identify consistent features that are relevant to
the clusters. This is most prominent between the two partitions of the
CD14 Mono cluster (Figure 3C, left) that highlighted an example of
significant overlap with high scores, showing that artificially split clusters
of the same origin not only yield highly overlapping identified genes in
resVAE ensemble, but also relatively low or balanced non-overlapping
genes. Here, resVAE ensemble identified 103 overlapping genes with only
15 genes that are not shared. These overlapping genes highly enrich for
terms related to immune activities such as neutrophil activation,
inflammatory response, cytokine-mediated signaling, cellular response
to chemokine etc. This is exemplary considering the two partitions are not
entirely identical and that some of the exclusive genes (CD48, CTSC,
CYBB, RTN4 etc.) have immune-related functions as well. Since the
CD14 Monocytes constitute the largest population of cells in this dataset,
resVAE ensemble was able to better learn the characteristics of these cells
and identify genes more confidently.

Next, we also compared the genes identified by resVAE ensemble in
the CD14 Monocytes 1 cluster versus the Erythrocytes 1 cluster
(Figure 3C, middle), which is an example of two dissimilar clusters
overlapping with a lower score and sparse number of overlapping ranked
genes. Of the 137 genes involved, these two dissimilar clusters only share
5 overlapping identified ranked genes (IER3, IL1B, LIMS1, NEAT1 and
TALDO1). This contrast between almost identical (CD14 Mono 1 and
CD14Mono 2) versus highly dissimilar clusters (CD14Mono 1 and Eryth
1) can be observed in the Andrews curves plot (Figure 3D), where the
CD14Mono 1 (magenta) and CD14Mono 2 (lime) lines fully overlapped,
versus the misalignment of the CD14 Mono 1 (magenta) and Eryth 1
(mustard) lines. Once again, this confirmed that resVAE ensemble can
consistently distinguish between these different cell populations and
identify genes that are relevant in the cluster-specific context.

Similarly, resVAE ensemble considers the CD16Mono 1 cluster to
be closely related to the Monocyte/Megakaryocyte Doublets 2 cluster,
where almost all the genes identified in CD16 Monocytes are
encompassed in the latter cluster (Figure 3C, right). Excluding
these shared CD16 Monocytes cluster genes from the Monocyte/
Megakaryocyte Doublets cluster yielded many genes that enrich for
immune terms related to neutrophils, inflammatory responses,
cytokines etc. Intriguingly, resVAE ensemble did not identify any
shared or common genes between the actual Megakaryocytes cluster
and the Monocyte/Megakaryocyte Doublets cluster (Supplementary
Figure S5), suggesting that resVAE considers them as vastly different
clusters which is also apparent from the UMAP plot (Figure 3A).
However, some identified genes could be functionally linked to
Megakaryocytes, such as platelet function (CD9, FLNA, TLN1,
PLA2G7, SERPING1, APLP2, ANXA5, MARCKS etc.), cell adhesion
(THBS1, LGALSs, FERMT3 etc.), cell motility (TPM4 etc.) and
mediators of immune relevance (IL1B, IL8, CXCL1, CXCL2, TGFBI
etc.) (Cunin and Nigrovic, 2019; Kammers et al., 2021). resVAE also
managed to identify other biologically meaningful genes missed by
Seurat, including a cell surface receptor on B cells involved in isotype
switching (CD40; Bishop and Hostager, 2001), a cell adhesion
molecule expressed on T cells that is a well-known marker for
naïve and memory cells (SELL; Yang et al., 2011), a pro-
inflammatory cytokine expressed on NK cells (IL32; Yang et al.,
2019) and more (Figure 3E).

