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Homeostatic regulation of cardiomyocytes plays a critical role in maintaining normal
physiological activity of cardiac tissue. Severe cardiotoxicity can lead to heart disease,
including but not limited to arrhythmias, myocardial infarction and cardiac
hypertrophy. In recent years, significant progress has been made in developing
new therapies for cancer that have dramatically changed the treatment of several
malignancies and continue to improve patient survival, but can also lead to serious
cardiac adverse effects. Mitochondria are key organelles that maintain homeostasis
in myocardial tissue and have been extensively involved in various cardiovascular
disease episodes, including ischemic cardiomyopathy, heart failure and stroke.
Several studies support that mitochondrial targeting is a major determinant of the
cardiotoxic effects triggered by chemotherapeutic agents increasingly used in solid
and hematologic tumors. This antineoplastic therapy-inducedmitochondrial toxicity
is due to different mechanisms, usually altering the mitochondrial respiratory chain,
energy production and mitochondrial kinetics, or inducing mitochondrial oxidative/
nitrosative stress, ultimately leading to cell death. This review focuses on recent
advances in forms of cardiac cell death and related mechanisms of antineoplastic
drug-induced cardiotoxicity, including autophagy, ferroptosis, apoptosis, pyroptosis,
and necroptosis, explores and evaluates key proteins involved in cardiac cell death
signaling, and presents recent advances in cardioprotective strategies for this
disease. It aims to provide theoretical basis and targets for the prevention and
treatment of pharmacological cardiotoxicity in clinical settings.
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1 Introduction

Advances in cancer treatment have significantly improved survival rates for cancer
patients (Harake et al., 2012; Miller et al., 2019). There is, however, a high incidence of
treatment-related morbidity associated with high patient survival rates. Modern cancer
treatment has shown that drug combinations can lead to synergistic side effects, especially
cardiovascular disease (Minotti et al., 2004). Cardiotoxicity is usually defined as toxicity
that negatively affects the heart and can lead to cardiomyopathies such as arrhythmias,
myocardial infarction, and cardiomyopathy (Ewer and Ewer, 2015a). Cardiotoxicity caused
by antineoplastic drugs is divided into two types: irreversible cardiotoxicity and reversible
cardiotoxicity. Irreversible myocardial damage caused by anthracyclines is classified as type
I, a class II adverse effect is caused by the human epidermal growth factor receptor 2
(HER2) inhibitors trastuzumab and bevacizumab, sunitinib and sorafenib (Ewer and Ewer,
2015b). There is no evidence that type II drugs cause myocardial necroptosis, but they can
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cause cardiomyocyte dysfunction. Cancer survivors treated with
anthracyclines are significantly more likely to suffer from
cardiovascular disease. There is currently only one drug
approved by the US Food and Drug Administration (FDA) for
the prevention of doxorubicin (DOX)-induced cardiotoxicity:
dexrazoxane (Kolaric et al., 1995). However, it may be
associated with a lower tumour response to DOX and a higher
risk of secondary malignancies (Swain et al., 1997), which severely
limits its use in clinical practice. Despite extensive research on
cardiotoxicity caused by antineoplastic drugs, the molecular
pathogenesis remains unknown.

Mitochondria are important organelles in maintaining
myocardial homeostasis, are involved in several cellular
functions in vivo and regulate cell survival and death. The role
of mitochondria in antineoplastic drug-induced myocardial
toxicity has also received increasing attention in recent years
(Zamorano et al., 2016). The clinical presentation is usually
dose-dependent cardiomyopathy, which progresses to chronic
heart failure with high morbidity and mortality (Natarajan
et al., 2020). The evaluation of multifactorial processes during
antineoplastic therapy based on the interaction of genetic and
environmental factors, as well as a better understanding of the
potential mechanisms of antineoplastic cardiotoxicity and adverse
cardiovascular events, remains a major challenge in the field of
cardiology. Here we review the role of cell death pathways in
autophagy, apoptosis, ferroptosis, pyroptosis and necroptosis in
oncological heart disease, and also present an update on current
clinical research in this disease, focusing on strategies targeting
mitochondria, We discuss the implications of these findings for
understanding the molecular mechanisms underlying tumorigenic
heart disease and identifying novel therapeutic targets.

