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Background: Kashin–Beck disease (KBD) is a deformed osteochondral disease
with a chronic progression that is restrictively distributed in eastern Siberia, North
Korea, and some areas of China, and selenium deficiency has been identified as an
important factor in the pathogenesis of this disease in recent years.

Objective: The aim of this study is to investigate the selenoprotein transcriptome
in chondrocytes and define the contribution of selenoprotein to KBD
pathogenesis.

Methods: Three cartilage samples were collected from the lateral tibial plateau of
adult KBD patients and normal controls paired by age and sex for real-time
quantitative polymerase chain reaction (RT-qPCR) to detect the mRNA
expression of 25 selenoprotein genes in chondrocytes. Six other samples were
collected from adult KBD patients and normal controls. In addition,
immunohistochemistry was used on four adolescent KBD samples and seven
normal controls (IHC) to determine the expression of proteins screened by RT-
qPCR results that had different gene levels.

Results: Increased mRNA expression of GPX1 and GPX3 was observed in
chondrocytes, and stronger positive staining was displayed in the cartilage
from both adult and adolescent patients. The mRNA levels of DIO1, DIO2, and
DIO3 were increased in KBD chondrocytes; however, the percentage of positive
staining decreased in the KBD cartilage of adults.

Conclusion: The selenoprotein transcriptome, mainly the glutathione peroxidase
(GPX) and deiodinase (DIO) families were altered in KBD and might play a vital role
in the pathogenesis of KBD.
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Introduction

Kashin–Beck disease (KBD) is an endemic, chronic, and
deforming osteochondral disease that is characterized by finger
enlargement, brachydactyly, joint deformation, and even
dwarfism in severe cases (Guo et al., 2014). According to the
2020 China Health Statistics Yearbook (www.nhc.gov.cn), KBD
affects 379 endemic districts and counties, with over 103 million
residents at risk from northeast to southwest China. A strong
hypothesis for the cause of KBD is selenium (Se) deficiency
(Kang et al., 2020); however, the underlying mechanisms of the
pathological changes in chondrocytes such as necrosis, apoptosis,
and extracellular matrix degradation that may be caused by Se
deficiency have not been determined, and this information will
be vital for formulating prevention and treatment measures
for KBD.

Se is one of the most essential micronutrients and has a close
relationship with human health and various diseases, such as male
infertility, coronary heart disease, seizures, and different kinds of
cancer (Rayman, 2012). The physiological function of Se is
considered to be in the form of the amino acid selenocysteine
(SEC). SEC is bound to the amino acid sequence of
selenoproteins during translation and is encoded by the UGA in
the coding region of mRNA. SEC tRNA, encoded by Trsp, is
responsible for the expression of all selenoproteins by recognizing
UGA. Targeted deletion of Trsp in skeletal precursor cells led to
impaired growth and development (Downey et al., 2009). Twenty-
five selenoproteins have been isolated in humans, and they have
been categorized into glutathione peroxidases (GPXs), thioredoxin
reductases (TrxRs), and deiodinases (DIOs) based on their functions
(Chu et al., 2004). For example, GPX1 is a well-known antioxidant
enzyme that can effectively eliminate the harmful accumulation of
hydrogen peroxide in cells by reacting with hydrogen peroxide and
soluble low-molecular-weight hydrogen peroxide and hydroxide,
converting glutathione (GSH) to oxidized glutathione (GSSG)
(Margis et al., 2008; Yan et al., 2017). TrxRs cooperate with
NADPH and thioredoxin to form the thioredoxin (Trx) system,
which provides electrons to thiol-dependent peroxidase to remove
reactive oxygen and nitrogen species at a rapid rate (Lu and
Holmgren, 2014).