With this experiment, we further demonstrated that resVAE
ensemble works on real scRNA-seq biological datasets, where the
identified features correspond to the cluster identities in terms of
biology and cell-type markers (Supplementary Figure S6). Clusters
that are similar will have similar profiles and vice versa, thus
potentially enabling a systematic approach to elucidate cluster
identities. In addition, we showed that the performance of resVAE
ensemble conforms to the clusters in a context-aware manner such
that the number of clusters involved and their similarities did not seem
to negatively affect the performance. resVAE not only identified genes
consistently between the partitions, but also identified some genes that
would be similarly identified using conventional methods such as
Seurat and MAST (McDavid et al., 2015) as well (Figure 3F). Most
importantly, we also showed that resVAE ensemble can capture
biologically meaningful genes that could be missed by other
methods (Supplementary Figure S7).

Explorative analysis using resVAE ensemble
on scRNA-seq and scATAC-seq multi-modal
data

Next, we aimed to demonstrate that resVAE ensemble can be used
directly on other single-cell data modalities such as scATAC-seq. To
that end, we investigated the performance of resVAE ensemble on
genes and peaks or open-chromatin region identification tasks in
human PBMC scRNA-seq and scATAC-seq dataset respectively
(Figure 4A). In contrast to single-cell RNA sequencing techniques
that profile the transcriptomic landscape of single cells by capturing
and measuring the RNA transcripts as a proxy to infer gene or protein
expressions, single-cell ATAC sequencing techniques profile the
epigenomic regulatory information of single-cells by capturing
open regions in the chromatin accessible to regulators. One such
possibility is to investigate transcription factor binding motifs that are
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enriched in these identified peaks. For instance, the MA1101.2/
BACH2 and MA0466.3/CEBPβ motifs are examples where strong
Tn5 insertion enrichment was observed, especially in the Monocytes
and DCs clusters (Figure 4B).

In both scRNA-seq and scATAC-seq datasets, resVAE ensemble
was able to consistently identify features that are relevant to the
corresponding clusters (Figures 4C, D). The results also suggest
that the identified genes and peaks are biologically meaningful, as
clusters with similar identities or functions share more features in
common and vice versa. For example, in the scRNA-seq dataset, the

two B cells clusters—pre-B and B cell progenitor—have some
identified features in common, while most of the T cells
populations are also similarly clustered together based on the
identified genes. Comparable results can be observed in the
scATAC-seq dataset as well, where common peaks were identified
in the Monocytes and B cells populations. Encouragingly, the
two NK cells clusters were observed to share both genes and
peaks not only between themselves but also with the
CD8 Effector T cells that function similarly (Narni-Mancinelli
et al., 2011) (Figures 4C, D).

FIGURE 4
Results of explorative analyses using resVAE ensemble on the Human PBMC scRNA-seq and scATAC-seq datasets. (A) shows the UMAPs of the scRNA-
seq and scATAC-seq datasets described by Stuart et al. (2021). (B) shows examples of transcription factor bindingmotifs and their footprinting identified in the
Monocytes clusters. (C) shows the resVAE scores of the identified genes and peaks in the scRNA-seq and scATAC-seq data, respectively. (D) the chord
diagrams highlight the extent of the sharing of identified features among the clusters. (E) shows examples of cell type enrichment terms that can be
obtained from the identified peaks of CD14 Monocytes and NK CD56Dim clusters.
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Apart from common features, resVAE ensemble also identified
distinct cluster-specific features, with the two CD14 Monocytes
clusters being the most apparent considering the minimal
connectivity between them (Figure 4C, bottom; Figure 4D,
right). Meanwhile, a good balance between shared and distinct
features was reached in the subpopulations of the B cells and NK
cells clusters. In the case of scRNA-seq data, most clusters share a
minimal number of genes, whereas clusters that do, share a
considerable number of them, as shown among the NK cells and
CD8 Effector T cells clusters, as well as the B cells clusters
(Figure 4C, top). This is largely recapitulated in the scATAC-
seq data where peaks were identified instead of genes
(Figure 4C, bottom; Figure 4D, right). In addition, one of the
CD14 Monocytes cluster seemed to share many peaks with the
CD16 Monocytes cluster. Regardless, resVAE ensemble certainly
identified more peaks that are shared in the scATAC-seq data in
comparison to shared genes in the scRNA-seq data. In the
biological context, the increase in shared features can be
expected since different peaks could be mapped into one or
several annotations and vice versa. Instead of identifying
individual peaks that were considered distinct, the common
genes that each distinct peak can be mapped to can now be
identified and merged.