2 Antineoplastic drug-induced
cardiotoxicity

2.1 Doxorubicin

Anthracyclines are a class of drugs derived from Streptomyces
anthracis and used in cancer chemotherapy (Martins-Teixeira and
Carvalho, 2020). DOX, erythromycin, and epirubicin are the main
anthracyclines approved for clinical use by the FDA. Streptomyces
cecum, for example, produced DOX and erythromycin in the early
1960s. Although all anthracyclines have glycosidic units, the
presence of methyl or alcohol groups in their structure gives a
different spectrum of anticancer activity. They inhibit DNA
replication and transcription, which in turn inhibit cell
proliferation (Marinello et al., 2018; Hulst et al., 2022).
Anthracyclines cause variable cardiotoxicity, with DOX causing
the greatest cardiotoxicity. Therefore, we focused on DOX, which
has the most significant and best known cardiotoxicity. The
chemotherapeutic agent DOX can cause cardiotoxicity that leads
to a chronic, progressive, and potentially fatal cardiomyopathy
called doxorubicin-induced cardiomyopathy (DIC), a fatal
cardiomyopathy with a poor prognosis that causes cardiotoxicity
and limits the efficacy of doxorubicin in the treatment of
malignancies. Clinically, DIC is characterised by decreased left
ventricular ejection fraction, increased ventricular wall thickness,
arrhythmias and potentially fatal heart failure (Henriksen, 2018).

2.2 Trastuzumab

There is only one FDA-approved therapeutic antibody for HER2-
positive breast cancer, trastuzumab, which is an antibody against
HER2 and an inhibitor of DNA topoisomerase I (Keam, 2020). In
terms of further treatment, the ADC trastuzumab (T-DM1) and the
HER2 kinase inhibitor lapatinib are currently approved (Geyer et al.,
2006; Verma et al., 2012). First-line treatment for metastatic gastric
cancer with HER2-positive cells is trastuzumab in combination with
chemotherapy (Bang et al., 2010). Non-small cell lung cancer
(Mazières et al., 2013), colorectal cancer (Siena et al., 2018) and
biliary tract cancer (Nam et al., 2016) have been associated with
HER2 overexpression and mutations. For solid tumours expressing
HER2, however, no HER2-targeted therapies are approved. The
humanised monoclonal antibody trastuzumab inhibits HER2.
Combining trastuzumab with conventional chemotherapy improves
survival in patients with metastatic or early-stage HER2-positive
(HER2+) breast cancer (Barish et al., 2019). After 11 years of
follow-up of a randomly selected cohort of 5,099 patients randomly
assigned to the HERA trial, the group treated with trastuzumab for
1 year had a significantly lower risk of disease-free survival and death
than the observation group. In all groups, cardiotoxicity was low and
mostly occurred during treatment (Cameron et al., 2017).
Cardiomyopathy caused by trastuzumab adversely affects both
cardiac and tumour outcomes. Cardiological oncology collaborative
studies have focused on risk stratification, early diagnosis, and
prevention strategies for trastuzumab-induced cardiomyopathy.

2.3 The cardiotoxicity of doxorubicin and
trastuzumab

Dox has been reported to cause dose-dependent myocardial
damage that can be fatal in certain studies. Within a year of
treatment, DOX-induced cardiomyopathy typically results in a
decrease in left ventricular ejection fraction (LVEF), and heart
failure may occur as a result (Mordente et al., 2012; Seferović et al.,
2019). About half of the patients die within 2 years in this case
(Govender et al., 2014). In their study, Mitry and colleagues found
a correlation between heart failure and cumulative DOX exposure: the
risk of heart failure is 4% at cumulative doses below 500 mg/m2; this
risk increases to 36% at cumulative doses above 600 mg/m2 (Mitry and
Edwards, 2016).

