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The gastrointestinal tract communicates with the nervous system through a
bidirectional network of signaling pathways called the gut-brain axis, which
consists of multiple connections, including the enteric nervous system, the vagus
nerve, the immune system, endocrine signals, the microbiota, and its metabolites.
Alteration of communications in the gut-brain axis is emerging as an overlooked
cause of neuroinflammation. Neuroinflammation is a common feature of the
pathogenic mechanisms involved in various neurodegenerative diseases (NDs)
that are incurable and debilitating conditions resulting in progressive
degeneration and death of neurons, such as in Alzheimer and Parkinson diseases.
NDs are a leading cause of global death and disability, and the incidences are
expected to increase in the following decades if prevention strategies and
successful treatment remain elusive. To date, the etiology of NDs is unclear due
to the complexity of the mechanisms of diseases involving genetic and
environmental factors, including diet and microbiota. Emerging evidence
suggests that changes in diet, alteration of the microbiota, and deregulation of
metabolism in the intestinal epithelium influence the inflammatory status of the
neurons linked to disease insurgence and progression. This review will describe the
leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the
context of NDs. We will report recent findings from studies in model organisms
such as rodents and fruit flies that support the role of diets, commensals, and
intestinal epithelial functions as an overlooked primary regulator of brain health. We
will finish discussing the pivotal role of metabolisms of cellular organelles such as
mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of
the latter can be used as early disease makers and novel therapeutic targets.
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Introduction

Neurodegenerative diseases (NDs) such as Alzheimer disease
(AD) and Parkinson disease (PD), are a rising burden to society
(Aarli et al., 2006; Feigin et al., 2019; 2020; Kassebaum, 2022). The
World Health Organization heeds that the rising incidence of NDs are
one of the most significant public health challenges now and in the
coming decades (Aarli et al., 2006; Ou et al., 2021), as long as
preventative strategies and viable treatments remain elusive (Raz,
2010; Durães et al., 2018). For a detailed clinical review of the
epidemiology, we refer the reader to (Erkkinen et al., 2018).

NDs manifest with multiple clinical complications and life quality
constraints. They can affect the motor system, causing ataxias
(Bologna and Paparella, 2020), and the cognitive system, causing
dementias. However, the etiologies of NDs are unclear due to the
complex genetic and environmental factors believed to underly the
mechanism of disease. Multiple studies now suggest that changes in
factors outside the brain, such as diet, gut microbiota (dysbiosis),
metabolism, and intestinal inflammation, are linked to the risk and
progression of NDs.

For example, consuming ultra-processed food enhances the risk of
developing AD (Li et al., 2022), as high-fat diets are linked to the
development of chronic metabolic and inflammatory diseases
associated with neuroinflammation and reduced cognitive function
(Cai, 2013).

The intestinal microbiota composition is sensitive to changes in
diet and to the host’s metabolic and inflammatory status. Dysbiosis
of commensal populations is linked to metabolic perturbations
associated with psychiatric disorders such as autism spectrum
disorder (ASD) (Festi et al., 2014; Pulikkan et al., 2019) and
NDs such as PD and AD (Cai, 2013; Sampson et al., 2016;
Zhang et al., 2018). Additionally, prolonged antibiotic use and
high-fat diets are linked to commensal dysbiosis, weak intestinal-
barrier function, and dysplasia of the gut epithelium. These
changes correlate with elevated local and systemic inflammation
and deficiencies of nutrients essential for brain health. This is
because the intestinal microbiota supply essential nutrients such as
vitamin B or K and their derivatives to nourish the development of
the central nervous system (CNS) (Das et al., 2019; Ma et al., 2019).
For example, bacterial metabolites such as short-chain fatty acids
(SCFAs), including acetic acid, butyric acid, and propionic acid, are
integral for learning and memory (Trinder et al., 2017) and
reduction in SCFAs is associated with inflammation in Multiple
Sclerosis patients and compromised neuronal function in various
NDs (Ma et al., 2019).

The intestinal epithelium plays a central role in digestion and
nutrient absorption, defense against pathogens, cooperation with
beneficial commensals, and production of systemic endocrine
signals. Recent work has shown that NDs may be seeded
distally in the intestinal epithelium before disease in the brain
via the gut-brain axis (Shannon et al., 2012; Sánchez-Ferro et al.,
2015; Brudek, 2019; Chen et al., 2019; Challis et al., 2020;
Mertsalmi et al., 2020; Castelli et al., 2021). Multiple studies
report the accumulation of protein aggregates, hallmark
pathologies of NDs such as AD and PD, appearing in enteric
neurons or the gastrointestinal epithelium years before detection
in the central nervous system (Braak et al., 2003; Hawkes et al.,
2010; Devos et al., 2013; Chalazonitis and Rao, 2018; Kowalski and
Mulak, 2019).

NDs are also characterized by abnormalities in peroxisomes
and mitochondria (Nunomura et al., 2001; Reddy and Beal, 2008;
Reddy 2009; Kou et al., 2011; Cipolla and Lodhi, 2017; Aparicio
et al., 2022; Fedele et al., 2022; Roczkowsky et al., 2022). These
organelles are central to cellular metabolism, redox stress, and
immune signaling (Johannsen and Ravussin, 2009; Kou et al., 2011;
Di Cara, 2020). In the intestinal epithelium, both organelles also
mediate critical interactions with the gut microbial population (Di
Cara et al., 2018). Thus, the consequences of aberrant peroxisome
or mitochondrial function in the intestinal epithelium might
represent hallmark to early onset of NDs.

Together, this evidence supports the idea that interactions
between the diet, gut microbiota, and intestinal epithelium
shape the lines of communication between the gut and the
brain, which can protect or damage brain health (Figure 1).
Understanding this communication is a promising area of
research to better define the etiologies of NDs.

In this review, we discuss current evidence demonstrating that
the perturbation of the host intestinal metabolism by genetics,
organelle damage, or environmental factors (e.g., dietary changes
or antibiotic treatment) affects the diet-microbiota-gut-brain
(DMGB) signals that govern brain health representing a
significant factor in the onset of NDs. We report experimental
evidence demonstrating the links between alteration of the DMGB
axis and NDs in studies carried out in Drosophila and murine
model organisms. We will describe the elements of the DMGB axis
in health and NDs. Finally, we will analyze the open questions in
the field and discuss how unraveling the mechanisms of the DMGB
axis leads to the prediction of early diagnostic markers for
NDs—ultimately aiding in the development of alternative
therapies that involve microbial or microbial-host metabolism
targeted treatments.

Neurodegenerative diseases

The brain is the central information processor and relay for
most higher-order eukaryotes (Thau et al., 2022; Y; Wang et al.,
2020). Part of the Central Nervous System (CNS), the brain is
interoceptive to distal organs via the Peripheral Nervous System
(PNS) to modulate brain-organ communication and tissue
homeostasis (Buchanan and Tranel, 2009; Waxenbaum et al.,
2022). In addition to direct neuronal impulses mediated by
neurotransmitters, other means of crosstalk include humoral/
endocrine communication by secretion of molecular agents such
as hormones, lipids, and peptides (Castillo-Armengol et al., 2019);
these forms of communication are bidirectional (Castillo-
Armengol et al., 2019). However, cross-talk efficiency and
capacity may diminish with age, as the synthesis of
neurotransmitters and signaling molecules are curtailed in the
brain and peripheral tissue, leading to tissue-specific/systemic
diseases (Venkat et al., 2015; Ali et al., 2018). Emerging
literature suggests that distal organ stress, whether metabolic or
inflammatory, can impact brain function (Peters, 2006; Atamna
et al., 2018).

NDs are defined by severe, progressive, and debilitating
cognitive and motor disturbances (Jahn, 2013; Levenson et al.,
2014; Muddapu et al., 2020) caused by neuronal death in specific
vulnerable brain regions that varies with the disease such as striatal
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regions in PD, striatal and hippocampal and cortical regions in AD
(Muddapu et al., 2020). Despite best efforts to find a cure and
alleviate the Global Burden of Disease and financial burdens of
NDs (Weintraub and Horn, 2008; Vossius et al., 2011; Wong, 2020;
Yang et al., 2020; Ou et al., 2021), the etiologies remain elusive, and
research on pathogenesis is still greatly speculative (Durães et al.,
2018).

NDs are categorized into two groups; genetic and sporadic (Bekris
et al., 2010; Pang et al., 2017). Sporadic NDs, contributing to over 90%
of cases, are the most difficult to study because pathogenesis is driven
by both spatial and temporal interactions of environmental and
genetic factors, which are still largely unclear (Lu and Vogel, 2009;
Pang et al., 2017; Muddapu et al., 2020; Hampel et al., 2021). On the
contrary, genetic cases are much easier to study. Canonical human-
linked alleles of NDs have already been identified and manipulated in
many model organisms to mimic and study human disease (i.e., Mus
musculus: mouse, and Drosophila melanogaster: fruit fly) (Bekris et al.,
2010; Steinkamp et al., 2012). The genetic epidemiological spotlight
currently points to genes that encode for proteins prone to, or that
facilitate, oligomerization and aggregation (i.e., α-Synuclein and
Amyloid precursor protein) or involved in autophagy and
mitochondrial metabolic stress (i.e., PINK1, Parkin). The etiology

of genetic NDs is also not clear due to the complexity of the
mechanisms of diseases that involve both genetic and
environmental factors, including diet and microbiota in both
hereditary and sporadic forms (Festi et al., 2014; Hakansson, A.
and Molin 2011; Hampel et al., 2021; Pang et al., 2017).
Advancements in genomics, proteomics, single cell analysis, and
metabolomics technology, along with multidisciplinary research
approaches, have opened new frontiers in the investigations of the
origins and mechanisms of disease especially sporadic NDs (Pang
et al., 2017; Zheng and Chen, 2022).

The current use and repurposing of antibiotics and probiotics to
treat NDs supports the hypothesis of peripheral origin of these
diseases (Durães et al., 2018). This is also supported by the
existence of afferent cues derived from the metabolic interactions
of the microbiota, dietary factors, and the gut, which have
neuroprotective effects on the brain but lead to NDs when
perturbed (Brudek, 2019; Chen et al., 2019; Challis et al., 2020;
Mertsalmi et al., 2020; Castelli et al., 2021). Therefore, the
pathogenesis of NDs may not be confined to the brain but
originate from an interorgan-communication network of the
DMGB axis. Deciphering the molecular networks of the DMGB
axis that distinguish between healthy individuals and patients with

FIGURE 1
Schematic of the diet-microbiota-gut-brain axis in the context of neurodegenerative diseases. The gut, and gut-microbiota are known to secrete
protective neurotrophic factors to promote brain health, neuron survival, and plasticity (Left path). If gut metabolism is perturbed, due to altered
communication between the gut, and gut-microbiota, both influenced by the diet, these protective factorsmay not be secreted or function as intended (Right
path). Perturbed gut metabolism corresponds to the appearance of neurodegenerative pathologies (Fibrils and plaques), years before appearing in the
brain and causing disease. Figure constructed on BioRender.com.
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specific NDs represents a promising area to define not only the
etiology of NDs but also the identification of early disease
biomarkers to permit early intervention and prevention of disease
progression.

