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Colorectal adenocarcinoma (COREAD) is the second most deadly cancer and
third most frequently encountered malignancy worldwide. Despite efforts in
molecular subtyping and subsequent personalized COREAD treatments,
multidisciplinary evidence suggests separating COREAD into colon cancer
(COAD) and rectal cancer (READ). This new perspective could improve
diagnosis and treatment of both carcinomas. RNA-binding proteins (RBPs),
as critical regulators of every hallmark of cancer, could fulfill the need to
identify sensitive biomarkers for COAD and READ separately. To detect new
RBPs involved in COAD and READ progression, here we used a multidata
integration strategy to prioritize tumorigenic RBPs. We analyzed and
integrated 1) RBPs genomic and transcriptomic alterations from
488 COAD and 155 READ patients, 2) ~ 10,000 raw associations between
RBPs and cancer genes, 3) ~ 15,000 immunostainings, and 4) loss-of-
function screens performed in 102 COREAD cell lines. Thus, we unraveled
new putative roles of NOP56, RBM12, NAT10, FKBP1A, EMG1, and CSE1L in
COAD and READ progression. Interestingly, FKBP1A and EMG1 have never
been related with any of these carcinomas but presented tumorigenic
features in other cancer types. Subsequent survival analyses highlighted
the clinical relevance of FKBP1A, NOP56, and NAT10 mRNA expression to
predict poor prognosis in COREAD and COAD patients. Further research
should be performed to validate their clinical potential and to elucidate their
molecular mechanisms underlying these malignancies.
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Introduction

Colorectal adenocarcinoma (COREAD) has been ranked as the
second most deadly cancer and the third most common malignancy
worldwide with an estimated 1.9 million cases and 0.9 million deaths in
2020 (Xi and Xu, 2021). Over the past 10 years, significant advances
were achieved in personalized treatments for COREAD patients based
on the molecular subtyping (Cohen et al., 2020; López-Cortés et al.,
2020; Assis et al., 2022). For example, metastatic COREAD patients,
harboring BRAFV600E mutation, have now better treatment options
(Mauri et al., 2021). Despite these efforts, molecular subtyping has been
insufficient to address the heterogeneity of colon and rectal tumors
(Cohen et al., 2020; Liu Z. et al., 2021; Assis et al., 2022). In that context,
Paschke et al., after analyzing ~2000 publications and the results of two
large clinical trials, suggested stopping using the term COREAD and
started separating into two different tumor identities: colon cancer
(COAD) and rectal cancer (READ). Paschke et al., reached this
conclusion by describing obvious differences between COAD and
READ concerning molecular carcinogenesis, pathology, surgical
topography and procedures, and multimodal treatment. This new
perspective could improve the identification of new biomarkers and
therapeutic targets for both types of cancer (Paschke et al., 2018).

A new emerging understanding of RNA-binding proteins
(RBPs) have addressed them as critical modulators of every
hallmark of cancer (Abdel-Wahab and Gebauer, 2018; García-
Cárdenas et al., 2019; Hanahan, 2022). RBPs can modulate the
expression levels of oncogenes and tumor suppressors (Hentze et al.,
2018; García-Cárdenas et al., 2019; Kang et al., 2020) by controlling
all aspects of their mRNA processing and metabolism, such as
capping, polyadenylation, alternative splicing, subcellular
localization, nucleocytoplasmic transport, stability, and
degradation (Hentze et al., 2018; García-Cárdenas et al., 2019;
Kang et al., 2020; Mestre-Farràs et al., 2022). Thus, identification
of tumorigenic RBPs could fulfill the need to discover more accurate
and sensitive therapeutic targets for COAD and READ (Cohen et al.,
2020; Liu Z. et al., 2021; Assis et al., 2022).

In that respect, we previously performed a literature review to identify
RBPs implicated in COREAD (García-Cárdenas et al., 2019). As a result,
we found 35 RBPs (out of 1,392 described byHentze et al., 2018) involved
in different aspects of COREAD progression, such as angiogenesis,
metastasis, or chemotherapy resistance (Hentze et al., 2018). We also
showed that these RBPs are implicated in a complex interconnected
networkwhere a single RBP canbind to thousands of RNAs. For instance,
ELAVL1 targets 21,578 RNAs, whereas KHDRBS1 interacts with 962.
These results pointed out the potential of RBPs to regulate cancerous
cellular processes and thereby to be used as COADor READbiomarkers.

In extending the scope of our previous work and discovering
new RBPs involved in COAD and READ separately, here we used
our previously published multidata integration strategy to
prioritized tumorigenic RBPs (García-Cárdenas et al., 2022).
Thus, we assembled data from several resources: The Cancer
Genome Atlas (Tomczak et al., 2015), The Human Protein Atlas
(Pontén et al., 2008), STRING (Szklarczyk et al., 2019), Depmap
(Yu et al., 2016) and HumanNet (Kim et al., 2022), and revealed
new RBPs associated with both types of cancer. Our results
provide a better understanding of COAD and READ biology
and potentially unveil new targets for cancer therapy and
prognostic biomarkers.

Methods

Gene sets

Hentze et al., compiled all published RNA interactomes and
stringently curated a list of 1,393 RBPs (Hentze et al., 2018). After
checking for new annotations using Ensembl (http://www.
ensembl.org), we found one duplicate (ENSG00000100101 and
ENSG00000273899, both corresponded to NOL12), leaving a final
list of 1,392 RBPs. The cancer driver genes (n = 2,372) were
retrieved from the Network of Cancer Genes 7.0 (NCG7, http://
ncg.kcl.ac.uk/) (Dressler et al., 2022) and filtered by COREAD
genes (n = 156) (Supplementary Table S1).