Previous studies suggested lower selenium levels in the plasma
and serum of patients with KBD, osteoarthritis (OA), and
rheumatoid arthritis (RA) (Yu et al., 2016; Wang et al., 2020; Fu
et al., 2022), which implies that Se could play a key role in articular
cartilage development and homeostasis. In particular, a meta-
analysis reported that the level of serum Se in patients with KBD
was significantly lower than that in healthy subjects in all
23 included studies (Yang et al., 2016). Se deficiency not only
affects the expression of selenoproteins but also increases the
level of intracellular ROS and activates the MAPK signaling
pathway (Wang et al., 2022). Wu et al. also reported massive
glycogen deposits in KBD chondrocytes and a significantly
elevated ROS level, compared to that in normal cells, which
suggests that the disorder of glucose metabolism in KBD is
involved in the process of chondrocyte injury (Wu et al., 2014a;
Wu et al., 2014b).

Moreover, Se supplementation can protect chondrocytes from
oxidative damage (Dai et al., 2016) and even reduce the incidence

and degree of chondrocyte necrosis in the growth plate of rats caused
by a KBD diet (Yang et al., 2017). It also has effective rates of
metaphyseal X-ray improvement in intervening trials (Xie et al.,
2018). The aforementioned studies suggested that selenium and
selenoproteins might play a crucial role in the pathogenesis of KBD.
However, few studies have specifically detected the selenoprotein
transcriptome in KBD chondrocytes which determines mRNA
expression and may affect selenoprotein expression and further
alter its biological function directly. At the same time, how these
genes are involved in the process of chondrocyte injury in KBD and
its mechanisms are still unclear.

In this study, we detected the mRNA expression of
25 selenoprotein genes using real-time quantitative PCR to explore
how selenoproteins are involved in the pathogenesis of KBD.
Immunohistochemistry (IHC) was used to verify the expression of
several selenoproteins (GPX1, GPX3, DIO1, DIO2, and DIO3) in the
cartilage tissues from KBD patients and healthy controls.

Materials and methods

Disease diagnosis and sample selection

The KBD patients were accurately diagnosed following the
national diagnostic standard for KBD in China (WS/T
207–2010). Normal subjects and KBD subjects were selected
from the same regions of China. The subjects were matched for
age, location, and gender and were all of Han Chinese ethnicity. All
subjects were recruited at random from Yongshou County in
Shaanxi Province, a region of China where KBD is endemic and
has a prevalence of 20.4%. Subjects with additional kinds of
osteoarthropathy and other conditions, such as hypertension,
coronary heart disease, diabetes, etc., were excluded. In

FIGURE 1
Differentially expressed gene expression of selenoproteins in
chondrocytes of KBD patients (n = 3) and normal controls (n = 3) using
qRT-PCR. *p < 0.05.
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accordance with the criteria for inclusion and exclusion listed
previously, adult articular cartilage samples were obtained from
three adult individuals with KBD and three normal subjects for RT-
qPCR and immunohistochemistry (Supplementary Table S1). The
donors of both the adult KBD samples and the control samples were
all from the KBD endemic region of Yongshou County. The articular
cartilage samples of the adult KBD patients and normal controls
were taken from subjects who had undergone knee arthroplasty or
had suffered accident-related amputation. Meanwhile, samples of
adolescent articular cartilage from the proximal interphalangeal
joints of the fingers of four teenage KBD individuals and six
normal teenagers were obtained after death for
immunohistochemistry (Supplementary Table S1). Accidents or
illnesses, including severe diarrhea and acute pneumonia, were
the reasons for fatalities. This work has received approval from
the Xi’an Jiaotong University Ethics Committee (No. 2022-685).