The brain is an immune-privileged organ with a Blood Brain
Barrier (BBB), a selectively permeable membrane that prevents
drug diffusion into the brain (Daneman and Prat, 2015). For this
reason, it is challenging to construct synthetic drugs that can easily
cross the BBB to treat NDs within the brain (Pardridge, 2012) with
high bioavailability in the brain tissue and without any first-pass
effects (Harris et al., 2014). Therefore, alternative treatments that
correct metabolic signaling at peripheral sites will alleviate the need
for treatment with psychotherapeutics. Targeting the DMGB axis
to address the defects that lead to disease in the gut instead of the
brain offers alternative treatment options, such as dietary changes,
to prevent side effects than current psychotherapeutics may cause
(Winiarska-Mieczan et al., 2020). In the following sections, we will
report results from studies that support the idea that the onset of
NDs, such as AD and PD, begins with disturbances in the DMGB
axis and that novel strategies that target this axis can address these
devastating disorders.

The gut-brain axis in alzheimer disease

Physiopathology of alzheimer disease

Dementias, such as AD, are the most common types of NDs, with
a higher prevalence in females than males (Mielke, 2018; Podcasy and
Epperson, 2016; Y; Wang et al., 2020). The hallmark pathologies of
AD, identified in both sexes, negatively affect cognition,
predominantly long and short-term/working memory, and
locomotor behavior (Clancy, 2013; Da Costa et al., 2013; Ju et al.,
2013; Levenson, et al., 2014; Raskin et al., 2015; Podcasy and Epperson,
2016). The formation of aggregates of misfolded protein oligomers
such as extracellular β-amyloid plaques or intracellular neurofibrillary
tangles (NFTs), made of tau microtubule-associated protein
(Mohandas et al., 2009; Kou et al., 2011; Hampel et al., 2021;
Tracy et al., 2022) are late pathological hallmarks that cause
damage to mitochondria and oxidative stress in neurons. Of
protein aggregates in neurons and neuronal loss, observed as
inclusion bodies that form lesions throughout the tissue (Takatori
et a., 2019; Morley et al., 2018; Raskin et al., 2015; Sarantseva et al.,
2009; Shadfar et al., 2015). The inclusion bodies spread over time to
surrounding neurons through cell-to-cell prion-like propagation (for a
detailed review on the cell-to-cell prione propagation, please refer to
Hofmann et al., 2013), causing high oxidative stress and widespread
inflammation of the brain, ultimately facilitating atrophy of the tissue
as the disease progresses (Ashraf et al., 2014).

Evidence of the distal seeding of alzheimer
disease caused by Aβ fibrils

The Amyloid Precursor Protein (APP) is one member of a single-
pass transmembrane protein family characterized by large
extracellular domains. When APP is proteolytically cleaved by β/γ
secretases, the product is amyloidogenic ABeta/β-amyloid peptide
(Aβ) (Chen et al., 2017). The role of APP and its products is not

very clear. The preeminent role of APP in the development of AD
depends on the toxicity of the Aβ peptide since the loss of APP
function does not seem deleterious. In AD patients, accumulation and
aggregation of Aβ peptides forms Aβ fibrils that are acutely toxic to
neurons. Aβ fibrils formation toxicity might explain also other
pathological aspects of AD including neurofibrillary tangles,
inflammation, and oxidative damage. For a detailed review on the
pathogenesis of AD we refer the reader to a review by (O’Brien and
Wong, 2011).

APP and β/γ secretases are not exclusive to the CNS. Recent
studies reported regular APP expression in the Enteric Nervous
System (ENS) of mice, suggesting an ENS involvement in AD (Van
Ginneken et al., 2011; Semar et al., 2013; Chalazonitis and Rao
2018). The transgenic mice that over express a mutant form of
human APP in the ENS are associated with early-onset familial AD,
exhibiting an accumulation of Aβ in the enteric neurons leading to
a decrease in enteric neuron abundance, dysmotility, and increased
vulnerability to inflammation (Chalazonitis and Rao 2018).
Preliminary data confirms that changes in location or amount of
APP in the ENS correspond to disease expression in transgenic
mice carrying APP mutation. APP aggregation in ENS appeared
before any disease sign was detectable in the brain. Similarly, Aβ
deposits have been observed in the Gastrointestinal (GI) tract of
patients that overexpress APP (Semar et al., 2013; Sun et al., 2020).
Although the study of the role of Aβ in the gut in the context of AD
is still in its infancy, there have been increasing evidence that
support a model where Aβ triggers NDs from the gut in the brain
(Braak et al., 2003; Chalazonitis and Rao, 2018; Kowalski and
Mulak., 2019).

The nature of this distal pathological seeding was hypothesized
by Dr. Heiko Braak. His theory was based on observations that the
pathogenesis of NDs, in the context of PD, was mediated by α-
Synuclein inclusion bodies that develop first in the gut before
translocate to the brain via the vagal and motor nerves by an
unknown mechanism of gut-brain communication (Braak et al.,
2003) (see next section). This hypothesis was then applied to β-
amyloid pathogenesis by (Sun et al., 2020). In this study, 2-month-
old ICR mice were injected with HiLyte Fluor 555-labelled Aβ42
(the APP isoform most prone to oligomerization) into the stomach
and colon and exhibited defects in responsive/exploratory
behavioral, short-term and long-term memory cognitive deficits
1-year post-injection. Despite evidence that the labelled
Aβ42 monomers did not diffuse through the tissue,
Aβ42 remained localized to cholinergic neurons at the injection
sites 3 hrs and 3 days post-injection. Further, these mice displayed
clear depositions of Aβ plaques throughout the brain, and vagus
nerve (DMV), with plaques visible in the hippocampus, cortex,
amygdala, and blood vessel walls. Thus, intra-GI administration of
Aβ had a direct effect on the neuronal system, with β-amyloid
deposits from the gut translocating to the CNS from the ENS via
the vagal nerve by an unknown mechanism of gut-brain
communication. Although this work hypothesized that a
retrograde transport route had caused the presence of Aβ
aggregates in the brain of the mice, there remains no direct
evidence demonstrating that enteric Aβ seeds can retrogradely
invade the CNS to induce AD symptoms. However, it is posited
that the enteric Aβ seeds invade the brain and cause dementia by
retrograde axonal transport through the vagal nerves and
haematogenous routes, as seen in prion pathology (Watts et al.,
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2014). The enteric Aβ seeds did not seem to affect GI major
functions when the animals were analysed at 1-year post-injection
and only alteration of spontaneous contractions and neuronal
couplings of the jejunum, which did not result in constipation,
were observed. A difference in contraction frequency of the GI was
detected also in another APP transgenic mouse (Semar et al.,
2013). Other interesting metabolic defects such as weight gains
were observed in various transgenic models. Weight changes
(Wagner et al., 2019) have been associated with dementia in
humans and are linked to disease progression (Ikeda et al.,
2002). In a similar study (Galloway et al., 2007), identified
neuronal tissue death alongside translocation of β-amyloid
from the gut of mice.

Systemic oxidative stress as a cause of Aβ
protein aggregates in the CNS and
pathogenesis

While these murine studies demonstrated that
Aβ42 aggregates can form in the GI tract and then enter the
brain leading to cerebral amyloidosis and AD-like dementia, other
studies showed the existence of a correlation between the amount
Aβ42 protein and the extent of oxidative stress and inflammation
in the brain of mice and humans (Tamagno et al., 2021). The
brain’s vulnerability to oxidative stress is considered a crucial
detrimental factor in AD. Aβ induces oxidative stress, and on the
other hand oxidative stress can increase Aβ deposition. Notably,
while the increase of soluble Aβ42 is correlated to elevated
oxidative stress, inflammation, and tissue atrophy of the brain,
neither the rate of dementia nor the extent of neurological damage
is correlated with the Aβ amyloid. Studies on transgenic mice
carrying AD-linked mutations in the gene for APP demonstrated
the existence of soluble Aβ oligomers long before the deposition of
β-amyloid, further supporting the hypothesis that in particular
conditions, an over-production of soluble Aβ aggregates occurs in
the human brain even in the absence of plaques. One of the main
mechanisms that appears to break this balance is oxidative stress
and neuroinflammation (Chang et al., 2014). There is growing
consensus that oxidative stress represents a common mechanism
that mediates the accumulation and toxicity of Aβ (Saeedi and
Rashidy-Pour, 2021). Therefore, oxidative stress can be
considered one of the factors responsible for the accumulation
of Aβ.

Preliminary evidence from transgenic APP mice and AD human
patients indicates that build-up of Aβ in enteric neurons causes
inflammation of the gut before any sign of disease is detected in
the brain. Enteric inflammation promotes “leaky” guts that release
inflammatory mediators/bacteria-derived products into the blood
circulation, leading to systemic/neuro-inflammation by weakening
the BBB (Chalazonitis and Rao, 2018; Kowalski and Mulak, 2019).
For a review of the role of the BBB in neurodegeneration, we refer the
readers to (Hussain et al., 2021). Other studies support the theory that
oxidative stress and inflammation in the gut may instead trigger β-
amyloid aggregation in the brain by means of chronic, low-grade
systemic inflammation (Braak et al., 2003). This was proposed from
observations that a long period of gradual accumulation of oxidative
damage precedes and results in the appearance of clinical and
pathological AD symptoms, including Aβ deposition, NFT

formation, metabolic dysfunction, and cognitive decline. This
suggests that AD begins many years before its symptoms appear,
and that antioxidant treatment can be an important therapeutic target
to treat the disease (Saeedi and Rashidy-Pour, 2021). Like many
neurological disorders, AD is associated with a variety of GI
symptoms, raising the possibility that the ENS could also be
affected. A clinical report showed that Aβ plaques were found in
the submucosa of two AD patients (Joachim et al., 1989). However,
with a paucity of evidence and some discordance in the findings, there
remains a clear need for further studies of enteric neuronal pathology
in AD.

The microbiota as a trigger of amyloid
aggregates and neuroinflammation in the
pathogenesis of AD

The stimuli that trigger β-amyloid inclusion formation in the gut
remain to be elucidated. The gut microbiota is a significant source of
amyloids, changes in the microbiota may potentiate disease in the gut.
Disruption of the microbiome occurs as a result of pathogenic
infection, antibiotic treatment, aging, and local inflammation
(Hakansson and Molin, 2011; Rinninella et al., 2019). Certain
bacterial species in the gut, such as E. coli, can even produce
bacterial amyloids that help the bacteria to form biofilm and
survive mechanical and immune stressors (Kowalski and Mulak,
2019). Although bacterial amyloids differ from CNS amyloids in
their primary structure, they share similarities in their tertiary
structure (Friedland, 2015; Zhao et al., 2015). Shifts in commensal
populations that favour species releasing amyloids would increase the
concentration of bacterial-derived amyloid proteins in the gut
triggering a prion-like cascade of β-amyloid oligomerization/
aggregation in the gut (Hetz and Saxena, 2017) or promote
cleavage of APP into its Aβ-amyloid peptides (Sarantseva et al.,
2009; Bekris et al., 2010; Simon, 2018; Li et al., 2019). A pioneering
study of PD carried out by (Chen et al., 2016) demonstrated that rats
exposed to amyloid-producing Escherichia coli displayed increased
neuronal α--Synuclein deposition in both the gut and brain and
enhanced microgliosis and astrogliosis compared to rats exposed to
bacteria without the ability to produce amyloids. Moreover, in the
brain of animals exposed to amyloid-producing bacteria they
measured an increased expression of inflammatory cytokines and
reactive oxidative and nitrosative stressors which lead to neuronal and
glial cell death (Chen et al., 2016; Li et al., 2016). Thus, bacterial
amyloids can act as molecular mimics of prion proteins, eliciting
cross-seeding, in which one amyloidogenic protein (bacteria amyloid
protein) promotes another (e.g., host proteins) to also adopt a
pathogenic β-sheet structure (Lundmark et al., 2005; Zhou et al.,
2012).