A brief cursory exploratory analysis into the enrichment results
using the peaks identified in the NK CD56Dim cluster revealed some
biologically meaningful results (Figure 4E). For instance, the peaks
identified in both the CD14 Monocytes and NK cells clusters yielded
enrichment terms that are highly suggestive of their cell type
identities based on the Human Molecular Signature Database’s
(MSigDB) “C8: cell type signature” gene sets (Liberzon et al.,
2011). The identity of the NK cells cluster is obvious, while the
identity of the Monocytes can be inferred after taking into
consideration the samples studied (myeloid cells), and the non-
monocytes terms such as microglia and Kupffer cells being closely
related to monocytes or macrophages in terms of their function.
Overall, the performance of resVAE ensemble here is within
expectations, as PBMCs are remarkably similar in terms of their
associated gene sets or enriched terms, not to mention the indirect
interpretation at the open chromatin level.

Nevertheless, we successfully demonstrated the use of resVAE
ensemble on joint or multi-modal analyses by analyzing scRNA-
seq genes and scATAC-seq peaks of PBMCs with biological
meaning. We also explored the regions identified by resVAE
ensemble, which seemed to be relevant to the clusters in terms
of the enriched transcription factor binding motifs or the closest
genes that could be linked to these regions. In general, the
consistencies of the identified features for specific clusters are
affected by the number of cells in the cluster, where clusters
with larger number of cells exhibit higher consistencies. We
remark that we used the default hyperparameters for the
resVAE models, even when the number of features in this
scATAC-seq data with more than 87,560 peaks is more than
4.6-fold of the scRNA-seq data with 19,000 genes. Remarkably,
the default encoder and decoder layers with 256 and 512 neurons
seemed to be sufficient without having to scale up the model. These
results also further suggested that the resVAE ensemble model is
robust against hyperparameters tuning, making it feasible to get
started immediately and have acceptable results to explore
straightaway without excessive tweaking or benchmarking.

Discussion

In this manuscript we detailed the introduction and
implementation of a methodology combining deep ensembles with
rank aggregation focusing on our resVAE architecture. resVAE
ensemble is a methodology that implements rank aggregation of
deep ensembles on the resVAE architecture that allows the
capturing of cluster-specific hierarchical features in single-cell data.
The introduction of deep ensembles with rank aggregation improves
the consistencies and provides a measurement of confidence for the
identified features. To be clear, we neither claim that resVAE ensemble
itself is superior to other existing tools, nor intend for this to be a
benchmarking study, since the methodology can be used alongside
other reported methods. In addition, it is also not especially
straightforward to directly compare and benchmark tools aimed at
different use cases or niches without a good scoring metric or ground
truths. This proves to be difficult when it involves context-specific
biological interpretations, even more so without a strong confidence in
terms of experimental or background knowledge. The aim of
identifying relevant genes in a cell population also raises the
question about how populations of mixed cell-types or cell
doublets are treated, and whether they can be detected by resVAE
ensemble. Our experiments showed that this may be achieved by
splitting the cluster in question into several partitions and then
comparing the identified genes among these partitions. The ratio of
overlapping genes identified by resVAE ensemble between identical
partitions should be much lower if the cluster consists of doublets or
varied cell populations as demonstrated (Supplementary Figure S8).

Nevertheless, we observed that the features identified by resVAE
ensemble generally resemble the HVG/DEGs from statistical testing-
based methods like Seurat or Scanpy. However, the candidates
identified by resVAE could be less biased in comparison to manual
curation based on prior knowledge of what to expect, as they are not
just restricted to the top genes of these methods. Here, we claim it
could be less biased and interesting if we did not have to perform this
curation at all, and let the network learn in a systematic manner
instead.