Genomic and transcriptomic data
exploration

The cBioPortal for Cancer Genomics (https://www.cbioportal.org;
accessed on 04 March 2022) was used to analyze and retrieve genomic
and transcriptomic alterations of RBPs from datasets that clinically
differentiate COAD and READ. Specifically, we used the Colorectal
Adenocarcinoma dataset (TCGA, PanCancer Atlas; Hoadley et al., 2018)
which has 378COADpatients and 155 READpatients.We also analyzed
the Colon Cancer study (CPTAC-2 Prospective; Vasaikar et al., 2019)
which has 110 complete COAD samples. To compare the
aforementioned gene sets, genomic and transcriptomic alterations
were corrected by the number of patients. As COAD and READ sets
have different number of patients, we divided the number of alterations
per RBP by number of patients, i.e., the mean of genomic and
transcriptomic alterations per RBP. A Mann–Whitney U test was
applied when comparing clinical characteristics or genomic and
transcriptomic alterations between gene sets (colon vs. rectum) and
within each group (COAD and READ stages and subtypes)
(Supplementary Tables S2–S7). Additionally, mRNA Z-scores of
aberrantly expressed RBPs in COAD and READ were collected and
compared using aMann–WhitneyU test (Supplementary Tables S8, S9).
A z-score of < −2 or >2 (p-value = <0.05; confidence level 95%) was used
as the criteria for RBPs being determined as down/upregulated,
respectively.

Gene network construction

Experimental and database interactions between RBPs (n = 1,392)
and COREAD proteins (n = 156) (Supplementary Table S10), having an
interaction score of 0.9 (highest confidence), were predicted with the
STRING database (Szklarczyk et al., 2015; Repana et al., 2019). Then, the
network was visualized using the Cytoscape 3.9.1 (Seattle, USA) platform
(Shannon et al., 2003).

Protein expression analysis

Protein immunohistochemical levels were extracted from
The Human Protein Atlas version 21.1 (https://www.
proteinatlas.org; accessed on 15 March 2022) (Uhlén et al.,
2015; Thul et al., 2017; Uhlen et al., 2017). We obtained protein
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expression levels (not detected, low, medium, and high) for
608 RBPs in COAD and 609 RBPs in READ tissues. Protein
expression levels of normal tissues were taken from glandular
cells, while a consensus level was manually generated for COAD
and READ tissues (Supplementary Tables S11, S12) based on
the expression levels. Both normal and tumor tissues had
antibody validation parameters. Only enhanced and
supported parameters were considered for this analysis.

Cancer genetic dependency analysis

RBPs cancer dependency scores from CERES (Meyers et al., 2017)
(1,341 available RBPs) and DEMETER2 (Tsherniak et al., 2017;
McFarland et al., 2018) (1,255 available RBPs) were obtained from the
DependencyMap (DepMap) portal (https://depmap.org/portal) (Yu et al.
, 2016). A score of 0 = not essential gene for cell survival, whereas a score

of −1 corresponds to themedian of all common essential genes, i.e., genes
whose principal cellular processes are involved in fundamental cell
survival pathways. These scores were calculated from gene knock-out
(CERES) and knock-down (Demeter) experiments performed in cancer
cell lines. CERES reported data from42COADcell lines and three READ
cell lines, while DEMETER2 obtained data from 47 COAD cell lines and
10 READ cell lines (Supplementary Tables S13–S16).

Integrative gene network

The prioritized RBPs for COAD and READ were integrated into
a disease gene network by using the HumanNet XC (functional gene
network extended network by co-citation) latest version
(v3 software) (https://www.inetbio.org/humannet) (Kim et al.,
2022) and visualized through Cytoscape 3.9.1 (Shannon et al.,
2003) (Supplementary Tables S17, S18).

FIGURE 1
Schematic representation of the data mining strategy. All databases interrogated for prioritization: The Cancer Genome Atlas (Tomczak et al., 2015),
The Human Protein Atlas (Pontén et al., 2008), STRING (Szklarczyk et al., 2019), and DepMap (Yu et al., 2016), and further cancer association analysis
(HumanNet; Kim et al., 2022) are depicted in the multidata integration workflow.

Frontiers in Cell and Developmental Biology frontiersin.org03

García-Cárdenas et al. 10.3389/fcell.2023.1088057

https://depmap.org/portal
https://www.inetbio.org/humannet
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1088057


FIGURE 2
Genome and transcriptome alterations of RNA Binding Proteins. (A) A pie chart illustrating different types of RBPs genomic and transcriptomic
alterations and their percentages in colon and rectal tumors. Data was obtained from Colorectal Adenocarcinoma study (TCGA, PanCancer Atlas;
Hoadley et al., 2018) and Colon Cancer study (CPTAC-2 Prospective; Vasaikar et al., 2019). (B) Number of RBPs alterations (corrected by number of
patients, arbitrary units) separated by type. A Mann–Whitney U test was performed to compare alterations between datasets (COAD vs. READ
alterations). All possible comparisons between sets presented significant statistically differences (p < 0.001) except mutations and fusions; ns = not
significant. (C) Violin plots portraying the differences of mRNA levels (Z-scores) between colon and rectal tumors, a Mann–WhitneyU test was performed
to compare these data sets. ** = high statistically significant difference.
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TABLE 1 Most frequently altered RNA-binding proteins in colon and rectal cancer. Data was obtained from Colorectal Adenocarcinoma study (TCGA, PanCancer Atlas; Hoadley et al., 2018) and Colon Cancer study (CPTAC-
2 Prospective; Vasaikar et al., 2019).