Therefore, a combination of gut inflammation and dysbiosis is
directly associated with gut barrier dysfunction and increased
intestinal permeability (“leaky gut”) may contribute to the process
of neurodegeneration (Marizzoni et al., 2017; Sochocka et al., 2019).
Lipopolysaccharide (LPS) from commensals or pathogenic bacteria
leaked from the gut can reach and accumulate in the brain and activate
microglia, brain resident immune cells, and elicit inflammatory
responses in the brain. LPS has been detected in the hippocampus
and neocortex brain lysates from AD patients and has been found to
colocalize with Aβ40/42 β-amyloid plaques (Zhao et al., 2017).
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Interestingly, the plasma concentration of LPS in AD patients is
significantly higher than in healthy people (Zhang et al., 2009), and
repeated systemic exposure to LPS in mice induced microglial priming
and prolonged cytokine production.

Perturbation in microglia activation has been identified as a
feature of NDs progression. For full reviews on the topic, we refer
the readers to (Hickman et al., 2018) and (Muzio et al., 2021).

Tao-derived aggregates in the gut in the
pathology of AD

Tauopathies, are a group of NDs that include a form of AD,
which are characterized by abnormal hyperphosphorylation of
microtubule-associated protein tau that leads to the formation of
NFTs. Similar to β-amyloid pathogenesis of NDs in the brain, tau
monomers oligomerize and form aggregates known as NFTs and
neuritic plaques, which form inclusion bodies that cause
inflammation due to intra/extra-cellular damage in and around
neurons (Anwal, 2021; Bălaşa et al., 2020; Takatori et al., 2019).
NFTs have been found to accumulate in the gut and to cause
gastrointestinal dysfunction such as alteration of gut motility
before any clinical symptom is found in the brain (Kametani and
Hasegawa, 2018). Moreover, both β-amyloid and also tau tangles/
plaques promote local intestinal inflammation and weakening of the
gut epithelial barrier (Kowalski and Mulak, 2019). The weakening of
the gut epithelial barrier can cause metaflammation (low-grade
chronic systemic inflammation) that has been linked to NDs
(Komleva et al., 2021; Rydbom et al., 2021). For a review on
metaflammation we refer the readers to (Itoh et al., 2022).

Although the mechanisms of DMGB axis pathogenesis in the context
of ADs are poorly defined, concurrent evidence shows that the diseases
may manifest/originate in the gut before appearing in the brain.

The gut-brain axis in parkinson disease

Physiopathology of parkinson disease

PD has been identified as one of the most rapidly growing NDs in
the world (Dorsey et al., 2018) and is more prevalent in males than
females (Moisan et al., 2016; Podcasy and Epperson, 2016; Feigin et al.,
2019). This disease is primarily defined by progressive loss of motor-
function (initiation and coordination) of the brain, along with
bradykinesia. These behavioral disturbances are due to atrophy of
the substantia nigra (Faustini et al., 2017; Dorsey et al., 2018), an
essential medullary brain region that produces and projects dopamine
to the limbic system, and higher cortical areas (Mayfeild, 2010). These
projections are known as nigrostriatal pathways, activating regions of
the brain that control motor-behavior (Zeighami et al., 2015; Faustini
et al., 2017; Sonne, et al., 2021). Despite a similar pattern of atrophy in
PD brains compared to healthy aging brains, the pathologies of the
disease are what exacerbate and accelerate this phenotype (Zeighami
et al., 2015). Hallmark pathologies of PD in the brain include
intracellular misfolded protein aggregates of α-Synuclein oligomers
(synucleinopathies) that form plaques called Lewy Body inclusions in
the substantia nigra (Huang et al., 2015; Wang et al., 2016;
Shahmoradian et al., 2019). These intracellular inclusions cause
aberrant neurotransmission because, α-Synuclein is a SNAP-

associated protein in neurons of the CNS, PNS and ENS that
tethers and primes pre-synaptic vesicles for exocytosis (Killinger
et al., 2019). Considering the similar effects of tau and β-amyloid
to α-Synuclein proteins in neurotransmitter trafficking along the axon
and release, it is not surprising that PD and AD are comorbid.
Especially, since unresolved misfolded proteins with prion-like
effects are characteristic of both diseases (Xie et al., 2014).

Evidence of the seeding of parkinson disease
in the gut prior to the brain

Recent works demonstrated that, α-Synuclein can be detected in
the ENS years before clinical onset of PD, similar to tau and β-amyloid
(Hawkes et al., 2010; Shannon et al., 2012; Devos et al., 2013; Driver-
Dunkley et al., 2014; Hilton et al., 2014; Iranzo et al., 2014; Stokholm
et al., 2016). This α-Synuclein accumulation causes constipation and
inflammation of the gut that often leads to Inflammatory Bowel
Disease (IBD) (Barbut et al., 2019; Brudek, 2019; Chen et al.,
2019). As mentioned in the previous section, studies in PD rodent
models have shown that α-Synuclein seeded in the enteric neurons of
the colon, duodenum, and stomach (Shannon et al., 2012; Sánchez-
Ferro et al., 2015; Kim et al., 2019; Challis et al., 2020) migrate via the
vagal nerve to the brain (Braak et al., 2003; Holmqvist et al., 2014;
Uemura et al., 2018). This was demonstrated in experiments where the
α-Synuclein-rich lysate, prepared from severely affected PD patient
substantia nigra brain tissue, was injected into the intestines of wild
type rats leading to the detectable accumulation of α-Synuclein over
time in both the DMV and the brain (Holmqvist et al., 2014). This
study also showed that α-Synuclein was selectively up-taken by the
DMV compared to BSA. Notably, α-Synuclein accumulated at the
Dorsal Motor nucleus of the vagus nerve (DMV), a collection of
cholinergic neurons. Furthermore, DMV migration of α-Synuclein
was prevented by a vagotomy of the base-afferent vagal nerve, as
demonstrated by (Kim et al., 2019) (Figure 2). Therefore,
cholinergic neurons must facilitate long-distance translocation of α-
Synuclein (monomer, oligomer, and fibril) via a microtubule-
associated transport mechanism (Holmqvist et al., 2014). By this
notion, the question that surfaces is whether the α-Synuclein
inclusions in the DMV are the reason behind the GI issues
observed in PD patients, or if the symptoms are the reason for the
aggregation of α-Synuclein, exacerbating symptoms and pathology in
the DMV.

Several studies have confirmed the migration of α-Synuclein from
the ENS (Challis et al., 2020), by tracking fluorescently tagged-α-
Synuclein, inoculated into the intestines of mice. The tagged-α-
Synuclein translocated from the gut to the brain, and created
human Parkinson-like symptoms, that affected sensorimotor
behaviors including diminished ability of mice to climb down a
pole or hang from a metal wire for an extended period of time. In
addition, abnormalities in GI function as well as inflammation were
reported in mice that received an intestinal injection of tagged-α-
Synuclein. This recapitulated symptoms experienced by pre-clinical
human PD patients (i.e. constipation and bowel inflammation) (Dinan
and Cryan, 2017; Challis et al., 2020). Therefore, α-Synuclein
pathogenesis can be seeded in the gut and ultimately, via the gut-
brain axis, move to the brain. However, we still need to understand
what triggers the accumulation of α-Synuclein in the intestine and
leads to pathogenesis.
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FIGURE 2
α-Synuclein progressively translocates from the gut into the brain: experimental diagram and result. (A) PFFs Pathologic α -Synuclein (pSer129- α -syn), as
Pre-Formed Fibrils (PFFs), were injected into the duodenum and pylorus of a mouse. Translocation of Pre-Formed Fibrils (PFFs) of Pathologic α-Synuclein
from the uppermost division of the small intestine was facilitated by the nodose ganglion (the vagal nerve afferents of themouse). To confirm the credibility of
this migratory route, the anterior trunk of the vagal afferents were severed (site of vagotomy). PFFs were not identified in the brains of the mice that
received an anterior trunk vagotomy. (B) The graphs represent the progressive translocation of PFFs from the gut into the brain after 1–10 months from the
injection. At month one post injection, the α-Synuclein PFFs translocates into the brain, first appearing at the Medulla Oblongata (MO). The trans-neuronal
propagation and migration of the PFFs into the mouse brain proceeded from the posterior MO to the mouse brain’s anterior Olfactory Bulb (OB) (MO to OB).
Within 1 month post injection, PFFs were detected in the Dorsal Motor Nucleus of the Vagus nerve (DMV) of the MO, and Locus Coeruleus (LC) of the Pons. At
3 months post injection, the abundance of PFFs in the Amygdala (AMG) spiked, while trace amounts of PFFs in the substantia nigra para compacta (SNc),
Hippocampus (HIP), and Pre-Frontal Cortex (PFC) were detected. At 7 months post-injection, PFFs were detected in the Striatum (STR) and olfactory bulb
(OB). Finally, at 10 months PFF has infiltrated and diffused through the entire brain. Data extracted and modified from (Kim et al., 2019). Figure constructed on
BioRender.com.
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TABLE 1 Models ofMus musculus (Mouse) and Drosophila melanogaster (Fruit fly) for studying the human neurodegenerative disease. The reported models represent
Tauopathies, β-amyloidopathies, and Synucleinopathies in the brain. Models include Knock-out (KO), Knock-in (KI), Knock-Down (KD), and Over-Expression (OE) of
hallmark genes for each of the three categories of neurodegenerative disease listed above. There is a column describing similarities in pathology between species and
another column for differences. With each example made, there are references to the literature for more information about the model organism’s pathologies and
similar or contrasting human pathology for comparison.