The deep ensemble is most appropriate for methodologies
utilizing approximation or probabilistic models that produce
ranked results where the results are non-deterministic across
different runs. Currently, ensembles of deep learning models are
not commonly used. Even in classical ensembles such as random
forest, the features are selected without taking rank aggregation into
consideration. Here, with rank aggregation it is possible tomeasure the
confidence or consistency of the identified features within the
ensemble as we have shown. Alternatively, the deep ensemble can
also be used to aggregate models with varying hyperparameters,
especially when the best hyperparameters set are not known.
Naturally, one can also perform equal or weighted aggregation of
ensembles across methodologies to combine the results of different
tools in a meaningful way.

Here we will also briefly discuss similar reported tools. The
pathway module VAE (pmVAE) also utilizes VAEs in the form of
pre-selected pathway modules that only act on the participating genes
to encourage module independence (Gut et al., 2021). Hence, it can be
used to determine the weights of each of these pre-specified pathway
modules across each cell in the dataset. This is different by nature in
comparison to resVAE that leverages any labeling information to
retrieve features in a hierarchical manner. scArches is another family
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of tools with a bigger aim of tackling dataset integration by mapping
queries to reference datasets (Lotfollahi et al., 2022). While it is
possible to extract and cobble various parts of scArches together to
achieve similar functionalities provided by resVAE, it neither
addresses the same needs directly nor utilizes ensembles and rank
aggregation.

Currently, clustering analysis is the standard in single-cell data
analyses, where cells within the same cluster are treated in a
homogenous manner. Archetypal analysis could be another option
especially for transitionary cell types or states, where populations are
described in terms of combinations of archetypes. We have shown that
resVAE ensemble can be used in a similar fashion in the bifurcation
model experiment, where populations were assigned by their
similarities to specific archetypes. scAAnet is another tool that
utilizes autoencoder for archetypal analysis by optimizing the
archetypal constraint in the shared latent space (Wang and Zhao,
2022). Interestingly, the authors of scAAnet also remarked on the
stochasticity of such deep learning methods. Moreover, they must
train and evaluate multiple models manually to ensure that the outputs
are stable. This is where we believe our approach with resVAE
ensemble to be superior and should be highlighted, since we
leveraged the inherent stochasticity by incorporating the
consistencies and rankings of the outputs to yield more consistent
results.

In terms of data analysis, we demonstrated that resVAE ensemble
can be used on different single-cell data modalities, including scRNA-
seq and scATAC-seq. In addition, we also showed that resVAE
ensemble can be used to identify features for joint analysis of
multi-modal data in combination with other tools. resVAE
ensemble can further be used with cluster assignment methods that
assign partial or mixed identities for the different clusters, which
cannot be usually performed in most conventional tools used to
analyze these data.

Overall, we introduced rank aggregation of ensembles that
improved the consistency and reproducibility of the results. In
fact, we believe that the ensemble and rank aggregation approach
introduced can be applied to other similar methods to potentially
yield better results. Moreover, it is possible to combine the results
from resVAE with the results from other methodologies in the
ensemble, whether they are widely used end-to-end analysis
workflows or niche tools targeting specific use cases or even
upcoming tools.

Conclusion

Conventional methodologies used for single-cell data
predominantly focus on comparing highly variable or differentially
expressed features across different populations. Deep learning or
approximation-based algorithms can be used to identify features in
single-cell data in a hierarchical manner in line with biological
systems. However, these methods can produce different results due
to their inherent randomness. Here, we used deep ensembles on our
resVAE architecture to improve the reliability and consistency of the
results. Moreover, resVAE ensemble can give a measure of confidence
or consistency for the identified features. Finally, this method can be
used to integrate results from different methodologies and algorithms
to produce a consensus result.