Genomic and transcriptomic alterations Protein
name

COAD (C) or READ (R)/Number
of alterations

Known COAD or READ molecular and cellular functions Related to other
cancer types/

upregulation + fusion + mutations

STAU1 C/295 No Yes Marcellus et al. (2021)

R/291

YTHDF1 C/291 Yes. YTHDF1 Regulates Tumorigenicity in Human Colorectal Carcinoma Bai et al.
(2019); Chen P et al. (2021); Yan et al. (2021)

Yes Cao et al. (2017)

R/146

CHMP4B C/272 No Yes Hu et al. (2015)

R/127

DDX27 C/266 Yes. DDX27 promotes Colorectal cancer growth and metastasis Tang et al. (2018) Yes Li et al. (2021)

R/138

CSTF1 R/128 No No

DIDO1 C/250 Yes. DIDO1 promotes carcinoma progression Sillars-Hardebol et al. (2012) Yes Forghanifard et al. (2020)

R/117

RBM39 C/248 Yes. RBM39 promotes carcinoma progression Sillars-Hardebol et al. (2012) Yes Xu et al. (2022)

EIF2S2 C/247 Yes. EIF2S2 may promote glycolysis in CRC Yang et al. (2021) Yes Ji et al. (2021)

R/121

RPRD1B C/245 Yes. Overexpression of RPRD1B confers colorectal cancer sensitivity to fluorouracil
(Kuang et al., 2018)

Yes Wen et al. (2020)

LSM14B C/244 No Yes Ta et al. (2021)

R/125

NCOA5 C/243 Yes. NCOA5 promotes proliferation, migration and invasion of colorectal cancer cells
Sun et al. (2017)

Yes Tan et al. (2021)

R/127

PRPF6 R/114 Yes. PRPF6 is essential for tumor growth Adler et al. (2014) Yes Liu W et al. (2021)

Suppressors Deep deletion + mRNA downregulation +
fusion + mutations

CCAR2 C/140 Yes. CCAR2 mediates colon cancer progression Kim et al. (2018) Yes Chen L et al. (2021)

R/76

NARS C/116 Yes. Novel genes associated with colorectal cancer Eldai et al. (2013) No

FXR2 C/100 Yes. Differentially Expressed Profiles of mRNA N6-Methyladenosine in Colorectal
Cancer Li N et al. (2022)

No

R/46

ATP5F1A C/99 No Yes Feichtinger et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Most frequently altered RNA-binding proteins in colon and rectal cancer. Data was obtained from Colorectal Adenocarcinoma study (TCGA, PanCancer Atlas; Hoadley et al., 2018) and Colon Cancer study
(CPTAC-2 Prospective; Vasaikar et al., 2019).

Genomic and transcriptomic alterations Protein
name

COAD (C) or READ (R)/Number
of alterations

Known COAD or READ molecular and cellular functions Related to other
cancer types/

R/60

SYNE1 C/94 Yes. SYNE1 mutations are related with worse survival outcomes Zhou et al. (2020) Yes Qu et al. (2021)

R/31

GTF2E2 C/84 No Yes Bi et al. (2021)

R/42

ALKBH5 C/76 Yes. Related to tumor immunity in colon adenocarcinoma Yan et al. (2021) Yes Guo et al. (2020)

NCBP3 C/71 No No

RTF1 C/71 No No

ELAC2 C/63 No Yes Noda et al. (2006)

R/60

LRRC47 R/37 No Yes Mu et al. (2022)

YWHAE R/31 Yes. YWHAE mediated the function of miR-6778–5p in the proliferation of colorectal
cancer cells Li et al. (2019)

Yes Yang et al. (2019)

MRM3 R/30 No Yes Schmidlin et al. (2016)

DHX33 R/29 Yes. It promotes colon cancer development downstream of Wnt signaling Zhu et al.
(2020)

Yes Tian et al. (2016)

Fro
n
tie

rs
in

C
e
ll
an

d
D
e
ve

lo
p
m
e
n
tal

B
io
lo
g
y

fro
n
tie

rsin
.o
rg

0
6

G
arcía-C

árd
e
n
as

e
t
al.

10
.3
3
8
9
/fce

ll.2
0
2
3
.10

8
8
0
5
7

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1088057


Clinical analysis

The TCGA, PanCancer Atlas (Hoadley et al., 2018)
colorectal cancer database was inspected for mRNA
expression of prioritized RBPs in colon and rectum patients.
Probability of overall survival (OS) and disease-free survival
(DFS) were calculated. Curves were obtained by dividing
samples in two groups using median z-score as a cutoff in
COREAD, COAD, and READ patients. These two groups
represent 1) patients with RBP mRNA upregulation (blue
lines) and 2) patients with RBP mRNA downregulation (red
lines). Differences between groups were calculated using log
rank test. Graphical representations and statistical analysis
were performed with IBM SPSS, version 22. Only significant
comparisons with an N > 20 per group is shown.