Target gene- manipulated in
the brain

Neurodegenerative disease
classification

Comparing with human disease Contrasting with human
disease

dTau (KD) In Drosophila Tauopathy Conservation of structure: Drosophila-
Tau (dTau) is 46% identical, 66% similar to
human-Tau (hTau). Heidary and Fortini
(2001)

dTau in the fly is the only member of Tau/
Map2/Map4 family identified in humans

Conservation of function: hTau
expression in dTau (KD) model rescues
neurodegenerative phenotypes

Heidary and Fortini (2001), Dehmelt and
Halpain (2005)

Retinal and central nervous system
degeneration (Vacuole formation) Ho et al.
(2012); Bolkan and Kretzschmar (2014)

Conditional fibrillary tangle formation
upon co-expression of dTau with human
Tau kinases Wittmann et al. (2001)

Rounded axons less tightly packed together
Raff et al. (2002); Bolkan and Kretzschmar
(2014)

hTau (Human Mutant Tau R406W)
(OE) In Drosophila

Tauopathy Conservation of function:Age-dependant
onset of progressive neurodegeneration
observed in the cortex and neuropil
resembling the progressive stages of AD
Wittmann et al. (2001); Braak et al. (2003)

No appearance of NFTs Lee et al. (2001);
Wittmann et al. (2001); Fu et al. (2017)

Degeneration of cholinergic neurons
Wittmann et al. (2001); Mesulam et al.
(2004); Cranston et al. (2020)

Vacuolization (like holes in Swiss Cheese)
is not a prominent phenotype of human
NDs, but is commonly observed in
Drosophila neurodegeneration
Kretzschmar et al. (1997)

Accumulation of hyperphosphorylated tau
Grundke-Iqbal et al. (1986); iqbal et al.
(2010); Spillantini and Goedert (2013);
Wittmann et al. (2001)

Reduced longevity Wittmann et al. (2001);
Strand et al. (2018)

mTau (KO) In Mus Tauopathy Conservation of structure: Mouse-tau
(mTau) is 92% homologous at the
c-terminus, and 57% homologous overall
with hTau Adams et al. (2009)

Tau isoform expression in adult mice
differs from human Brion et al. (1993);
Lei et al. (2012); Spillantini and Goedert
(2019); Hernández et al. (2020)

Conservation of function: Decline in
locomotor function and range of
movement with age Lei et al. (2012), a
characteristic of certain human
tauopathies such as frontal lobe dementias
with motor neuron disease Neary et al.
(1990); Lei et al. (2012); Audouard et al.
(2015)

No overt phenotype until aged,
redundancy of other MAPs that can
substitute for tau. Harada et al. (1994); Lei
et al. (2012)

Reduced velocity, shorter strides, average
displacement in an open environment
Nadkarni et al. (2009); Lei et al. (2012)

Fewer substantia nigra dopaminergic
neurons and less striatal dopamine
abundance Lei et al. (2012); Roostaei et al.
(2017); Nam et al. (2018)

Administration of L-DOPA helps alleviate
motor symptoms Lei et al. (2012); Turcano
et al. (2020)

Brain atrophy: Reduced brain mass, and
neocortical shrinkage Thompson et al.
(2003); Lei et al. (2012); Schäfer et al.
(2021) and ventricular enlargement Lei
et al. (2012); Dugger et al. (2017)

(Continued on following page)
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TABLE 1 (Continued) Models ofMus musculus (Mouse) and Drosophila melanogaster (Fruit fly) for studying the human neurodegenerative disease. The reportedmodels
represent Tauopathies, β-amyloidopathies, and Synucleinopathies in the brain. Models include Knock-out (KO), Knock-in (KI), Knock-Down (KD), and Over-Expression
(OE) of hallmark genes for each of the three categories of neurodegenerative disease listed above. There is a column describing similarities in pathology between
species and another column for differences. With each example made, there are references to the literature for more information about the model organism’s
pathologies and similar or contrasting human pathology for comparison.

Target gene- manipulated in
the brain

Neurodegenerative disease
classification

Comparing with human disease Contrasting with human
disease

Cognitive loss: Accounted for by impaired
ability to recognize familiar spaces and
willingness to explore new areas (Apathy)
Neary et al. (1990); Lei et al. (2012)

Reduced abundance of BDNF in the
hippocampus (Lei et al. (2012); Jiao et al.
(2016)

htauP301L (Mutant human-tau) (OE)
In Mus

Tauopathy Conservation of function: The
Accumulation of hyperphosphorylated
Tau and NFTs in cortical neurons with
aging Lee et al. (2001); Santacruz et al.
(2005); Fu et al. (2017)

Loss of hippocampal neurons Santacruz
et al. (2005); Kovacs et al. (2018)

Decline of brain matter as measured by
reduced weight Thompson et al. (2003);
Santacruz et al. (2005); Schäfer et al. (2021)

Age dependant impairment of spatial
memory. Santacruz et al. (2005); Lithfous
et al. (2013); Fu et al. (2017)

Deficits in spatial navigation Santacruz
et al. (2005); Lithfous et al. (2013); Allison
et al. (2016)

hAß42 (KI) In Drosophila β-amyloidopathy Conservation of function: Expression of
human-Aβ-42 (hAß42) and extracellular
secretion results in mimicked AD effects
seen in the human Iijima et al. (2004);
Murphy and LeVine (2010); Yoo et al.
(2020) and Drosophila have conservation
of γ-secretase activity Fossgreen et al.
(1998); Takasugi et al. (2003)

No β-amyloid fibril formation Wittmann
et al. (2001); Iijima et al. (2004)

Amyloid deposits Iwatsubo et al. (1994);
Gravina et al. (1995); Iijima et al. (2004)

Drosophila APP homolog (d APP) does
not have Aβ domain to be cleaved
(endoproteolysis of) for flies. Rosen et al.
(1989); Martin-Morris and White (1990);
Iijima et al. (2004)

Age-dependent learning defects: Decline in
olfactory learning, and memory (Working/
short term) Iijima et al. (2004); Villemagne
et al. (2008)

No homolog to beta-secretase Fossgreen
et al. (1998); Iijima et al. (2004))

Locomotor decline Iijima et al. (2004);
Pottorf et al. (2022)

Brain atrophy: Dying/necrotic neurons in
the Kenyon cell layer (part of the
mushroom body, analogous to human
hippocampus) Iijima et al. (2004); Pini
et al. (2016))

Mitochondrial defects Iijima et al. (2004);
Wang et al. (2020)

hBACE, and hAPP (OE) In Drosophila β-amyloidopathy Conservation of function:Age-dependant
plaque formation when human-BACE and
human-APP (hBACE, and hAPP) are
expressed Yamaguchi et al. (1992)

Plaque formation more severe in male
than in female flies. Opposite observed in
humans. Yamaguchi et al. (1992);
Podcasy and Epperson (2016)

(Continued on following page)
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TABLE 1 (Continued) Models ofMus musculus (Mouse) and Drosophila melanogaster (Fruit fly) for studying the human neurodegenerative disease. The reportedmodels
represent Tauopathies, β-amyloidopathies, and Synucleinopathies in the brain. Models include Knock-out (KO), Knock-in (KI), Knock-Down (KD), and Over-Expression
(OE) of hallmark genes for each of the three categories of neurodegenerative disease listed above. There is a column describing similarities in pathology between
species and another column for differences. With each example made, there are references to the literature for more information about the model organism’s
pathologies and similar or contrasting human pathology for comparison.

Target gene- manipulated in
the brain

Neurodegenerative disease
classification

Comparing with human disease Contrasting with human
disease

Degeneration of the retinal photoreceptors
Yamaguchi et al. (1992); Ratnayaka et al.
(2015)

Age dependent progression of
neurodegeneration and EM ultrastructure
with star-like formation resembles human
AD plaques Yamaguchi et al. (1992);
Walker (2020)

hAPP (V717F) (OE) In Mus β-amyloidopathy Conservation of structure: Overall, the
mouse - APP (mAPP) is approximately
52.7% homologous to the human- APP
(hAPP) von der Kammer et al. (1994)

The absence of NFTs Games et al. (1995);
Wittmann et al. (2001)

Conservation of function: Mice have a
native gamma and beta secretase Games
et al. (1995)

Deposits of hAβ in the hippocampus, and
cerebral cortex Games et al. (1995); Pini
et al. (2016); Svenningsson et al. (2019)

Synaptic and dendritic density reduced in
hippocampal dentate gyrus Games et al.
(1995); Pini et al. (2016); Svenningsson
et al. (2019)

Extracellular β-amyloid legions
surrounded by reactive astrocytes similar
to gliosis observed in AD Canning et al.
(1993); Games et al. (1995)

mAPP (KO) In Mus β-amyloidopathy Conservation of function: No evidence of
cortical abnormalities such as swelling and
atrophy until aged, when mouse-APP
(mAPP) is knocked down Zheng et al.
(1995); Pini et al. (2016)

No immunoreactive neurons or gliosis
around the hippocampal and cerebellar
neurons Canning et al. (1993); Zheng
et al. (1995)

Aβ deposits localized to the hippocampus
and cerebral cortex Zheng et al. (1995);
Pini et al. (2016); Svenningsson et al.
(2019)

Decreased locomotor activity Zheng et al.
(1995); Pottorf et al. (2022)

hLRRK2 (OE) In Drosophila Synucleinopathies Conservation of Function: Bradykinesia,
akinesia, hypokinesia, and tremors when
human-LRRK is expressed (hLRRK2)
Kaasinen et al. (2014); Cording et al. (2017)

There is no a-Synuclein homolog in
the fly

Slow movement and tremors in the
proboscis of the fly Berardelli et al. (2001);
Cording et al. (2017)

Rescue of symptoms with L-DOPA and
kinase inhibitors Growdon et al. (1998);
Cording et al. (2017)

α -Synuclein (hSNCA) (OE) In
Drosophila

Synucleinopathies Conservation of function: Adult onset of
dopaminergic neuronal cell death, when
human α -Synuclein is expressed (hSNCA),
no matter expression of WT or mutant
hSNCA Feany and Bender (2000); Poewe
et al. (2017)

No loss of volume in the brain or central
neuropil, and no vacuolization as
observed with other Drosophila models
of NDs

(Continued on following page)
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Implication of diet and microbes in the
pathology of PD

Since IBD and therefore intestinal inflammation occurs in PD
patients before the brain pathologies begin, diet and commensals are
suspected to play a role in the formation of α-Synuclein Lewy bodies
(Rinninella et al., 2019; Mertsalmi et al., 2020). Mitochondrial
abnormalities are observed in the gut of IBD (Jackson and Theiss,
2020), and PD (Brudek, 2019) patients. Protein α-Synuclein aggregates
have been found to cause mitochondrial damage by interacting with
complex-I of the electron transport chain, and slowing down
mitochondrial metabolism (Kamp et al., 2010; Faustini et al., 2017).
This type of mitochondrial stress increases the redox state of intestinal
epithelial cells and creates inflammation (Friedman and Nunnari,

2014; Console et al., 2020). Therefore, α-Synuclein in PDmight act just
like β-amyloids and tau in AD, as a facilitator and amplifier of PD by
seeding pathology in the gut, ultimately affecting the brain (Braak
et al., 2003; Kitani-Morii et al., 2021). As for AD, the pathology in the
gut could be influenced by oxidative stress and tissue inflammation of
the gut that enhance protein aggregate formation and/or gut
permeability that is translated to the brain, causing neuronal death
and impairment of memory and locomotion. Thus, protein α-
Synuclein aggregates in the gut can transfer to the brain or can
generate local inflammation that distally impacts the BBB and
neuronal activity as reported of Aβ amyloids.