Materials and methods

resVAE ensemble

resVAE ensemble is built on top of the restricted latent variational
autoencoder (resVAE), which we introduced in our earlier publication
(Lukassen et al., 2020). Apart from the introduction of ensemble with
rank aggregation, we also further optimized our resVAE architecture
and implementation. The ensemble is constructed by combining
multiple independent resVAE models trained using identical inputs
with varying hyperparameters. The cost function of the resVAE
ensemble network is inherited from the base resVAE architecture,
with minor adjustments through the addition of two adjustable
parameters α and β targeting the reconstruction loss and Kullback-
Leibler (KL) divergence respectively:

LresVAE � α∑ (Xinput −Xrecons)2 + β∑
1
2
(1 + log (σ) − (s − μ)2

− elog σ( )) (1)

In short, the cost function of the resVAE architecture consists of
two parts, namely the reconstruction loss and the KL-divergence,
respectively. The reconstruction loss measures the mean-squared error
between the original inputs and the outputs of the autoencoder, which
in our case is usually the cell by feature matrix. The KL divergence is a
measure to quantify the similarity between probability distributions.
Here, σ and μ represent the variance and mean of the latent
distribution, respectively, while s refers to the latent offset
hyperparameter. The addition of the α term allows us to prioritize
the reconstruction accuracy. Meanwhile, the β term transforms the
regular VAE into a β-VAE, where the β parameter can be tweaked to
encourage the model to balance between prioritizing latent
disentanglement or reconstruction accuracy (Higgins et al., 2016).
The β-VAE is identical to a normal VAE when β � α � 1, while
higher β value would emphasize the statistical independence
represented by the KL divergence rather than the reconstruction
accuracy, and thus implicitly enforcing the de-correlation of the
learned latent spaces. In general, we find that higher α or β can
produce better results in terms of the identified features by providing a
better balance between reconstruction accuracy and latent
disentanglement or through a better loss landscape as shown in
our experiments (Supplementary Figure S1). We also introduced
the use of label smoothing for the one-hot encoded labels, which
has been shown to improve model generalization and calibration in
many state-of-the-art models and tasks by preventing the network
from becoming over-confident (Müller et al., 2019).

Weights initialization methods can play a critical role in training
neural networks to convergence (Kumar, 2017). While rectified linear
unit (ReLU) seemed to make more sense in terms of how gene
expression works in biological organisms, the gradient vanishing
and/or exploding problem remains an issue when it comes to
training neural networks. This problem can cause neurons to
become inactive and never recover during training. In practice, this
could contribute to a less stable result, making it difficult to both assess
the performance of the models and to obtain systematic reproducible
results (Lu et al., 2019). Here we settled on the adoption of the Mish
activation function in the current version of resVAE ensemble. The
Mish activation function has been benchmarked extensively to
demonstrate considerable improvements pertaining training
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stability over ReLU and other activation functions in various models
and tasks (Misra, 2019).

Mish � x × tanh ln 1 + ex( )( ) (2)
Apart from the implementation of new activation functions for the

non-linearities, we also improvised the kernel initialization method of
the dense layers based on the activation function used. Now, the He
Uniform kernel initialization method is paired with ReLU activations,
while the Xavier or Glorot Uniform method is paired with hyperbolic
tangent-based activations, which should be a better pairing as
demonstrated in multiple studies and experiments (He et al., 2015;
Datta, 2020).

Moreover, we adopted the combination of Rectified Adam
(RAdam) with the Lookahead mechanism as our optimizer. The
original Adam optimizer with its adaptive learning rate is known
to suffer from bad convergence problems especially during the early
stage of training, where the variance is undesirably large due to the
limited amount of training samples. RAdam attempts to address this
by introducing a dynamic rectifier term that adjusts the adaptive
momentum of Adam by stabilizing the variance of the adaptive
learning rate while avoiding the need for manual warmup (Liu
et al., 2019). Meanwhile, the Lookahead mechanism allows a faster
convergence by interpolating between two sets of weights that are
iteratively updated during the exploration and training process (Zhang
et al., 2019). The combination of these twomethods has been shown to
improve the learning stability with minimal computation andmemory
costs, with the main benefit being its robustness without the need for
further hyperparameters tweaking. Nevertheless, the training time and
speed will be affected by varied factors, such as the size of the datasets,
the hyperparameters used etc. Using the INF-β stimulated PBMC
dataset as an example, one resVAE model took around 6 minutes to
train on an NVIDIA A100, and we could train several of these models
in parallel either on the same GPU or across multiple GPUs.