Results

Multidata integration strategy to prioritized
tumorigenic RNA-binding proteins

We previously published a multidata integration strategy that
allowed us to identify PUF60 and SF3A3 as new spliceosome-related
breast cancer RBPs (García-Cárdenas et al., 2022). In this work, we used
the same strategy to prioritize tumorigenic RBPs that could be used as
COAD or READ biomarkers. First, we performed individual analysis of
several databases such as The Cancer Genome Atlas (Tomczak et al.,
2015), The Human Protein Atlas (Pontén et al., 2008), STRING
(Szklarczyk et al., 2019), and Depmap (Yu et al., 2016) to identify
RBPs with different cancer-related characteristics: 1) high genomic and
transcriptomic alterations, 2) interactions with well-known cancer

FIGURE 3
Detection of highly altered RNA-binding proteins in colon and rectal carcinomas. RBPs genomic and transcriptomic alterations per subtype (A, B)
and stage (C, D) are depicted in boxplots. Data was obtained from Colorectal Adenocarcinoma study (TCGA, PanCancer Atlas; Hoadley et al., 2018) and
Colon Cancer study (CPTAC-2 Prospective; Vasaikar et al., 2019). The number of RBPs alterations was divided by the number of patients in each set of
data. A Mann–Whitney U test was performed to compare genomic and transcriptomic alterations between sets. All possible comparisons between
colon and rectum and within each data set in both carcinomas presented high statistically significant difference (p < 0.001), except for GS subtype when
comparing colon vs. rectum, stage 1 vs. stage 4 (in colon cancer), and stage 1 vs. 3 (in rectal cancer); ns = not significant.
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proteins, 3) aberrant protein expression levels compared with normal
tissues, and 4) essential for tumor survival. Next, we performed a
rigorous analysis to detect RBPs with all the aforementioned
attributes, and thereby prioritizing potential COAD and READ RBPs.
Finally, we predicted how these prioritized RBPs are correlated with
cancer phenotypes using the HumanNet (Kim et al., 2022) database
(Figure 1).

Detection of highly altered RNA-binding
proteins in colon and rectal tumors

To globally determine the genomic and transcriptomic alterations of
RBPs in COAD and READ patients, we interrogated two independent
datasets, TCGA, PanCancer Atlas (Hoadley et al., 2018) and Colon
Cancer study CPTAC-2 Prospective (Vasaikar et al., 2019) including in
toto 488 COAD and 155 READ patients. First, we compared RBPs (n =
1,392) genomic and transcriptomic alterations between COAD and
READ. Once we corrected by the number of patients (i.e., mean of
genomic and transcriptomic alterations per RBP), we found significant
differences (p < 0.001) between COAD and READ. In Figure 2A is
depicted the percentages of each alteration, where mRNA upregulation
accounted for most of the genomic and transcriptomic modifications in
COAD and READ. In colon tumors we found that mRNA
downregulation and mutations presented equal percentages (15%),
whereas mRNA downregulation (20%) occupied the second place
followed by mutations (11%) in READ.

Although the pattern of RBPs genomic and transcriptomic alterations
in COAD and READ are similar (Figure 2A), when they are analyzed
separately, significant differences were found (p < 0.001) except for
mutations and fusions in COAD vs. READ (Figure 2B; Supplementary
Tables S2, S3). Even though RBPs mRNA upregulations account for 64%
in COAD vs. 62% in READ, mRNA Z-scores were higher in READ than
in COAD (p < 0.001) (Figure 2C; Supplementary Tables S8, S9). The
contrary is appreciated when analyzing mRNA downregulation, COAD
RBPs z-scores distribution shows a wider mRNA downregulation
compared to READ RBPs (p < 0.001) (Figure 2C).

To identify RBPs involved in tumor progression or
suppression, RBPs genomic and transcriptomic alterations

categories were classified accordingly. In malignant cells,
mRNA upregulation and genomic amplifications are related
to tumor progressors, while mRNA downregulation and
genomic deletions are connected with suppressors (Wurth
et al., 2016; Mestre-Farràs et al., 2022). Gene fusion and
mutations have been detected in both tumor progressors and
suppressors. Based on these principles, we listed the most
frequently altered RBPs in COAD and READ (Table 1,
Supplementary Tables S2, S3). As expected, most of them
have already been related to COAD or READ, and thereby
validating our strategy (Table 1). Interestingly, STAU1 was
the most altered RBP in both carcinomas, and yet it has
never been correlated with COAD or READ; however, it has
been associated with prostate cancer (Marcellus et al., 2021).
Similarly, some progressors (CHMP4B, CSTF1, and LSM14B)
and suppressors RBPs (ATP5F1A, GTF2E2, RTF1, ELAC2,
LRRC47, and MRM3) have never been associated with
COAD or READ, but present oncogenic properties in other
cancer types (Table 1, Supplementary Tables S2, S3). Worthy of
note, we also identified RBPs that are unique for each cancer
type and others (e.g., CSTF1) that have been never related to
cancer (Table 1).

We, next, determined genomic and transcriptomic
alterations of RBPs by subtypes, pole (polymerase ε),
microsatellite instability (MSI), genomically stable (GS), and
chromosomal instability (CIN) (Figures 3A,B; Table 2;
Supplementary Tables S4, S5) and stages (Stage I to IV,
Table 2; Figures 3C,D; Supplementary Tables S6, S7). We
found statistically significant differences between all
subtypes in both carcinomas (Mann–Whitney U, p < 0.001;
Figures 3A,B). Pole was the most altered subtype, followed by
MSI, CIN, and GS in both malignancies (Figures 3A,B). When
comparing subtypes between COAD and READ, we also found
statistically significant differences except for COAD GS vs.
READ GS subtype (Mann–Whitney U, p < 0.001; Figures 3A,B).
In COAD, we also observed equally altered RBPs among
subtypes. For example, DST and SYNE1 were highly altered
in Pole and MSI, while DDX27, STAU1, and YTHDF1 in GS
and CIN. It is important to mention that some of these RBPs

TABLE 2 Mean of genomic and transcriptomic alterations per stage and subtypes and sample number in COAD and READ patients.