Additionally, several genome-wide association studies revealed
that mutations in leucine-rich repeat kinase 2 (LRRK2) that are one of
the greatest genetic contributors to PD are also linked to increased

TABLE 1 (Continued) Models ofMus musculus (Mouse) and Drosophila melanogaster (Fruit fly) for studying the human neurodegenerative disease. The reportedmodels
represent Tauopathies, β-amyloidopathies, and Synucleinopathies in the brain. Models include Knock-out (KO), Knock-in (KI), Knock-Down (KD), and Over-Expression
(OE) of hallmark genes for each of the three categories of neurodegenerative disease listed above. There is a column describing similarities in pathology between
species and another column for differences. With each example made, there are references to the literature for more information about the model organism’s
pathologies and similar or contrasting human pathology for comparison.

Target gene- manipulated in
the brain

Neurodegenerative disease
classification

Comparing with human disease Contrasting with human
disease

Cytoplasmic inclusions resembling Lewy
Body plaques and tangles for both WT and
mutant α -Synuclein OE

Deficits in negative geotactic response with
aging (locomotor deficit) Feany and
Bender (2000); Berardelli et al. (2001);
Poewe et al. (2017)

α -Synuclein (mSNCA) (KO) In Mus Synucleinopathies Conservation of structure: 95% of the α
-Synuclein sequence is conserved between
the mouse and human, however,
confirmation of secondary structure is
different, and determines aggregation
likelihood Kang et al. (2011)

No motor symptoms with aging, however
suggested anxiety-related phenotype

Conservation of function: Early signs of
neuroinflammation when mouse α
-Synuclein is knocked out (mSNCA):
Microglia were hyper reactive with
vacuole-like structures intracellularly
Cabin et al. (2002); Armstrong (2017);
Guillot-Sestier and Town (2018)

No α -Synuclein Lewy Body pathology
Dijkstra et al. (2014)

Mitochondrial abnormalities in the
electron transport chain complex I/III and
reduced cardiolipin phospholipid in
mitochondrial membrane Cabin et al.
(2002); Ordonez et al. (2018)

No definite reduction in striatal
dopamine levels (variable within KO
mice)

Abnormalities in synaptic
neurotransmission regarding
replenishment and smaller
neurotransmitter reserves of vesicle pool
required for repeated simulation Cabin
et al. (2002); Benskey et al. (2016)

No gross neuronal cell death Dijkstra
et al. (2014); Poewe et al. (2017)

mLRRK2 (OE) In Mus Synucleinopathies Conservation of function: Abnormalities
in the nigrostriatal system when human-
LRRK2 (hLRRK2) is expressed (No matter
a wild type or mutant allele), including the
decreased dopamine release and
locomotion Gehrke et al. (2010); Poewe
et al. (2017); Coon and Singer (2020)

Minimal evidence of neurodegeneration
No α -Synuclein Lewy Body pathology
Gehrke et al. (2010); Dijkstra et al. (2014);
Coon and Singer (2020)

Rescue of symptoms with L-DOPA
Growdon et al. (1998); Gehrke et al. (2010)

Pleomorphic pathology in
LRRK2 parkinsonism (Hasegawa et al.,
2009; Gehrke et al. (2010)
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incidence of Crohn’s Disease (CD), a form of IBD (Hui et al., 2018).
Although to date, the pathology of CD does not include
neuropathology, CD is characterized by an increase in leakage of
the epithelium, inflammation, and dysbiosis in the GI, all features that
seem to contribute to neuroinflammation and neuropathology in PD.
Therefore, further studies looking at the role of LRKK2 in CD could
help to define the mechanisms of the disease of PD and the role of gut-
brain communication in the PD pathogenesis.

Overall, NDs such as AD and PD do not arise exclusively from
defects in the brain, but signals coming from peripheral organ
environments and inter-organ interaction can wire messages to the
brain and effect the brain. Therefore, more studies are required to
dissect the mechanisms of action of the DMGB in health and NDs.
Fortunately, the use of multidisciplinary approaches and more
amenable model organisms will fast-track our knowledge in this field.

Model systems to study the DMGB axis in
neurodegenerative diseases

Recent efforts to unravel the diet-microbiota-gut-brain networks
have relied on genome-wide association studies andmetagenomic data

in small cohorts of human samples to identify disease-associated
factors. It is now clear that to dissect the mechanism underlying
such multifactorial diseases, the use of multidisciplinary approaches
with heavily controlled, reductive model systems is an enormous asset.
Various model systems have been developed to study NDs primarily in
the brain (see table 1), and currently being developed for the gut to
study the gut-brain axis (discussed below).

The murine model system to study NDs

The mouse mammalian model system in particular presents 90%
synteny to the human genome (Monaco et al., 2015) and has been used
in over 95% of studies of human disease (Vandamme, 2014). Mouse
models of NDs have facilitated the study of neurodevelopmental and
neurological diseases, and advanced our understanding of the
molecular pathogenesis of NDs in humans (Dawson et al., 2018;
Zhao and Bhattacharyya, 2018). In particular, the models that
produce similar ND pathologies within the most conserved region
of the mouse brain, the neocortex, have been extensively used (table 1).
For example, transgenic or knockout (KO) mouse models for tau, β-
amyloid, and α-Synuclein (table 1) have been used to investigate the

FIGURE 3
A cross-comparison of the gastrointestinal tract gross anatomy, gut microbiota composition, and general intestinal epithelial architecture between
Drosophila melanogaster (Fruit fly),Musmusculus (Mouse), andHomo sapiens (Humans). In the small intestine, formouse and human, andmidgut, for the fruit
fly, all three species share Firmicutes andBacteroidetesmicrobial population as the dominant resident phyla. Figure constructed on BioRender.com, pie charts
of common phyla that compose the gut-microbiota are referenced from (Trinder, et al., 2017).
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physiological roles of the familiar forms of PD genes and to model
dopaminergic degeneration caused by the dysfunction of these genes.
Although these models exhibit various pathological and behavioral
phenotypes, some aspects of PD pathogenesis such as the degeneration
of distinct dopaminergic neurons or NFTs have not been reproduced
(Harada et al., 1994; Cabin et al., 2002; Hasegawa et al., 2009; Chen
et al., 2022).

In context of the intestinal epithelium, mice have also been
extensively used in biomedical disease studies of intestinal dysplasia
and inflammation such as IBD, or infection models to better
understand the pathogenesis of gut-borne pathogens (Gkouskou
et al., 2014; Vandamme, 2014; Stanford, et al., 2020). The
fundamental gross/cellular anatomy of the mouse gut is also very
similar and has been considered one of the best comparable animal
models to the human gut (Figure 3) (Trinder et al., 2017; Stanford
et al., 2020).

With regards to studies defining the effect of microbiota on animal
physiology, the mouse has one of the most similar gut-commensal
populations to the human when comparing the presence and
abundance of major phylogenetic groups, such as Firmicutes, and
Bacteroidetes (Figure 3) (Xiao et al., 2015; Trinder et al., 2017).
However, studying the highly-intertwined DMGB axis is more
challenging in a complex mammalian system where the cost and
infrastructural hurdles of constructing germ-free mouse models is
high. Moreover, it is very difficult to control multiple factors while
performing experiments where environmental changes may greatly
influence the results (Trinder et al., 2017). These challenges together
with the high cost and time required to generate these models add
further risk to the use of such models given the overarching difficulty
in knowing if the phenotypes observed accurately recapitulate disease
states in humans (Vandamme, 2014). These issues have prompted
researchers to incorporate alternative model organisms for these
studies.

An emerging model system to study DMGB axis: D.
melanogaster

In the last 10 years, the Drosophila model system has been
affirmed as a valid model organism to unravel the mechanisms
underlying NDs. Drosophila share similar gross organ function and
inter-organ communication networks with mammalian systems
(Figure 3; Figure 4) (Prüßing et al., 2013; Cassim et al., 2018;
Jahromi et al., 2020), and carry many conserved genetic, cellular,
and metabolic factors with mammals (Figure 4) (Cassim et al., 2018).
For example, the nervous system of the fly has functionally analogous
brain regions to themammalian brain, such as the mushroom body for
learning and memory, analogous to the mammalian hippocampus, the
blood-brain barrier and the central complex for movement;
comparable to the basal-ganglia and precentral gyrus in humans
(Barnstedt et al., 2016; Gomez-Marin et al., 2016). Moreover, the
nervous system of both flies and mammals shares similar mechanisms
of neurotransmission, i.e. dopamine in dopaminergic neurons of the
central complex in Drosophila facilitate locomotion, as the basal
ganglia does in mammals (Martin and Krantz, 2014). Moreover,
studying NDs in Drosophila allows studies where the environment
can be easily controlled, large populations can be easily obtained and
analyzed at lower costs, and where complex networks can be quickly
dissected due to the availability of elegant genetic tools (Figure 4).
Transgenic AD and PD models, that present similar behavioral/
cellular pathologies to human NDs, have been successfully
constructed expressing canonical human-linked alleles of NDs such
as α-Synuclein and β-secretase. Furthermore, the characterization of
these models has yielded great advances into the basis of
neurodegenerative disease etiologies (Jeibmann and Paulus, 2009;
Lu and Vogel, 2009; Perrimon et al., 2016; Tan and Azzam, 2017;
Cassim et al., 2018; Xiong and Yu, 2018), therefore, making the human
disease easier to study in less complex, but analogous, organism.

FIGURE 4
The diagram summarizes the main features that make Drosophila melanogaster a suitable model organism to study DMGB axis.
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Core immuno-inflammatory pathways such as Toll, JAK/STAT,
and immunodeficiency (Imd) equivalent to TLR-4, JAK/STAT and
TNF pathways in mammals (Hoffmann and Reichhart, 2002;
Hoffman, 2003; Myllymäki et al., 2014) are also present in
Drosophila. These innate immune-inflammatory pathways, whether
in humans or Drosophila, respond to infection and aging/injury by
promoting the expression of inflammatory mediators such as
cytokines and antimicrobial peptides (AMPs in fly and humans)
(Myllymäki et al., 2014). During the progression of NDs in
humans, the release of inflammatory mediators by the innate
immune cells (e.g. microglia) leads to systemic inflammation that
ultimately can contribute to inflammation of the brain and neuronal
damage (Lye and Chtarbanova, 2018; Arora and Ligoxygakis, 2020).
Typically, AMPs during infection are neuroprotective, but during
aging their constitutive expression in the brain elicit neurotoxic effects
that might trigger/exacerbate neurodegeneration (Cao et al., 2013;
Kounatidis et al., 2017; Lye and Chtarbanova, 2018). Accumulation of
these inflammatory molecules during aging is not necessarily caused
by local secretion of AMPs in the brain but can come from peripheral
organs. For example, a study carried out in the intestinal epithelium of
Drosophila showed that over-aging PINK1-mutant flies (PD model),
exhibit accumulation of damaged mitochondria in intestinal epithelial
cells that activate NF-kB and expression of AMPs that lead to gut
dysfunction (Fedele et al., 2020). The high AMP expression leads to
age-dependent neurodegeneration. Genetic suppression of NF-kB
activity in aging Drosophila intestines improved the
neurodegeneration phenotype.