While we primarily demonstrated the use of ensemble on identical
inputs with varying combinations of α and β, more complex
hyperparameters combinations and ensemble setups are possible,
especially in combination with outputs from different tools.

Gene list cut-off

To further improve the gene candidates produced from the cut-offs
in situations where it is difficult to identify definite elbow and knee
points from the rank plots, a new cut-off calculation method is
implemented. First, the data is split into N bins of equal sizes. In
practice, we are usually interested in the point at which there is a
pronounced drop (knee) or rise (elbow) in the weights, which are
usually located in the first and the last bins, respectively. Hence, the
knee point is calculated by connecting the median data point of the
first bin to its first data point to obtain the rotation angle θ , such that
the x -axis can be rotated to be parallel with this line and the point
where y is maximum is used as the knee point. Conversely, the elbow
point is calculated using the θ obtained by connecting the median data
point of theNth bin to its last data point and taking the adjusted point
where y is minimum. This new method allows better fine-tuning or
control over the cut-offs, where the number of genes can be further
increased or decreased where appropriate. The median of the different
cut-offs is used as the cut-off point for the final aggregation for each
label-specific list.

Here, we have an example where the new method would improve
the performance by producing more consistent cut-offs and restricting
the number of features selected (Supplementary Figure S9). In these
cases, using the original method would yield less consistent cut-off
points and result in the inclusion of excess features (Supplementary
Figure S9). Here, the difference would be 3,000 extra genes candidates
in the scRNA-seq dataset to more than 10,000 extra peaks in the
scATAC-seq dataset.

Rank aggregation

We implemented the Robust Ranking Aggregation (RRA)
algorithm (Kolde et al., 2013) in Python for use with resVAE
ensemble. In this manuscript, all rank aggregations are performed
using the RRA algorithm to produce one consensus ranked feature list
that is used for further analyses. The meta-analysis by information
content (MAIC) algorithm that can aggregate ranked and unranked
lists (Li et al., 2020) is implemented as well and can be used if the
ranked lists should be assigned different weights.

Data analysis

The human PBMC scRNA-seq and scATAC-seq datasets for the
analysis were obtained from 10x Genomics as detailed in the Data
Availability section. The myeloid differentiation simulated dataset is
included in Scanpy (Krumsiek et al., 2011; Wolf et al., 2018), while the
bifurcation model simulated data is generated using dyngen (Cannoodt
et al., 2021). This simulation model consists of 7 cell populations with
35 transcription factors regulating 500 target genes and an additional
20 housekeeping genes that are not regulated by the transcription
factors. The analyses were performed using different tools where
they are applicable, including Seurat (Stuart et al., 2019), Scanpy
(Wolf et al., 2018), Signac (Stuart et al., 2021) and resVAE
(Lukassen et al., 2020) ensemble to assess and compare the results.
Gene set enrichment analysis was performed using Metascape (Zhou
et al., 2019) or Enrichr (Xie et al., 2021). scATAC-seq peaks were also
analyzed using the GREAT algorithm (Tanigawa et al., 2022) via
rGREAT (Gu, 2022), which assigns biological meaning to non-
coding genomic regions by analyzing the annotations of the nearby
genes.
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SUPPLEMENTARY FIGURE S1
Extractedweightsmappings for the Erythrocytes and Granulocytes clusters from all
resVAE decoders in the ensemble. 10 independent resVAE models are trained for
each set of varying hyperparameters. ReLU and Mish are activation functions.