Subtypes Colon (number of patients/Mean) Rectum (number of patients/Mean)

Pole 55/0.252 4/0.319

MSI 44/0.128 3/0.122

CIN 36/0.092 9/0.097

GS 202/0.061 99/0.076

Stages

I 78/0.104 29/0.113

II 186/0.135 50/0.091

III 150/0.131 44/0.112

IV 62/0.103 25/0.074
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were subtype specific such as SYNE2 and UTP20 for Pole, and
ANK3 for MSI (Figure 3A). Similarly, we found subtype
specific RBPs within READ subtypes that have never related
to COREAD. For instance, DYNC2H1, DDX55, CPSF7,
CAND1 and LARP4 were found in MSI subtype, TSR1 in
Pole, ZCCHC3 in GS, and LSM14B in CIN (Figure 3B).

We also detected statistically significant differences between all
stages in both cancer types (Mann–Whitney U, p < 0.001; Figures
3C,D). In COAD the highest mean of RBPs genomic and
transcriptomic alterations were detected in stage II, while in
READ they were found in stage I (Figures 3C,D; Table 2).
Interestingly, stage IV showed the lowest number of RBPs

FIGURE 4
Interaction network between RBPs and colorectal cancer driver proteins. STRING portal (Szklarczyk et al., 2019) was used to analyze protein-protein
interactions obtained from experiments and databases. A total of 153 RBPs were identified to be associated with 37 COREAD proteins. Blue = RBPs,
purple = COREAD proteins.
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alterations in both cancers. Despite these differences, STAU1 and
YTHDF1 were constantly altered in all stages. This was also
observed in GS and CIN subtypes (Figures 3A,B; Table 2).
Contrary to STAU1, YTHDF1 has previously been associated
with COREAD development (Bai et al., 2019; Chen P. et al.,
2021; Yan et al., 2021), showing the potential of STAU1 to be
involved in COREAD progression too.

Networking analysis of RNA-Binding
proteins vs. colorectal drivers

Protein-protein interaction (PPIs) networks have been
proved to be effective in detecting tumorigenic RNA regulons
(Wurth et al., 2016; Indacochea et al., 2021). Thus, we next
interrogated the STRING database (Szklarczyk et al., 2019) to
understand the relationship between RBPs (n = 1,392) and
COREAD drivers (n = 139) (Repana et al., 2019) and outline
key interactions among them. We identified 37 COREAD
proteins interacting with 153 RBPs (Figure 4; Supplementary
Table S10). The interactions were obtained from experiments and
databases using a highest confidence threshold (interaction
score = 0.9). As shown in Figure 4, we detected two main
interaction networks around TCERG1 and NAT10.
Interestingly, these proteins not only have the ability to bind

RNA but also, they were catalogued as COREAD drivers.
Interestingly, TCERG1 binds to CDCL5 which in turn binds
to five COREAD drivers.

RNA-binding proteins expression levels in
colon and rectal tissues

The Human Protein Atlas (HPA) constitutes a large-scale
resource to study antibody-based protein expression patterns in
human tissues (Uhlén et al., 2015; Thul et al., 2017; Uhlen et al.,
2017). We, therefore, used this tool to identify differentially
expressed RBPs between tumoral and normal colon and
rectal tissues. Thus, we compared protein
immunohistochemical levels (not detected, low, medium, and
high) of 608 available RBPs in COAD and 609 RBPs in READ
tissues. We detected 211 in colon and 226 in rectum RBPs
having at least one variation level (e.g., not detected to low
or medium to high) between malignant and healthy colon and
rectal tissues, respectively (Figure 5; Supplementary Tables
S11, S12).

To detect highly altered RBPs, we next categorized these
proteins as up or downregulated based on a two-variation level
difference. As a result, we found seven upregulated RBPs
(DDX17, FASN, GSTP1, RBM12, SERPINH1, SLC3A2, and

FIGURE 5
Immunohistochemical protein expression profiles of RNA-binding proteins between healthy and tumoral tissues. Scatterplots comparing RBPs
immunohistochemical levels between normal and tumoral tissues are presented. The size of the circle is associated with the number of RBPs found in
each correlation. RBPs in red are those which are unique for each type of cancer.
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TXNDC5) and six downregulated (DDX1, DIDO1, POLR2A,
RBM47, RBM7, and SYNE2) in colon tissues. As anticipated, our
strategy identified well-known COREAD proteins, such as
DDX17 (Li X. N. et al., 2018), FASN (Yu et al., 2020) or
GSTP1 (Sameer et al., 2012), validating our analysis. It is
noteworthy to mention that RBM12 and RBM7 have never
been implicated in COAD or READ before. Regarding rectal
tissues, we identified four upregulated (CD44, FASN,

SERPINH1, and SLC3A2) and six downregulated RBPs
(ALDH6A1, DDX1, DIDO1, POLR2A, RBM47, and RBM7).
Also, several of these proteins have been previously studied in
COREAD as ALDH6A1 (Li X. et al., 2022) or DDX1 (Tanaka
et al., 2018). Interestingly, CD44, a well-established COREAD
protein (Herrlich et al., 1995; Wielenga et al., 2000), was
upregulated only in rectal tumors showing its potential to
distinguish rectal from colon carcinomas.

FIGURE 6
RBPs (A) colon and (B) rectal cancer dependencies. Dependency scores of 1,255 (DEMETER2; Tsherniak et al., 2017; McFarland et al., 2018) and 1,341
RBPs (CERES; Meyers et al., 2017) from 89 colon and 13 rectal cancer cell lines are presented.