Cartilage tissue collection and chondrocyte
isolation

Within an hour after surgery, the collection of all samples of the
articular cartilage from the lateral tibial plateau, including
subchondral bones and all cartilage zones (including calcified
tissue), was completed. Articular cartilage specimens were

separated into 1 mm3 fragments after being washed twice with
sterile phosphate buffer containing antibiotics (penicillin and
streptomycin). Fragments were digested with 0.25% trypsin for
30 min in an atmosphere of 5% carbon dioxide at 37°C. The cell
suspension was transferred into a culture bottle, 0.2% type II
collagenase was added, and the cells were digested on a shaker
Eppendorf Thermomixer at 37°C for 10 h. Then, the liquid was
filtered through 70 mM nylon filters, and the isolated chondrocyte
precipitate was obtained by 1000 × g centrifugation (Zheng et al.,
2013; Wu et al., 2014a; Wu et al., 2014b).

RT-qPCR analysis

The mRNA expression levels of 25 selenoproteins were
confirmed by RT-qPCR. The total RNA was isolated from
chondrocytes by the TRIzol protocol. A RevertAid ™ First Strand
cDNA Synthesis Kit (Thermo Scientific Molecular Biology, Canada)
was used according to the manufacturer’s instructions to convert
RNA into complementary DNA (cDNA), and then, qRT-PCR was
performed using an ABI7500 Real-Time PCR system (Applied
Biosystems, Foster City, CA, United States). All primers
(Supplementary Table S2) and probe sets were supplied in the
TaqMan® Gene Expression Assay kits (Applied Biosystems). The
relative gene expression levels of selenoproteins in both cases and

FIGURE 2
Representative immunohistochemistry staining of GPX1 in adult KBD (A), adult normal control (B), adolescent KBD (D), and adolescent normal
control (E) cartilage tissues (scale bar: left, 500 μm; right, 100 μm) and comparative quantification of positive cells of different areas (up,middle, and deep)
in adult (C) and adolescent (F) cartilage tissues displayed by a box plot (n = 3). *p < 0.05.
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controls were identified by the 2-△△C(t) method. GAPDH was
used as an internal control to normalize the sample differences.

Immunohistochemistry

The cartilage tissue was immediately fixed in 4% (w/w)
paraformaldehyde for 24 h and then transferred to 10% (w/w)
disodium ethylenediamine tetraacetate (EDTA-Na2) to decalcify
for 2 to 3 weeks. The samples were dehydrated with gradient
concentration alcohol, cleared with xylene, and finally embedded
in paraffin wax. Then, the embedded paraffin samples were cut into 5-
micron slices, affixed to slides, and stored at room temperature. Before
dyeing, the slices were baked at 65°C for 1 h, dewaxed with xylene, and
then rehydrated under the condition of reducing the concentration of
ethanol. A proper amount of 0.1% trypsin was added to cover the
tissue wax for antigen repair, and it was incubated at 37°C for 30 min
and washed three times with 1 × PBS. The endogenous peroxidase
activity was blocked with 1.5% (w/w) hydrogen peroxide at room
temperature for 10 min and then the slices were washed with 1 × PBS.
A 5% normal goat serum working solution was added to the tissue
wax block and sealed for 15 min at room temperature. Then, anti-
GPX1/anti-GPX3/anti-DIO1 (1:50 dilution ratio, bs-11790-1-ap,
protein technology)/anti-DIO2 (1:100 dilution ratio, bs-3673R,
Bioss)/anti-DIO3 (1:50 dilution ratio, bs-40229) were added to the

area, and the tissue wax block was kept at 4°C overnight (and
immunoglobulin G was used as a negative control). The slices
were washed with 1 × PBS and incubated using the rabbit SP kit
(rabbit streptomycin-biotin detection system) (SP-9001, Zhongshan
Jinqiao, Guangzhou, China) according to the manufacturer’s
instructions. Freshly prepared DAB chromogenic solution (ZLI-
9018, Zhongshan Jinqiao, Guangzhou, China) was added for slice
staining and rinsed off gently with tap water. Hematoxylin re-staining,
hydrochloric acid alcohol differentiation, flushing, and ammonia anti-
blue addition were all carried out. Finally, the slices are dehydrated
and installed under an alcohol-washed envelope. The two pathologists
carried out and interpreted the IHC staining results under an optical
microscope without knowing the source of the sample. The three-
layer zones of cartilage joints were determined, according to the
different morphologies of the cells, and three or more visual fields
were randomly selected for statistical analysis of the positive staining
rate (Schumacher et al., 1994; Lorenzo et al., 1998; Karlsson and
Lindahl, 2009). In detail, the long axis of the superficial chondrocytes
is parallel to the cartilage surface, and the cells are smaller and flatter
than those in the middle and deep zones. The middle zone is
randomly distributed in the matrix, and the deep zone is
perpendicular to the surface, in which the cells have obvious
columnar arrangement characteristics. We chose five visual fields
of the same size randomly for each zone and counted at a
magnification of 50.