According to another study, the incidence of heart failure was
only 0.27% among patients receiving less than 550 mg/m2 and 30%
among patients receiving more than 550 mg/m2. According to the
above results, the maximum cumulative lifetime dose should not
exceed 400–450 mg/m2, and when this level is exceeded, the risk of
cardiotoxicity increases significantly (Vejpongsa and Yeh, 2014).
However, anthracycline doses below this level may still cause
cardiotoxicity (Khanna et al., 2019). One study showed
cardiotoxicity when anthracyclines are administered at doses up
to 250 mg/m2 (Vandecruys et al., 2012). A subgroup of childhood
cancer survivors exposed to very low anthracycline doses (100 mg/
m2), subclinical abnormalities in left ventricular structure were
observed by Leger (Leger et al., 2015). Although many studies have
been conducted on anthracycline dosing. Further studies are
needed to elucidate the mechanisms of cell death that cause
myocardial toxicity.
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Many cancer survivors suffer from long-lasting side effects of
treatment, and cardiovascular complications are a major problem in
breast cancer, the most common cancer in women (Anjos et al., 2021).
Combining trastuzumab with conventional chemotherapy increases
survival of patients with metastatic or early-stage breast cancer that is
HER2-positive (HER2+). In preliminary clinical trials in people with
metastatic breast cancer, heart failure was associated with heart failure
in 4% of people who received trastuzumab alone, but 27% of people
treated with trastuzumab in combination with anthracycline had
symptoms of heart failure (Keefe, 2002).

The exact mechanism of the effect of trastuzumab on HER2 is not
known and may involve multiple cellular pathways, just as the effect of
trastuzumab on cardiomyocytes is not known. A major role is played
by HER2 and ErbB family tyrosine receptors in the development and
proliferation of myocardial cells, and trastuzumab-induced inhibition
of intracellular signalling may affect cell metabolism, leading to
myocardial cell dysfunction, impaired cell proliferation and survival
(Milano et al., 2014). Trastuzumab-induced cardiomyopathy was
recently demonstrated to be primarily caused by mitochondrial
dysfunction and altered cellular energy metabolism in a human
stem cell cardiomyocyte model (Kitani et al., 2019).

2.4 The role of antineoplastic drugs such as
cyclophosphamide and cisplatin

Anthracyclines are the best known of the chemotherapeutic agents
that cause cardiotoxicity. In addition, alkylating drugs, including
cisplatin, cyclophosphamide, ifosfamide, carmustine, chlormethine,
busulfan, and mitomycin, are also linked with cardiac toxicity (Pai and
Nahata, 2000). Cyclophosphamide is an alkylating, anticancer agent
which was first characterized in experiments on rat tumors. It is an
oxazaphosphorine-substituted nitrogen mustard, with strong
cytotoxic and immunosuppressive activity (Kim and Chan, 2017).
Cyclophosphamide-induced cardiac injury is dose-dependent, with
the total dose of a single course of therapy being the best indicator of
toxicity, and patients receiving >150 mg/kg or 1.55 g/m2/d are at
higher risk of cardiotoxicity (Kusumoto et al., 2013). The dose-
limiting factor during cyclophosphamide therapy is cardiotoxicity,
which is irreversible (Kanda et al., 2001). Fatal cardiomyopathy has
been reported in 2–17% of patients taking cyclophosphamide. This
depends on the treatment regimen and specific patient population
characteristics (Ishida et al., 2016). Cardiotoxicity has been shown to
be a dose-limiting factor during cyclophosphamide therapy, and
although the mechanisms of cyclophosphamide-induced
cardiotoxicity are not fully understood, they are thought to include
oxidative and nitrative stress (Ayza et al., 2020).