TABLE 3 CRISPR-Cas9 (CERES; Meyers et al., 2017) and RNAi (DEMETER2; Tsherniak et al., 2017; McFarland et al., 2018) cell lines and top five essential RBPs.

Ceres Demeter

Cell lines Mean
DepScore

Top 5 Cell lines Mean
DepScore

Top 5

Colon 47 −1.6 RAN, RPL15, SNRPB, HSPE1, and
RPL4

42 −1.18 SF3B2, RPL7, SNRPD1, RPL14, and
EIF3B

Rectum 10 −1.6 RAN, RPL15, HSPE1, RPL23, and
RPS6

3 −1.23 SNRPD1, SF3B2, RPL5, COPB1, and
SRSF3
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Identification of RNA binding proteins
involved in COAD and READ cell survival

To identify essential RBPs for COAD and READ
cell survival, we interrogated two large-scale CRISPR-Cas9
(CERES; Meyers et al., 2017) and RNAi (DEMETER2;
Tsherniak et al., 2017; McFarland et al., 2018) loss-of-

function screens using the DepMap portal (https://depmap.
org/portal/). (Yu et al., 2016) CERES contains data of
1,341 RBPs in 47 colon and 10 rectal cancer cell lines, while
DEMETER2 presents data of 1,255 RBPs in 42 colon and three
rectal cancer cell lines. These initiatives calculate a dependency
score that represents how vital a gene is to cell survival. A score
of 0 indicates non-essentiality, whereas a score

FIGURE 7
Identification of novel RNA-binding proteins involved in colon and rectal carcinomas progression. Prioritization of RBPs in COAD and READ was
based on four cancer-related characteristics 1) high genomic and transcriptomic alterations, 2) interactions with well-known cancer proteins, 3) aberrant
protein expression levels compared with normal tissues, and/or 4) essential for tumor survival.
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of ≤ −1 corresponds to the median of all pan-essential genes.
Thus, we identified 352 (87 detected by both screens) and 343
(85 detected by both screens) essential RBPs in colon and rectal

tumors, respectively (Figures 6A,B; Supplementary Tables
S13–S16). Additionally, Table 3 shows the top five essential
RBPs for colon and rectal carcinomas.

FIGURE 8
Prioritized RBPs correlate with cancer genes. Previously prioritized RBPs in (A) colon cancer (NAT10, NOP56, RBM12, and FKBP1A) and (B) rectal
cancer (CSE1L and EMG1) were correlated with cancer genes by networking analysis using the HumanNet v3 database (Kim et al., 2022).
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Prioritization of RNA-binding proteins in
colon and rectal carcinomas

As more and more studies reveal the complex roles of RBPs in
cancer progression, new data mining strategies come forward to
narrowed down the identification of tumorigenic RBPs (Xing et al.,
2021; Chen et al., 2022). To identify potential colon and rectal cancer

tumor progressors RBPs, we next used our previously published
multidata integration strategy (Figure 1) (García-Cárdenas et al.,
2022). Thus, we merged our previous results as follows: 1) first
quartile of most genomic and transcriptomic altered RBPs (n = 348)
concerning tumor progression-related alterations (mRNA
upregulation + genomic amplification + gene mutations +
fusions), 2) 153 RBPs presenting PPis with colorectal proteins, 3)

FIGURE 9
RBPs expression as a determinant of clinical outcome. We interrogated TCGA data using as a cutoff point the median of mRNA expression. (A)
Prognosis in COREAD population (B) prognosis in colon cancer patients regardless the stage, and (C) colon cancer patients by stage. Red and blue lines
indicate downregulation and upregulation mRNA, respectively.
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93 (colon) and 69 (rectum) RBPs having moderate or upregulated
immunohistochemical variation, 4) 352 (colon) and 343 (rectum)
essential RBPs (Figure 7).

In COAD, we identified two RBPs (NAT10 and NOP56) having
all four tumor-associated characteristics presented in this study.
NAT10 has already been implicated in colorectal cancer in several
studies (Zhang et al., 2014; Liu et al., 2016; 2019; Cao et al., 2020),
while NOP56 has been found differentially expressed in COREAD
by a different data mining approach (Liang et al., 2021). Also, we
were able to retrieve two other RBPs (RBM12 and FKBP1A) that
were not essential for tumor cell survival, but they could be
implicated in any other hallmark of cancer. For instance,
FKBP1A overexpression has been correlated with apoptosis
inhibition in prostate cancer (Leng et al., 2020); we did not find
any reports of its involvement in COREAD. On the other hand,
RBM12 has been found to be hypermutated in 619 COREAD tumors
(Giannakis et al., 2016), but no further experimentation has been
performed.

Similarly, we prioritized two RBPs in rectal cancer, CSE1L
which presents all the above-mentioned characteristics, and
EMG1 that was not essential for tumor cell survival. CSE1L has
been related to colorectal cancer before (Sillars-Hardebol et al.,
2012; Tai et al., 2013; Pimiento et al., 2016; Xu et al., 2020),
while EMG1 has been poorly studied. Interestingly, NOP56,
NAT10, and CSEL1 have been classified as common essential by
DepMap survival algorithm. Thus, therapeutic targeting of
these RBPs could have a greater impact in cell survival due
to their implications in RNA-dependent basic cellular
processes.

Finally, we intended to understand how these prioritized RBPs
could correlate with cancer in general terms. To that end, we used
the HumanNet v3 (Lee et al., 2011; Hwang et al., 2019) to generate
networks where only cancer genes and RBPs were considered. We
observed intricated connections between these prioritized RBPs with
several cancer genes and other RBPs, showing their potential to
promote cancer (Figures 8A,B; Supplementary Tables S17, S18).