FIGURE 3
Representative immunohistochemistry staining of GPX3 in adult KBD (A), adult normal control (B), adolescent KBD (D), and adolescent normal
control (E) cartilage tissues (scale bar: left, 500 μm; right, 100 μm) and comparative quantification of positive cells of different areas (up,middle, and deep)
in adult (C) and adolescent (F) cartilage tissues displayed by a box plot (n = 3). *p < 0.05.
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Statistical method

The experimental data were statistically analyzed by the SPSS
18.0 package. After the normality test for continuous variables,
when it was satisfied with the normal distribution, one-way
analysis of variance (ANOVA) was used to compare the
differences between the means, and Tukey’s post hoc test was
used for multiple comparison studies; a Student’s t-test was used
to evaluate the difference between two groups. If it was not
normally distributed, non-parametric methods would be used.
A p-value < 0.05 was considered to indicate a significant
difference. Some experimental results are presented as bars,
drawn using GraphPad PRISM 6 (GraphPad, San Diego, CA,
United States).

Results

Expression levels of the selenoprotein gene
mRNA in chondrocytes from KBD patients

Articular cartilage samples from three adult patients with KBD
and three normal controls were collected. The total RNA was
extracted and converted into cDNA, and the gene expression of
all 25 selenoproteins was measured by qRT-PCR.

The results demonstrated that the levels of six selenoprotein
genes (GPX1, GPX3, DIO1, DIO2, DIO3, and SELENOP) were
upregulated significantly in chondrocytes from KBD patients
compared to chondrocytes from normal subjects (Figure 1). The
mRNA levels of GPX1 and GPX3 were 2.5 times and 4.2 times
higher, respectively, in the chondrocytes of KBD patients than in
normal chondrocytes. Additionally, the mRNA levels of DIO1,
DIO2, and DIO3 were all increased in KBD chondrocytes
compared to normal chondrocytes (a 2.7-fold increase in DIO1, a
11.8-fold increase in DIO2, and a 5.1-fold increase in DIO3). It is
also worth noting that the mRNA expression level of SELENOP was
4.8 times higher in KBD chondrocytes than in normal chondrocytes.
The mRNA expression levels of the GPX2, GPX6, and SELENOV
genes were not detected in chondrocytes in this experiment;
however, there was no significant change in the mRNA
expression levels of the other selenoprotein genes examined in
this study (Supplementary Figures S1, S2).

IHC verification of differential selenoprotein
expression in KBD cartilage tissues

The results demonstrated that the stronger positive staining for
GPX1 was mainly in the cytoplasm in the middle zones of the
articular cartilage in the adult and adolescent KBD groups compared