Cisplatin is an extremely effective chemotherapeutic agent, a
platinum-based drug that is highly active against ovarian, cervical,
testicular, bladder, lung, and solid tumors and is resistant to other
treatments (Yousef et al., 2009). Cisplatin shows cytotoxic effects by
cross-linking DNA with purine bases, leading to DNA damage and
apoptosis in cancer cells (Dasari and Tchounwou, 2014). Several
studies have shown that cisplatin treatment may cause
cardiotoxicity (El-Awady el et al., 2011; Patanè, 2014). Heart
failure, arrhythmias, myocardial infarction, pericarditis,
myocarditis, and congestive cardiomyopathy have been defined as
symptoms of cardiotoxicity caused by cisplatin chemotherapy (Patanè,
2014). The cardiotoxicity of cisplatin has limited its clinical use. The

mechanism of cisplatin cardiotoxicity is completely unknown, and few
studies have improved the cardiotoxicity of cisplatin despite clinical
data demonstrating the cardiotoxic effects of cisplatin. Oxidative stress
plays a key role in cisplatin-induced toxicity (Başak Türkmen et al.,
2022). When used in combination with doxorubicin, cisplatin and
cyclophosphamide showed antigenotoxic activity and reduced
phagocytosis and the potential for cell death (Juliano Oliveira et al.,
2019).

3 The cardiomyocyte death pathways of
doxorubicin and trastuzumab

3.1 Autophagy

After being separated according to their damaged mitochondrial
membrane potential, damaged mitochondria are engulfed by
autophagosomes and transported to lysosomes for degradation
(Thomas and Gustafsson, 2013; Park et al., 2021). ULK-1, an
upstream signaling protein of autophagy, regulates the unc-51-like
autophagy-activated kinase complex (ULK-1). Its regulation is tightly
controlled by mammalian targets of the serine/threonine kinases
AMP-activated protein kinase (AMPK) and rapamycin (mTOR),
with AMPK activating and mTOR inhibiting ULK-1 (Koleini and
Kardami, 2017). DOX, on the other hand, inhibits mTOR signaling
while activating the phosphorylation of Beclin-1 via ULK-1, and
phosphorylated Beclin1 initiates autophagy. This process is
exacerbated further by increased AMPK phosphorylation, which
activates the ULK-1 complex and Beclin1, and then activates
vacuum protein sorting 34 (Vps34) and Vps15, a complex that
mediates autophagosome formation and phagosome extension by
recruiting more Atg proteins (Levine and Kroemer, 2019; Klionsky
et al., 2021). The autophagosomal protein LC3-I lipidizes to form LC3-
II and protein p62, which classifies proteins and others within the
autophagosome (Zhang et al., 2021a). After fusion with the lysosome,
the protease breaks down the autophagosome and explains or recycles
its damaged components (Qiang et al., 2021; Russo et al., 2021).

DIC is a two-edged sword, as autophagy can either prevent
cardiotoxicity or exacerbate the disease state if autophagy levels
exceed a certain threshold (Wang et al., 2020). Furthermore,
doxorubicin may induce or inhibit autophagy in cardiac tissue
(Table 1). It has been shown that doxorubicin inhibits autophagic
flux in cardiac myocytes by reducing lysosomal acidification and
function, and that a reduction in autophagy prevents the
cardiotoxic effect of doxorubicin. However, its subsequent
inhibition helps to resolve this apparent contradiction (Bartlett
et al., 2016; Li et al., 2016; Cao et al., 2017). Accumulation of
uninterrupted autophagosomes and autolysosomes in cells
exacerbates cardiomyocyte damage and even leads to
cardiomyocyte death. In particular, low doses of doxorubicin
increased the expression of LC3-II, p62 and Beclin1 proteins,
suggesting that autophagy is induced (Li et al., 2016). However, in
terms of autophagy downstream activity, doxorubicin inhibited
autophagic flux and lysosomal acidification in cardiomyocytes. The
accumulation of uninterrupted autolysosomes results in ROS
production and DIC due to the inhibition of autophagy (Li et al.,
2016).