In another recent study, the authors examined the role of AMPs on
fly’s lifespan over aging. They found that while ablation of individual
AMP genes does not impact the animal lifespan during aging, on the
other hand, the lack of 14 AMP genes impacts lifespan over aging.
Hanson and Lemaitre demonstrate that AMPs control the gut
microbiota over aging and protect animal survival, thus
demonstrating the importance of gut-microbiota interaction during
animal aging (Hanson and Lemaitre, 2022).

These studies strengthened the validity of Drosophila as a model
system to dissect the mechanism of the microbiota-gut-brain axis in
NDs. Moreover, the Drosophila GI tract has been researched over
decades in regard to interorgan communication and inflammation
(Capo et al., 2019; Hung et al., 2020; Okamoto and Watanabe, 2022).
The blueprint of the intestine is functional and structurally analogous
to humans (Figure 3). For a complete review of Drosophila’s intestine
we refer the reader to (Capo et al., 2019). The Drosophila midgut
epithelium, functionally analogous to the mammalian small intestine,
is composed of four different cell types. Progenitor cells are intestinal
stem cells, and undifferentiated intestinal stem cell daughters referred
to as enteroblasts can differentiate into enterocytes, or into
enteroendocrine cells in response to diverse and incompletely
defined differentiation signals (Figure 3). Among these cells, the
enteroendocrine cells function to integrate gut environmental
signalling such as dietary nutrients and microbiota-derived
metabolites, secrete peptides and cytokines and regulate various
physiological processes. Several enteroendocrine cell-derived
peptides act locally to regulate gut motility (Okamoto and
Watanabe, 2022), proliferate intestinal stem cells (Amcheslavsky
et al., 2014; Takeda et al., 2018), modulate lipid metabolism in
enterocytes (Song et al., 2014; Kamareddine et al., 2018), and
release endocrine factors for interorgan communication. Genetic
experiments strongly suggest effects of several enteroendocrine-

derived peptides on remote target organs or tissues such as the
CNS (Kubrak et al., 2022).

Research with Drosophila has also contributed to our
understanding of the importance of the microbiota homeostasis for
an organism’s health (Douglas, 2018). In both Drosophila and
humans, gut microbiota abundance and diversity are dependent on
the host’s diet (Chaston et al., 2014), host’s immune system (Marra
et al., 2021), gut morphology (Broderick et al., 2014), health status and
hosts genotype (Clark et al., 2015; Fischer et al., 2017; Téfit and Leulier,
2017). Although the gut-commensal profile of Drosophila harbors a
lower microbial diversity compared to that found in the mammalian
gut (Bakula 1969; Chandler et al., 2011; Corby-Harris et al., 2007,
with <30 taxa in the fly (Newell and Douglas, 2014), there are still
many phylogenetically common species shared with humans (i.e.
Firmicutes, the most abundant phyla in both species) (Figure 3),
which makes this animal an amenable model to study fundamental
gut-commensal interactions (Newell and Douglas, 2014; Trinder et al.,
2017; Douglas, 2018). Interestingly, these bacterial species display
similar health-promoting proprieties in Drosophila and mammals
(Erkosar et al., 2013). For instance study of microbiota in
transgenic fly models for NDs have revealed correlation between
shift in microbial population and aging (Kitani-Morii et al., 2021;
Neophytou and Pitsouli, 2022; Schretter, 2020; von Frieling et al.,
2020) or the onset of NDs similar to that observed in humans
(Mertsalmi et al., 2020; Rydbom et al., 2021).

Considering these benefits, Drosophila could complement the
information gathered from the murine models of NDs and can be
considered one of the most versatile model organisms to study the
DMGB axis in the context of diseases such as NDs and interorgan
communication.

The diet-microbiota-gut-brain axis
drives neurodegeneration in mice and
the flies

The diet-microbiota-gut-brain axis is a rapidly expanding area of
research suggesting that the interaction between the intestine, gut-
commensals, and diets define the gut-brain signaling by means of
neuronal, endocrine, immune, and humoral links that overall impact
the brain (Carabotti et al., 2015; de Wouters d’Oplinter et al., 2021;
Kitani-Morii et al., 2021). In the following section, we will summarize
each component of the DMGB axis and will report results from studies
that have established how dysfunction of this axis might be an early
sign for the onset of NDs.

The diet-microbiota-gut-brain axis: The
diet

Nutritional replenishing of our energy expenditure impacts
numerous aspects of our physiology and dictates the level of
individual protection or risk factors for developing diseases such
as NDs (Cena and Calder, 2020). Clinical and animal studies
highlight the importance of dietary lipids throughout life from
neural development to aging and neurodegeneration (Calon and
Cole, 2007; Belkind-Gerson et al., 2008; Innis, 2008; Bousquet et al.,
2009; Barrett et al., 2014; Chianese et al., 2018; Stavrinou et al.,
2020).
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Dietary fatty acids can directly affect the brain by crossing the BBB
and subsequently changing the neural membrane composition
(Chianese et al., 2018). A diet rich in mono and polyunsaturated
fatty acids (monounsaturated fatty acids and PUFAs), is associated
with anti-inflammatory properties (Tosti et al., 2018). Long-chain
dietary n-3 PUFAs, eicosapentaenoic acid, and docosahexaenoic acid,
play a regulatory role in immunological responses. They suppress
genes involved in inflammation and change the cell membrane
composition by displacing n-6 PUFA and cholesterol (Scaioli et al.,
2017). Consequently, they alter lipid raft aggregation and affect cell
signaling (Scaioli et al., 2017). Eicosapentaenoic acid, docosahexaenoic
acid, cholesterol and sphingolipids are also of great importance for
brain function influencing cell trafficking and acting as second
messenger molecules in signal transduction. On the other hand,
western diets that are rich in saturated fats, have pro-inflammatory
properties (Christ et al., 2019). Saturated and trans-fatty acids, and n-6
PUFAs mimic the actions of LPS-inducing pro-inflammatory
processes which compromise intestinal barrier integrity as
demonstrated in studies in mice (Guo et al., 2013; Williams et al.,
2013).

These pro- and anti-inflammatory diets might indirectly influence
neuroinflammation via the intestine, microbiome, and vasculature.

The host metabolism and dietary lipids in
inflammation

The effects of dietary lipids on animal physiology are heavily
regulated at the cellular level by individual metabolism. Cellular
organelles, such as mitochondria and peroxisomes, play central roles
in dietary lipid catabolism/anabolism and productions of lipid
mediators vital for signaling and metabolism. These organelles
influence the impact that dietary lipids have on animal
physiology. Very long-chain fatty acids (VLCFAs) derived from
vegetable oils, nuts, and seeds (Tenreiro et al., 2013) are normally
catabolized by peroxisomes and can be lipotoxic to any tissue if not
metabolized. Accumulation of VLCFAs is linked to
neurodegeneration and has been found in AD brains along with
reduced peroxisome activity (Kou et al., 2011). A study carried out in
D. melanogaster (Di Cara et al., 2018), found that peroxisomal
dysfunction specifically in the intestinal epithelial cells damages
intestinal epithelial integrity resulting in dysplasia, and promotes
the systemic accumulation of non-esterified fatty acids. These fatty
acids trigger intestinal inflammation and decrease animal survival,
confirming that abnormal lipid metabolism affects inflammation.
Likewise, the oxidation of long-chain fatty acids by mitochondria is
protective, as mitochondria defects lead to an accumulation of long
chain fatty acids in the gut epithelium which induces high levels of
oxidative stress (Swanson et al., 2012; Custers et al., 2022) and
inflammation that affects ENS neurotransmission (Chen et al.,
2019).

The brain has the highest cholesterol content in the body as the
main component of axonal myelin sheets, essential to maintain the
physiological functions of the brain such as cognition and movement
(Rhea and Banks, 2021). An excess of cholesterol can be damaging
and therefore needs to be oxidated into the oxysterol 24S-OH-Chol
by the neuronal enzyme CYP46A1. 24S-OH-Chol is then released
into the circulation by neurons and eliminated. As oxysterols can
diffuse through plasma membranes, they can then cross the BBB. AD

patients show a reduction in circulating levels of 24S-OH-Chol,
because of decreased expression of the CYP46 enzyme in neuronal
cells. Oxysterols are also present in plasma mainly in the form of 27-
OH-Chol as a product of the mitochondrial CYP27A1 enzyme
activity in the liver. Recent works suggested that 27-OH-Chol
accumulation triggers AD-related pathological changes. Rabbits
fed a cholesterol-rich diet showed increased serum cholesterol,
increased 27-OH-Chol in the hippocampus, and pathological
hallmarks similar to those found in AD, such as microglia
activation, brain atrophy, and cognitive deficits (Brooks et al.,
2017). Therefore, it is suggested that dietary cholesterol could
induce neurodegeneration if there is excessive production of 27-
OH-Chol by the mitochondria in the liver.

Diet and microbiota-derived metabolites
in NDs

Important lipids for most physiological functions are not just
dietary derived but are also products of gut microbiota
metabolism. In mice and humans, it has been shown that the
gut microbiota can affect lipid metabolism and lipid levels in the
blood and different tissues (Chatelier et al., 2013; Cotillard et al.,
2013; Lam et al., 2015; Just et al., 2018). However, dietary lipids
can also alter the gut microbiota composition either by acting as
substrates for bacterial metabolic processes or by diminishing
bacterial growth due to their toxicity towards certain bacterial
species (e.g. Bacteroides, Clostridium, and Roseburia) (Agans et al.,
2018; Schoeler and Caesar, 2019). As a result, dietary lipids can
shape their own metabolism by altering the balance of enteric
bacteria that are able to metabolize them. SCFAs in particular are
the metabolic end-products of gut-commensal fermentation of
fibrous food, that have neuroprotective roles (Onyango et al., 2015;
Dinan and Cryan, 2017; Baxter et al., 2019; Custers et al., 2022).
For example, in a study conducted by (Kong et al., 2018), 16S
rRNA gene sequencing and gas chromatography-mass
spectrometry analyses in a Drosophila model of AD, showed
decrease of Lactobacillus and Acetobacter species that correlate
to a dramatic decrease of SCFA acetate, which is the most
abundant SCFA. Concurrently, in Drosophila models of PD, the
administration of sodium-butyrate reduces degeneration of
dopaminergic neurons and improves the locomotor defects in a
pan-neuronal transgenic fly model expressing mutant-human-α-
Synuclein (St Laurent et al., 2013). SCFAs have also been linked to
the maintenance of gut and immune homeostasis in mammalian
systems, demonstrating a neuro-immunoendocrine regulatory
role in the brain (Silva et al., 2020; Chen et al., 2022). For
example, dietary butyrate has an anti-inflammatory effect in the
gut (Baxter et al., 2019) and in the brain by influencing BBB
permeability (Chen et al., 2022).