FIGURE 4
Representative immunohistochemistry staining of DIO1 in adult KBD (A), adult normal control (B), adolescent KBD (D), and adolescent normal
control (E) cartilage tissues (scale bar: left, 500 μm; right, 100 μm) and comparative quantification of positive cells of different areas (up,middle, and deep)
in adult (C) and adolescent (F) cartilage tissues displayed by a box plot (n = 3). *p < 0.05.
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with the normal subjects (Figure 2). In the same way, stronger
immunopositive staining for GPX3 localized in the cytoplasm of the
superficial zones was found in KBD cartilage (Figure 3). DIO-
positive staining was observed on the cell membrane. For DIO1,
the expression in KBD cartilage was reduced significantly compared
to that in the normal subjects in the superficial, middle, and deep
zones; in contrast, it was increased significantly in adolescent
samples in all zones (Figure 4). For DIO2, the expression was
reduced in the superficial zones in adult patients but was
increased in the superficial and middle zones in adolescent
patients (Figure 5). The expression of DIO3 was similarly
reduced in the superficial and middle zones in adult patients but
was increased in the superficial and middle zones in adolescent
patients (Figure 6).

Discussion

Dietary selenium, which is the core molecule in the pathway of
oxidative stress inhibition and the regulation of endocrine
physiology, is very important for the survival of mammals and
plays a key role in neuronal function and male fertility (Burk and
Hill, 2015). In humans, selenium is mostly taken up from the diet
and then absorbed into the intestinal tract and transported to the
liver, where it is mainly metabolized into selenocysteine (SEC). SEC

is bound to selenoproteins and secreted into the plasma and
peripheral tissues as a source of selenium (Ha et al., 2019).

Glutathione peroxidase is thought to use glutathione (GSH) as a
cofactor to reduce hydroperoxides to corresponding alcohols
(Stoytcheva and Berry, 2009). For instance, elevated levels of
lipid hydroperoxide were found in GPX1 and GPX2 knockout
mice, which suggests that GPX is essential for the prevention of
the inflammatory response (Esworthy et al., 2001; Chu et al., 2004).
Gastrointestinal GPX mainly exists in the epithelial inner wall of the
gastrointestinal tract and was initially considered a barrier to prevent
the absorption of hydrogen peroxide in the intestinal tract. The level
of phospholipid hydroperoxide GPX is high in the testis and is
indispensable for sperm maturation and embryogenesis (Kohrle,
2007; Kohrle, 2021). The activity of GPX in the whole blood of
patients with KBD was lower, and there were significant differences
in the frequency of GPX1 Pro198Leu genotypes and alleles between
patients with KBD and controls (Xiong et al., 2010). In the Tibetan
population, haplotype analysis of SNPs rs1050450, rs1800668, and
rs3811699 in the GPX1 gene showed a significant correlation with
KBD (Huang et al., 2013). GPX3 CpG showed hypermethylation in
KBD patients, which decreased the antioxidant function of
GPX3 and had a positive effect on chondrocyte apoptosis (Han
et al., 2018; Zhang et al., 2022). In this study, GPX1 and GPX3 were
found to have a differential transcriptional level in KBD
chondrocytes compared with normal controls. The mRNA levels

FIGURE 5
Representative immunohistochemistry staining of DIO2 in adult KBD (A), adult normal control (B), adolescent KBD (D), and adolescent normal
control (E) cartilage tissues (scale bar: left, 500 μm; right, 100 μm) and comparative quantification of positive cells of different areas (up,middle, and deep)
in adult (C) and adolescent (F) cartilage tissues displayed by a box plot (n = 3). *p < 0.05.
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of GPX1 and GPX3 were also upregulated in KBD articular cartilage
in both children and adults, which could be involved in excessive
oxidative stress in KBD patients (Wang et al., 2013; Dai et al., 2016).
In addition, Yan et al. suggested that knocking down GPX1 in
ADTC5 cells could cause oxidative stress characterized by increased
ROS levels, which could lead to the inhibition of chondrocyte
proliferation (Yang et al., 2017). Bone marrow stromal cells
cultured in a Se-deficient medium showed ROS accumulation
and decreased expression of GPX and thioredoxin reductase,
resulting in micronucleus formation, which is an indicator of
chromosome damage (Ebert et al., 2006). ROS can inhibit
mitochondrial oxidative phosphorylation and ATP production,
thus destroying the balance between ECM catabolism and
anabolism (Johnson et al., 2000; Henrotin et al., 2003), and
antioxidant treatment can eliminate this effect. In fact, many
attempts have been made to treat OA by targeting regulators
involved in cartilage oxidative stress (Ebert et al., 2006; Loeser,
2009).