RBPs mRNA expression levels as
determinants of clinical outcomes

To explore the clinical relevance of RBPs mRNA expression
(upregulation vs. downregulation) in COREAD, COAD, and READ
patients, we have interrogated TCGA, PanCancer Atlas (Hoadley
et al., 2018) database for mRNA expression of prioritized RBPs
(NAT10, NOP56, RBM12, FKBP1A, CSE1L, and EMG1) in those
populations and calculated several clinical aspects (OS and DFS). In
COREAD population, we only found FKBP1A expression is related
with an adverse outcome in overall survival (OS; p < 0.05)
(Figure 9A).

Due to the fact that colon and rectum cancer are different
clinical entities (Paschke et al., 2018), we have explored whether
these relevant RBPs could predict clinical outcomes. In COAD
patients, NAT10 and FKBP1A are related with adverse outcome
in DFS and OS, respectively (p < 0.05; Figure 9B).We also found that
NAT10 is related with poor outcome in DFS of stage III COAD
patients (p < 0.05; Figure 9C). Moreover, high expression of
NOP56 in primary tumors are related with bad outcome in OS

of stage IV COAD patients (p < 0.05; Figure 9C). No other clinical
outcomes were predicted by RBPs mRNA expression in COREAD,
COAD, and READ patients.

Discussion

The development and implementation of multi-omics
approaches along with modern bioinformatic technologies
have provided new insights in COREAD biology (Chierici
et al., 2020; Yin et al., 2020; Heo et al., 2021). In that
respect, several studies have attempted to molecularly
characterize COREAD tumors (Schlicker et al., 2012;
Budinska et al., 2013; De Sousa E Melo et al., 2013; Marisa
et al., 2013; Sadanandam et al., 2013; Roepman et al., 2014).
Guinney et al., by integrating several subtyping algorithms,
proposed the Consensus Molecular Subtypes of colorectal
cancer to establish a baseline for clinical decision making
(Guinney et al., 2015). Nevertheless, according to Paschke
et al., COREAD has been treated as one entity when several
clinical and molecular aspects (e.g., epidemiology, carcinogenic
risk, molecular carcinogenesis, etc.) indicate the contrary
(Paschke et al., 2018). Consequently, Paschke et al.,
suggested separating COREAD into COAD and READ,
implementing a new perspective to discover novel
biomarkers for both cancer types, which holds the potential
to improve subtype-based clinical interventions (Paschke et al.,
2018). In this regard, RBPs as emerging regulators of cancerous
processes (Wurth and Gebauer, 2015; Corrado et al., 2016;
Hentze et al., 2018; Kang et al., 2020; Zhang et al., 2020;
Chen et al., 2022), could fulfill this need.

In this work, we used our previously published multidata
integration strategy to prioritized tumorigenic RBPs in COAD
and READ separately (García-Cárdenas et al., 2022). First, we
determined genomic and transcriptomic alteration profiles of
RBPs in COAD and READ patients. As is shown in Figure 2A,
most of the alterations were found in mRNA levels: mRNA
upregulation (64% in colon and 62% in rectum) followed by
mRNA downregulation (15% in colon and 20% in rectum). Even
though genomic and transcriptomic alteration profiles of
COAD and READ were similar, we found significant
differences among alteration types (Figure 2B) and the level
of up and downregulation (Figure 2C), supporting Paschke
et al., findings at least regarding RNA metabolism (Paschke
et al., 2018). These results also agree with a comprehensive
transcriptomic analysis performed by Zhang et al., in which
RBPs are predominantly upregulated across cancer types
(Zhang et al., 2020). These alterations will probably influence
key post-transcriptional processes involved in COAD and
READ development.

Despite the genomic and transcriptomic alteration similarities
among the subtypes of both carcinomas, most altered RBPs in each
subtype differed (Figures 3A,B). At least in READ,most of the highly
altered RBPs are unique for this type of cancer, e.g., TSR1, TSR1,
DYNC2H1, DDX55, CPSF7, CAND1, LARP4, ZCCHC3, and
LSM14B and they have never been associated with COREAD.
These findings support Paschke et al., suggestion (Paschke et al.,
2018), several RBPs and maybe not only RBPs could have been
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ignored when we studied as COREAD but, when they are separated
in COAD and READ, new putative biomarkers are discovered.

Unlike subtypes, we observed dissimilar patterns of RBPs
genomic and transcriptomic alterations among stages in colon
and rectal tumors. Stage II was the most altered in COAD,
whereas in READ the most altered one was stage I (Figures
3C,D; Table 2). Despite these differences, we found proteins that
were constantly altered in all stages. For example, STAU1 and
YTHDF1 were highly altered across stages in both carcinomas.
Contrary to STAU1, YTHDF1 has previously been associated
with COREAD development (Bai et al., 2019; Chen P. et al.,
2021; Yan et al., 2021). Interestingly, STAU1 has been related
with pancreatic cancer (Marcellus et al., 2021) and its
misregulation impacts cell cycle regulation (Bonnet-Magnaval
and DesGroseillers, 2021), showing the potential of this protein
to also be involved in COREAD progression.