Vitamins and NDs
Other nutrients such as vitamins also influence gut and brain

health through their antioxidant activities (Qi et al., 2019; Hung
et al., 2020; Komleva et al., 2021). Dietary vitamin group B, such as
B3 (niacin), B9 (folic acid), and vitamin B12 (cobalamin) effect
learning, memory, and overall cognition (Virmani et al., 2013;
Staff and Windebank, 2014). Vitamin B3 (niacin) improves
locomotor deficits of PD patients and PD Drosophila models
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(Jia et al., 2008; Wakade et al., 2021). In a double blind-study
conducted by (Wakade et al., 2021), 47 patients were given either a
placebo or niacin supplements. After 12 months of daily
supplementation and clinical tests assessing motor and non-
motor quality of life symptoms and biochemical tests assessing
inflammatory cytokine profiles, 42 patients exhibited an
improvement in motor, and cognitive symptoms. Additionally,
while the levels of many inflammatory cytokines did not change,
anti-inflammatory cytokine IL10 was upregulated. Other essential
vitamins of group of B do not derive from the diet but are supplied
by the microbiota (Morowitz et al., 2011; Virmani et al., 2013).
Therefore, dietary metabolites, not just lipids, may have
neuroprotective activities within the DMGB axis to prevent the
onset of NDs.

The diet-microbiota-gut-brain axis: The
gut microbiota

Over 100 years ago Elie Metchnikoff, Nobel Prize laureate for his
discovery of the macrophage and phagocytosis (Dinan and Cryan,
2015), dedicated the last years of his career to the study of longevity.
He proposed that people in Eastern Europe lived longer due to the
high amounts of fermented foods they ate, which contained lactic acid
bacteria. Later studies in germ-free mice demonstrated that germ-free
animals lived longer than controls (Gustafsson 1946), suggesting that a
direct link exists between microbiota, microbiota-derived metabolites,
and aging. It is now well established that the microbiota and brain can
communicate through different routes.

Microbiota-brain communication via DMV

One line of communication between the gut microbiota and the
central brain occurs via the DMV as shown by studies in mice
demonstrating the anxiolytic effect of intestinal Bifidobacterium
longum on animals that were subject to vagotomy (Bercik et al.,
2011). As discussed above, it has also been proposed that
commensal bacteria can secrete prion-like peptides that could
trigger other proteins in the gut to aggregate (Chen et al., 2016;
Chen et al., 2019). These misfolded aggregated proteins then spread
through the intestine and the ENS to the brain. Protein aggregation of
NDs peptides reach the brain via the DMV and a prion-like
mechanism (Braak et al., 2003). This hypothesis was confirmed
from preliminary data in Rattus norvegicus fed with bacteria that
produce the prion-like protein, curli, which resulted in α-Synuclein
deposition accumulation in the gut and brain (Chen et al., 2016).

Microbiota as a source of neurotransmitters
The gut microbiota also communicates with the brain by altering the

level of neurotransmitter precursors. For example, high concentrations of
Bifidobacterium infantis have been shown to increase plasma tryptophan
levels and thus influence central 5-hydroxytryptamine transmission
(Desbonnet et al., 2008; O’Mahony et al., 2015). Furthermore,
commensal bacteria can synthesize and release neurotransmitters, such
as the inhibitory neurotransmitter γ-aminobutyric acid (GABA), which
can be produced by Lactobacillus and Bifidobacterium species. Likewise,
Candida, Streptococcus, Escherichia, and Enterococcus species have been
reported to produce serotonin, Bacillus can produce dopamine, and

certain Lactobacillus species can produce acetylcholine (Lyte, 2013;
2014). These microbially synthesized neurotransmitters cross the
mucosal layer of the intestines and mediate physiological events in the
brain. Likewise, SCFAs such as propionate, butyrate, and acetate, are also
important metabolic products of gut microbial activity. These SCFAs can
affect the brain indirectly or directly either by acting as ligands for
G-protein coupled receptors or in the case of butyrate as epigenetic
modulators of histone deacetylases to control transcriptional changes that
affect neuronal functions (Galland, 2014; Stilling et al., 2014; Canfora et al.,
2015; Paul et al., 2015; Stilling et al., 2016).

Microbiota composition and NDs

In its abundance, the human microbiome is composed of around
1.3 more cells than cells of the human body (>200 taxa) (Sender et al.,
2016; Yang et al., 2020), acting like a major organ system that
contributes to physiological health. In fact, dysbiosis of gut
commensal populations leads to metabolic and inflammatory
diseases (Dinan and Cryan, 2017). Neurological diseases, such as
NDs are co-morbid with gastrointestinal alterations (Vandvik et al.,
2004; Sampson and Sarkis, 2015). It has indeed been reported that in
both mouse and Drosophila models of human PD, the
neurodegenerative pathologies in the brain have been observed in
concurrence with commensal dysbiosis in the gut (Erny et al., 2015;
Challis et al., 2020; Peterson, 2020; Kitani-Morii et al., 2021; Rydbom
et al., 2021).

At a phylum level, the microbiome is primarily defined by two
dominant bacterial phylotypes, Bacteroidetes and Firmicutes with
Proteobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia
present in relatively low abundance (Qin et al., 2010; Lankelma
et al., 2015). In humans, mice, and Drosophila, the phyla
Firmicutes dominate the gut, where the Firmicutes is composed of
many Lactobacillus species (Newell and Douglas, 2014; Trinder et al.,
2017; Douglas, 2018). These Lactobacillus species have been found to
influence host metabolism and behavioral pathologies of NDs in
various gut-commensal studies in mammals and Drosophila
(Newell and Douglas, 2014). For example, L. plantarum in
mammals influences gut-lipid metabolism, increasing butyrate
which has anti-inflammatory effects (Storelli et al., 2011). In
Drosophila, Lactobacillus plantarum also alters gut metabolism
such as the insulin signaling pathway implicated in the
pathogenesis of NDs (Storelli et al., 2011; Newell and Douglas,
2014; Spinelli et al., 2019; Komleva et al., 2021). Moreover, L.
plantarum also ameliorates age-dependent memory impairment in
the mouse (Castelli et al., 2021) and Drosophila models of NDs
(Schretter et al., 2018; Schretter, 2020). Studies in Drosophila have
identified Lactobacillus brevis as the culprit behind the locomotion
deficit of PD pathogenesis in a Drosophila PD model (Schretter et al.,
2018). Therefore, in humans, interaction of Lactobacillus, or other
undiscovered or unrecognized species that influence the gut-brain axis
may hold the key to unlocking the aetiologies of NDs. However,
sequencing and understanding the human microbiome is much more
complex than a mouse or a fly.

In humans, the gut microbiota has recently been sequenced in
patients with PD in a study carried out by (Scheperjans et al., 2015).
They performed metagenomic analyses of 72 PD patients and
72 matched controls. The results indicated a major reduction in
the levels of Prevotellaceae in the patients and a positive
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association between the levels of Enterobacteriaceae and the severity of
postural instability and gait difficulty. However, the authors did not
claim either the temporal or causal relationship between the gut
microbiota and the features of the disease. Another analysis of
microbiota composition in PD pointed to a reduction in butyrate-
producing bacteria in feces and Faecalibacterium in the mucosa of PD
(Keshavarzian et al., 2015).

Despite all the encouraging studies pointing to the microbiota as a
potential therapeutic target for PD, to date, there is no conclusive
evidence as of yet showing that microbiota transplants can ameliorate
PD pathology. More research is needed to determine the relative role
of the microbiome in PD.

A detailed analysis of the microbiota in AD patients is lacking,
preliminary data published in preprint format has implicated the
microbiota in the accumulation of amyloid plaques in a mouse model
of AD (Harach et al., 2015). In this study, the authors generated a
transgenic AD mouse model under germ-free conditions and found a
dramatic reduction of cerebral Aβ amyloid pathology when compared
to AD animals, which had normal intestinal microbiota. Colonization
of germ-free AD mice with microbiota harvested from conventionally
raised AD mice dramatically increased cerebral Aβ pathology. This
was similarly observed in another study showing that antibiotic
treatment could limit Aβ pathology and neuroinflammation
(Minter et al., 2016). These data offer hope for the future
generation of a novel microbiota-based approach to ameliorate
symptoms of AD.

Gut-brain communication also occurs via the immune system.
Signaling from gut epithelial cell-secreted peptides, bacterial-derived
molecules, and cytokines can activate gut resident immune cells to
secrete gradients of cytokines that pass the BBB and communicate
with cells in the brain. The activation of microglia, the brain’s resident
immune cells, plays a central role in neuroinflammatory processes in
aging and NDs (Jyothi et al., 2015). The activation of microglia appears
to be influenced by the gut microbiome (Erny et al., 2015). This data
suggested that neuroinflammation can be regulated by targeting the
gut microbiome using probiotic approaches.

In conclusion, the microbiota-gut-brain axis is becoming
increasingly recognized in the context of NDs. However, further
research is needed to define how the microbes communicate with
the host and to understand the interactions between the diet, the
microbiota and the intestinal epithelium.

The diet-microbiota-gut-brain axis:
The gut

The GI tract and ENS interactions

The GI tract is a very complex organ with essential functions such
as absorbing and processing of ingested food to fulfill the energy
demands of development, reproduction, and survival (Woods et al.,
1998). The GI tract is also a major source of neuronal and endocrine
signals, which modulate food intake and the activity of other organs,
such as the pancreas and the brain (Kabouridis and Pachnis, 2015;
Abot et al., 2018). Additionally, the GI tract forms the largest and most
important immune epithelial barrier against external dangers posed by
ingested pathogens. Under ideal circumstances, the GI tract maintains
a mutualistic and symbiotic relationship between a diverse and
dynamic community of microorganisms and the host (Peterson

and Artis, 2014; Abot et al., 2018). Here we will review the
mechanisms by which the gut and gut-microbiota interactions
might influence the brain activities in health and in the context of
NDs while we refer the readers to a review by (Richards et al., 2021) for
a detailed description of the mechanisms of gut-brain
communications. The GI tract is also host to the ENS, a highly
dense neuronal network that acts independently of the CNS
(Fleming et al., 2020). The ENS presents a similar organization to
the CNS brain regarding structure, function and pluri-chemical
transmission. ENS neurons modulate a range of physiological
activity, such as gut motility, intestinal permeability, intestinal
immunity, enteric reflex, and enteroendocrine signaling (Carabotti
et al., 2015), therefore playing a role in local inflammation (Fleming
et al., 2020). The ENS communicates with the CNS via three primary
neuronal types, intrinsic primary afferent neurons, motor neurons,
and interneurons (Fleming et al., 2020). Communication between the
neurons of the ENS and the PNS/CNS are carried out by compounds
like acetylcholine, and reactive nitrogen species like Nitric oxide
(Fleming et al., 2020). The primary method of communication
between the ENS and CNS is facilitated by the bidirectional, 10th
cranial nerve, the DMV in mammals and Drosophila (Breit et al.,
2018).