Iodine is an indispensable trace mineral for the synthesis of
thyroid hormones, and iodine deficiency may affect the growth and
development of bones (Rohner et al., 2014). Iodine deficiency
usually coexists with selenium deficiency in KBD endemic areas,
which is considered to be a potential risk factor for KBD (Yao et al.,
2011; Yang et al., 2016). Similarly, several studies have shown
different iodine levels in the blood and urine of KBD patients

compared with normal controls (Moreno-Reyes et al., 1998;
Moreno-Reyes et al., 2001; Shi et al., 2011). DIO1 and DIO2 can
remove an iodine atom from the casein outer ring of
tetraiodothyronine (T4) to produce active triiodothyronine (T3).
However, DIO3 only catalyzes the deiodization of the inner ring of
T4, resulting in the formation of the inactive product RT3.
Deiodinases participate in the regulation of the dynamic balance,
development, growth, and metabolism of thyroid hormones on the
basis of cell specificity by affecting the level of intracellular T3
(Bianco and da Conceicao, 2018). In our study, DIO1, DIO2, and
DIO3 transcript levels increased, but their protein levels, as
indicated by immunohistochemistry, decreased in adults with
KBD. Similarly, previous studies have shown that transcript levels
do not necessarily reflect the functional activity of deiodinases,
which might be related to posttranscriptional modification or
inactivation, but the specific mechanism is unclear (Bianco and
Kim, 2006; Kohrle, 2021). Both H. Nagase and N. Bomer collected
cartilage samples from patients with OA, and overexpression of
DIO2 was observed, which may increase the degradation of cartilage
and eventually lead to the pathogenesis of OA (Nagase et al., 2013;
Bomer et al., 2015). However, Cheng transfected human articular
chondrocytes with a specific siRNA to significantly decrease the
mRNA expression of DIO2, GPX1, and TR1, and the results showed
that inhibition of DIO2 significantly increased IL-1β gene
expression, indicating that DIO2 had an anti-inflammatory effect

FIGURE 6
Representative immunohistochemistry staining of DIO3 in adult KBD (A), adult normal control (B), adolescent KBD (D), and adolescent normal
control (E) cartilage tissues (scale bar: left, 500 μm; right, 100 μm) and comparative quantification of positive cells of different areas (up,middle, and deep)
in adult (C) and adolescent (F) cartilage tissues displayed by a box plot (n = 3). *p < 0.05.
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on the body (Cheng et al., 2012). Although there is little literature on
the role of DIO1 in cartilage development, Li et al. (2020) found that,
compared with normal subjects, the methylation frequency of the
DIO3 gene promoter is significantly higher in KBD patients, and the
hypermethylation of DIO3 might increase the risk of KBD by more
than 4 times. This evidence suggests that the expression of DIOs
could play a crucial role in the pathogenesis of KBD.

Conclusion

Se deficiency has been considered a major environmental risk
factor for KBD for a few decades. A number of studies have been
performed to verify the causal relationship between selenium and
KBD, but there is less research that directly focuses on the mRNA
expression of selenoproteins in KBD chondrocytes. Therefore, in
this study, the mRNA expression levels of 25 selenoproteins in KBD
chondrocytes were detected, and IHC was performed to detect the
protein expression levels of the selenoprotein genes with differential
mRNA expression in cartilage tissue sections, which may contribute
to the mechanism of selenoprotein involvement in KBD. In this
study, we observed the differential expression of GPX1, GPX3,
DIO1, DIO2, DIO3, and SELENOP in KBD cartilage, which
indicated that selenoproteins were metabolically disordered in
KBD patients and suggested that selenoproteins could play a
crucial role in the pathogenesis of KBD.
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