SUPPLEMENTARY FIGURE S2
Interactions of the different entities involved in the simulation. The simulation
model consists of 7 cell populations with 35 transcription factors regulating
500 target genes and an additional 20 housekeeping genes that are not
regulated by the transcription factors. The colored dots represent different
transcription factors, while the genes they regulate are shown as connected
gray dots. Housekeeping genes that are independent of this regulation are
also shown as light gray dots towards the top left corner.

SUPPLEMENTARY FIGURE S3
Determining cluster number using resVAE. Various scores and errors of
clustering metrics are shown, where the numbers above the bars indicate
the number of clusters generated for the different resolutions. The
Silhouette (higher better), Calinski-Harabasz (higher better) and Davies-
Bouldin (lower better) scores are standard clustering metrics that measure
how well-defined the clusters are, while the Dice errors (lower better)
measure how similar the different clusters are in terms of overlapping
features. The non-zero mean Dice errors include only groups with
overlapping features for calculations. The general trends persist regardless
of the beta value, with a higher beta emphasizing the de-correlation of the
different clusters. The red arrowheads highlight the two best scores of the
corresponding metrics.

SUPPLEMENTARY FIGURE S4
The chord diagram illustrates the differences and overlaps of identified
features between the two different cluster assignment methods. The H and S
prefixes correspond to the “hard” and “soft” cluster assignment methods,
respectively.

SUPPLEMENTARY FIGURE S5
An overview of the genes identified by resVAE ensemble and the extent of their
co-occurences across all clusters.

SUPPLEMENTARY FIGURE S6
Heatmaps of all resVAE-identified genes in the different clusters,
highlighting that resVAE can identify population-characterizing genes
instead of emphasizing cluster-specific or differentially expressed genes.
The numbers at the bottom-left corners indicate the number of genes
resVAE identified for that specific cluster. The ratios at the bottom-right
corners indicate the number of cell-type specific markers from
PanglaoDB (Franzén et al., 2019) identified by resVAE, against the total
number of markers annotated in the database for that cluster. The colored
bars above the columns indicate the corresponding clusters. Cell-types
that are ambiguous, without resVAE-exclusive genes or absent from
PanglaoDB are excluded.

SUPPLEMENTARY FIGURE S7
The complete dot plot showing the expressions of all PanglaoDB cell-type
markers identified by resVAE but missed by Seurat. An outlined dot indicates
that the gene is specified as a marker for the corresponding clusters
(columns). The red outline additionally indicates that the gene has been
reported to be relevant in the context of the corresponding clusters in existing
literature. The Mono/Mk Doublets cluster is a special case where outlined
genes were indeed reported to be relevant in either Monocytes or
Megakaryocytes cell-type, but left without a red outline. Other cell-types that
are ambiguous, without resVAE-exclusive genes or absent from PanglaoDB
are excluded and marked in light gray.

SUPPLEMENTARY FIGURE S8
Identification of mixed cell-types or doublet clusters using resVAE
ensemble. The top bars show the number of genes identified by resVAE
ensemble for the different clusters. The bottom bars indicate the ratio of
genes identified in common between the two partitions of the same cluster.
Mixed cell-types clusters are synthetically generated by randomly
sampling cells from the specified clusters and assigned the same label.
UMI doublets are synthetically generated by randomly sampling two UMIs
and summing up their counts. These synthetic clusters are then split into
two partitions to compare their genes identified by resVAE ensemble. We
observed that these synthetic clusters tend to exhibit a lower ratio of
overlapping identified genes between the two partitions, especially if they
consist of fuzzier or more heterogenous populations. Synthetic clusters
are marked in black, the ambiguous Mk/Mono Doublets in dark gray, and
the rest in light gray.

SUPPLEMENTARY FIGURE S9
(A, B) show the comparisons between the original and the improved cut-off
calculation method in scRNA-seq and scATAC-seq data, respectively.

SUPPLEMENTARY TABLE S1
Links for data used in this study.
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