The DMV is the main contributor of the parasympathetic nervous
system. Exiting the medulla oblongata, the DMV delivers impulses
from the brain to innervate peristalsis/digestion during a
parasympathetic relaxed state. In return, the intestinal epithelium
delivers signals to the brain communicating the state of the gut
through the ENS via the DMV. The efferent vagal nerves regulate
gastrointestinal secretory and motor function, and also the activity in
the endocrine system of the gut, while the vagal afferents allow gut-
brain information flow from the gut to the CNS. Vagal afferent
signaling has been implicated modulating mood and affect,
including distinct forms of anxiety and fear and are involved in the
activation/regulation of the Hypothalamic Pituitary Adreno axis,
which coordinates the adaptive responses to stressors of any kind
(Tsigos and Chrousos, 2002; Howland, 2014). The DMV also has an
immunomodulatory role as the cholinergic anti-inflammatory
pathway (Goverse et al., 2016; Breit et al., 2018), making the DMV
a major component of the neuroendocrine-immune axis. The
appearance of pathogens in the gut activates resident innate
immune cells to release cytokines. These in turn activate sensory
fibers that ascend the DMV. Increasing efferent signals in the DMV
suppresses peripheral cytokine release through macrophage nicotinic
receptors and the cholinergic anti-inflammatory pathway. Thus,
experimental activation of the cholinergic anti-inflammatory
pathway by direct electrical stimulation of the efferent DMV was
found to inhibit the synthesis of TNF-α in the liver, spleen, and heart,
and lowers serum concentrations of TNF-α (Borovikova et al., 2000;
Bernik et al., 2002). This regulation of the local and systemic
inflammatory signals is essential to reduce metaflammation linked
to neuroinflammation.

Humoral factors of the gut-brain
communication

Gut communication to the brain does not solely rely on
neurotransmission through the DMV but it can also be humoral
through the secretion of metabolites processed from the diet by the

Frontiers in Cell and Developmental Biology frontiersin.org17

Makdissi et al. 10.3389/fcell.2023.1087091

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1087091


microbiota or the gut epithelium. Metabolites can have
neuroprotective trophic action (Liu, 2018) promoting neuron
survival and plasticity in both the ENS and the CNS (Figure 1)
(Liu et al., 2019). In a study conducted by (Vidal-Martínez et al.,
2016) and colleagues, transgenic mice overexpressing mutant human
α-synuclein developed PD-like enteric neuropathology. The animals
accumulated α-synuclein aggregates in the intestinal epithelium and
ENS nerves and exhibited gut motility problems that result in
constipation. Treatments with FTY720, a sphingosine analog
rescued the defects in the α-synuclein transgenic mice.
FTY720 mediated the accumulation of the brain-derived
neurotrophic factor that activates TrkB receptors in the gut
reducing ENS synucleinopathy and improving gut motility (Vidal-
Martinez et al., 2016).

The ENS and the intestinal epithelial cells also release peptides that
can have local or distal effects. The battery of neuropeptides released in
the intestines can affect the immune system or the CNS to control
inflammatory responses, hormonal secretion, and metabolic activities.
Gut peptides are mainly secreted from enteroendocrine cells in the GI
tract. Neuropeptides and peptide hormones are released mainly by cell
of the CNS and ENS executing in response to stress, metabolic, and
commensals signaling. The Neuropeptide Y (NPY) is involved in
controlling inflammation, pain, emotion, mood, cognition, stress
responses, and metabolism. In the gut, NPY is expressed mainly by
the ENS, where it regulates enteric inflammation. This is demonstrated
by the observation that NPY-containing nerve fibers of the ENS are in
close contact with immune cells in the mouse ileum lamina propria
(Shibata et al., 2008). Specifically, NPY promotes colonic
inflammation. A growing body of literature, both in humans and
rodent models, suggests that brain NPY levels are altered in some
neurodegenerative and neuroimmune diseases. NPY stimulates
neuronal survival and neuroproliferation, attenuates
neuroinflammation, and counteracts depressive symptoms and
weight loss present in NDs. Ultimately, the extent to which these
enteric peptides expression/repression in the gut is linked to NDs
pathogenesis has not been established yet and the topic requires
further investigation.

The immune system in the GI tract heavily
influences gut-brain communication

The intestinal immune cells constantly face a large number of
antigens that are obtained from either food or the intestinal
microbiota. Intestinal CD4+ T helper cells are highly involved in
mucosal immunity. Enteric glial cells are essential for the integrity
of the bowel. The presence of different bacterial species determines the
pro- or anti-inflammatory state of CD4+ T-cells (Ivanov et al., 2009),
which highlights the importance of the intestinal microbiota in the
preservation of mucosal homeostasis. Failure to inhibit pro-
inflammatory immune responses increases intestinal inflammation
and may contribute to the development of immune-mediated
inflammatory diseases. A loss of enteric glial cells also leads to
severe inflammation of the intestines. The increased inflammation
of the gut affects the permeability of the intestinal barrier activating
resident immune cells and leading to the accumulation of
inflammatory mediators and microbial-derived metabolites such as
LPS in the circulatory system triggering systemic inflammation and
metabolic dysfunction (Lancaster et al., 2018). Humoral pathways of

gut inflammation spreading to the brain can damage the BBB.
Multiple reports have shown that the BBB is damaged in PD
patients (Pisani et al., 2012) and LPS (Gray and Woulfe, 2015)
induced PD animal models exhibited disrupted BBB (Varatharaj
and Galea, 2017). If the BBB is damaged, proinflammatory
cytokines and immune cells such as T-cells (Engelhardt, 2017) and
mast cells (Jones et al., 2019) from peripheral inflammation are able to
enter the brain. These series of events are now considered the current
model mechanism of disease of NDs that could be applied to familiar
and sporadic forms of NDs and support a scenario that points at
peripheral inflammation and alteration of the DMGB as main triggers
of pathogenesis.

Metabolic alteration in the GI as markers
of NDs

Metabolic alteration and inflammation of the intestine are two
features observed in themost commonNDs. Howmetabolic alteration
occurs and what pathway is principally involved in the intestinal
epithelium when the diseases seed, is not understood. Damage or
functional alteration of essential organelles such as mitochondria and
peroxisomes, have been found to accompany different pathologies of
disease. Mitochondria and peroxisomes are highly metabolic cellular
organelles, ubiquitously conserved across eukaryotes, from yeast to
humans (Osellame et al., 2012; Smith and Aitchison, 2013; Baron et al.,
2016). Both organelles participate in a broad range of conserved
cellular-metabolic processes, most notably β-oxidation of medium-
chain, long chain and very long-chain fatty acids, the anabolism and
catabolism of complex signaling lipids such as phospholipids, and
synthesis and turnover of reactive oxygen and reactive nitrogen
species. These metabolites are essential for supporting cellular
energetic processes, limiting redox stress, mitigating inflammation,
and maintaining cell structure and signaling (Osellame et al., 2012;
López-Armada et al., 2013; Smith and Aitchison, 2013; Di Cara, 2020).
As mentioned previously, α-Synuclein inclusion bodies have been
identified in the gut and enteric neurons of PD patients prior to the
onset of disease, as well as in cases of inflammatory diseases that
compromise the gut epithelial barrier (Hawkes et al., 2010; Challis
et al., 2020; Derkinderen et al., 2021). α-Synuclein inclusions damage
cellular mitochondrial functions, therefore, linking the diseases to
metabolic and signaling dysfunction of mitochondria. However other
studies reported that mitochondrial damage occurs before α-Synuclein
inclusions appear.

Peroxisome dysfunction has not been directly linked to the onset of
NDs. Cumulative evidence has reported that peroxisome dysfunction in the
intestinal epithelium causes intestinal inflammation and dysplasia as
reported in Drosophila gut-specific peroxisomal knock-down models by
(Di Cara et al., 2018). In the same study, peroxisomes were also found to
modulate the gut microbiota which, as discussed herein, changes in gut
microbiota are tightly connected to inflammatory diseases including NDs.
Clinical reports described that peroxisome numbers andmetabolic activities
are lower within neurons of the post-mortem brains of patients affected by
NDs such as AD (Kou et al., 2011; Cipolla and Lodhi, 2017). In particular,
post-mortem brains of AD patients have high VLCFAs (substrates of
peroxisome β-oxidation) and in a parallel a decrease in ether-phospholipids
(products of peroxisomal metabolism) (Kou et al., 2011).

Despite these correlations, more studies are needed to establish
whether alteration of mitochondria and peroxisomes in the intestinal
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cells could be the culprit of the metabolic dysfunction that triggers the
cascade to NDs.

Discussion

For decades the study of genetic-NDs have generated several
theories on sporadic disease pathogenesis (Garden and La Spada,
2012) based on how the disease pathologically presents in the brain
showing mitochondrial dysfunction, oxidative stress, aberrant
neurotransmission and neuronal death. However, emerging
evidence has proven that the pathologies characterized in the CNS
might be a consequence of metabolic and inflammatory dysfunctions
occurring in distal organs such as the gastrointestinal tract. As
discussed in this review, β-amyloid plaques and α-Synuclein Lewy
body inclusions that represent signs of disease in the brain of AD and
PD respectively, have also been identified in enteric neurons (Barbut
et al., 2019; Challis et al., 2020). These findings highlight how NDs are
not confined to the brain as previously believed, and might be a
product of bidirectional communication of the body with the brain via
inter-organ communication/coordination to maintain tissue
homeostasis (Peters, 2006; McHugh and Gil, 2018). Nutritional,
neuronal, and inflammatory signals have been linked to NDs, thus,
NDs should be studied in amulti-factorial way, where commensal, and
intestinal metabolic signals that shape physiological processes should
also be considered. Additionally, alteration of cellular organelles such
as mitochondria and peroxisomes in the intestinal epithelium could be
the culprit of the metabolic dysfunction that triggers aberrant DMGB
axis communication, and in turn NDs. Damage to these organelles and
their metabolic processes could occur years before the disease appears
in people that develop PD or AD. Therefore, organelle dysfunction
could be used as an early marker to measure DMGB axis activity as a
predictor of disease. It remains to be investigated whether alteration of
organelle metabolism initiates the process of metaflammation and
therefore drives the cascade that leads to neuronal death and the
accumulation of Aβ aggregates or α-Synuclein Lewis inclusion bodies.

Another open question that remains about the mechanisms of
diseases of NDs, is whether the early distal signaling that leads to ND
seeding in the brain comes exclusively from the diet-gut-brain axis or
if this axis integrates metabolic and inflammatory signaling from other
organs as well. For instance, the immune system has an integral part in
triggering the oxidative stress and inflammation that contributes to
neuronal death. Moreover, recent work identified that the liver as
another integral contributor to this axis. This was specifically
demonstrated in mice in which the hepatocyte-restricted expression
of the human mutant variant of APP displayed peripheral metabolism
of Aβ peptides and associated neurovascular inflammation, CNS
neurodegeneration, and memory impairment. These animals
exhibited an accumulation of triglyceride rich lipoprotein-Aβ in the

circulation that might increase the permeability of the BBB, as well as
the accumulation of cerebral neutral lipids and widespread aggregates
and neuronal loss. This work suggests that hepatic metabolism of Aβ
can cause neuroinflammation and AD. Thus, the question stands as to
whether metabolic disturbances in one or multiple peripheral organs
might happen in a defined sequence that ultimately consist in a disease
risk factor. Dissecting these networks is a complex task and requires
that all or at least many of these potential contributing factors are
individually controlled. The establishment of Drosophila model
organisms to study NDs will help to dissect the complex network
of the DMGB axis and to identify whether multiple organs influence
this DMGB axis in the etiology of NDs.

These new approaches that will help us investigate the origin of
NDs outside the brain have expansive promise to identify early
markers of disease or develop treatments capable of targeting novel
molecular networks for disease prevention.
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