Networking analysis has been shown to be a powerful tool to
identify tumorigenic proteins in cancer (Wurth et al., 2016;
Indacochea et al., 2021; García-Cárdenas et al., 2022). Similarly,
PPIs between RBPs and COREAD drivers allowed us to
determine two functional modules, such as NAT10 and
TCERG1, which were central elements (Figure 4). These
RBPs have also been catalogued as COREAD drivers. In fact,
NAT10 suppresses tumor proliferation by activating p53; in
COREAD, NAT10 activity is decreased resulting in
p53 malfunction and, therefore, uncontrollable cell division
(Liu et al., 2016). Concerning TCERG1 subnetwork, we
observed intricated connections between RBPs and COREAD
drivers. For example, TCERG1 interacts with CDC5L which in
turn connects with six COREAD drivers (MAP2K7, RANBP9,
ARID1A, CDC27, MSH6, and DIAPH1). Interestingly, CDC5L
has been related to other cancer types, such as prostate cancer
(Li X. et al., 2018) and osteosarcoma (Lu et al., 2008).

We next examined protein immunohistochemical levels (the
Human Protein Atlas database) to identify differentially
expressed RBPs in colon and rectal tumor tissues (Pontén
et al., 2008). In fact, immunohistochemistry (IHC) is a
widely used approach in histopathology for cancer diagnosis.
Thus, we found DDX17, GSTP1, RBM12, and TXNDC5 to be
overexpressed only in COAD, while CD44 is exclusively
upregulated in READ. Similarly, we found SYNE2 and
ALDH6A1 to be exclusively downregulated in COAD and
READ, respectively. Further IHC studies should be
performed to address their potential as diagnostic
biomarkers of colon and rectal tumors, separately. As
anticipated, our strategy also identified well-known COREAD
proteins (Figure 5), such as DDX17 (Li X. N. et al., 2018),
ALDH6A1 (Li X. et al., 2022), DDX1 (Tanaka et al., 2018),
FASN (Yu et al., 2020), and GSTP1 (Sameer et al., 2012),
validating our analysis. It is noticeable to mention that
RBM12 and RBM7 have never been implicated in COAD or
READ before.

Then, we explored RBPs-based COAD and READ cell
dependencies by interrogating two large-scale loss-of-
function screens CERES (Meyers et al., 2017) and
DEMETER2 (Tsherniak et al., 2017; McFarland et al., 2018).
In colon we found 352 essentials RBPs, while in READ we
identified 343 RBPs (both CRISPR-Cas9 and RNAi methods

included) (Figures 6A,B). In other words, 25% of all known
RBPs are essentials for oncogenic cells survival, unsurprisingly
given the crucial role of RBPs in RNA metabolism. In Table 3,
we listed the top five essentials RBPs in both types of cancer
based on the DepScore. The same scenario of the previous
analyses is repeated, we obtained RBPs that have been
related to COREAD (e.g., SF3B2, RPL7, and SNRPD1), and
others that have not (e.g., COPB1) (Supplementary Tables
S13–S16) (Boleij et al., 2010; Fijneman et al., 2012; Xu et al.,
2021).

Compelling studies have shown the potential of RBPs to
promote cancer development. RBPs are widely altered in cancer
cells, control hundreds to thousands RNAs, and interact with
cancer driver proteins (Wurth and Gebauer, 2015; Hentze et al.,
2018; García-Cárdenas et al., 2019). With that in mind, we
reasoned that the integration of our previous analyses could
narrow down the identification of potential COAD and READ
RBPs. Our data mining strategy (Figure 1) allowed us to identify
four proteins in COAD (NAT10, NOP56, RBM12, and
FKBP1A) and two in READ (CSE1L and EMG1) (Figure 7).
NAT10 and CSE1L have already been involved in COREAD
(Sillars-Hardebol et al., 2012; Tai et al., 2013; Zhang et al., 2014;
Liu et al., 2016; 2019; Pimiento et al., 2016; Cao et al., 2020; Xu
et al., 2020). NOP56 and RBM12 were already identified in
COREAD by different data mining approaches (Liang et al.,
2021), validating our results. Additionally, to the best of our
knowledge, no prior studies have associated FKBP1A and
EMG1 with cancer before. To highlight their relevance in
cancer, we interrogated the HumanNet v3 and found that
NOP56, RBM12, FKBP1A and EMG1 are highly
interconnected with cancer genes and other RBPs, showing
their potential to form tumorigenic RNA-regulons
(Figures 8A,B).

Finally, we explored the clinical implications of these
prioritized RBPs. Upregulation of FKBP1A, NAT10, and
NOP56 mRNA expression could predict clinical outcomes in
COREAD and COAD patients. Similarly, mRNA upregulation
of NAT10 and NOP56 are related with poor outcomes
depending on COAD staging. This is clinically relevant since
COAD therapy is defined by stage (Argilés et al., 2020;
Cervantes et al., 2022). Stage II COAD patients are not
always candidate of adjuvant therapy. However, adjuvant
chemotherapy is a relevant treatment for stage III COAD
patients because it decreases the risk of relapse (Argilés
et al., 2020). In daily clinical practice there are no specific
biomarker to predict a relapse. According to our results,
NAT10 mRNA upregulation is related with adverse outcome
in DFS of stage III COAD patients. Similarly,
NOP56 overexpression in primary tumors is associated with
poor prognosis in DFS and OS of stage IV COAD patients.
These results highlight the clinical relevance of FKBP1A,
NAT10, and NOP56. Despite these promising findings, a
high number of patients are needed to validate these results
in specifical clinical scenarios.

In summary, we analyzed and integrated data from 488 COAD
and 155 READ patients, 102 cancer cell lines, more than
15,000 immunostainings, and ~10,000 raw associations between
RBPs and cancer genes to unravel new RBPs involved in COAD
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(NOP56, NAT10, RBM12, and FKBP1A) and READ (EMG1 and
CSE1L). Further analyses allowed us to identify potential clinical
applications of FKBP1A, NAT10, and NOP56 as biomarkers of
specific outcomes.
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