When doxorubicin is administered to Beclin1 haploinsufficient
mice with impaired autophagy initiation, the number of unprocessed
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autolysosomes is reduced compared to wild-type mice, leading to
reduced ROS production and impaired DIC. In contrast, increased
autophagy through overexpression of Beclin1 enhances DIC (Li et al.,
2016). Similarly, doxorubicin inhibits the expression of transcription
factor EB (TFEB), which in turn inhibits the hydrolysis of lysosomal
proteins, leading to decreased autolysosome accumulation and
viability (Bartlett et al., 2016). TFEB is a positive regulator of
autophagy, involved in autophagosome processing and lysosome
function. As a result of Torin-mediated gene repair and
pharmacological activation of TFEB, doxorubicin-induced
inhibition of histone B (lysosomal cysteine protease) was prevented
and ROS production was increased (Bartlett et al., 2016). Recent
studies have shown that doxorubicin inhibits lysosomal protein
hydrolysis, Inducing autophagosomes and autolysosomes
accumulation and ROS production. A potential treatment strategy
is to inhibit autophagy or stimulate lysosomal function, which reduces
autolysosome accumulation and ROS production (Table 1).

In addition, doxorubicin has been shown to enhance autophagy in
cardiac myocytes in several studies. Xue Wang found that DOX
exposure significantly increased AMPK, LC3-II expression in
H9C2 cells, and enhanced autophagy paralleled severe apoptosis
and size reduction in cardiac myocytes. Growth hormone-releasing
peptide was found to reduce oxidative stress and leukophagy in mouse
heart and H9C2 cells. DOX damage leads to reduced apoptosis,
increased cell size and improved cardiac performance in cardiac
myocytes (Wang et al., 2014). Another study demonstrated that
DOX induced excessive autophagy through the generation of
reactive oxygen species (ROS) in H9C2 cells and mouse hearts, as
evidenced by a significant increase in the number of autophagic
vesicles, LC3-II/LC3-I ratio, and upregulation of GFP-LC3

expression. Pretreatment with Ophiopogonin D partially attenuated
the above phenomenon, similar to the effect of treatment with 3-
methyladenine (Zhang et al., 2015). Satoru Kobayashi found that DOX
significantly increased autophagic flux in cardiomyocytes, as indicated
by differences in protein levels of LC3-II (microtubule-associated
protein light chain 3 form 2) or the lysosomal inhibitor
bafilomycin A1 for autophagy Differences in the number of vesicles
are shown. DOX-induced cardiomyocyte death, as determined by
multiple assays, was exacerbated by drugs or genetic approaches that
activate autophagy but attenuated by manipulations that inhibit
autophagy, suggesting that activation of autophagy mediates DOX
cardiotoxicity and that preservation of the Transcription factor
GATA4 attenuates DOX by regulating the expression of Bcl2 and
autophagy-related genes to inhibit autophagy cardiotoxicity
(Kobayashi et al., 2010) (Table 1).

3.2 Apoptosis

Apoptosis is the most common form of programmed cell death,
characterized by cell shrinkage, increased cytoplasmic density, and
loss of mitochondrial membrane potential. As a result of the changes
in permeability, intact apoptotic bodies are generated, which
neighboring cells efficiently take up and degrade (Bertheloot et al.,
2021; Wang et al., 2021). Apoptosis is classified as intrinsic or
extrinsic. The intrinsic pathway is activated by toxic substances or
DNA damage that cause dysregulation or imbalance of intracellular
homeostasis. This condition is characterized by increased permeability
of the outer mitochondrial membrane, resulting in the release of
cytochrome C. The release of mitochondria outer membrane

TABLE 1 Evidence of doxorubicin-induced autophagy in the heart.

Model Targets Autophagy Treatment/Effect on DIC References

NRCM; C57BL/6J mice AMPK ↑ Increase Ghrelin/protection Wang et al. (2014)

LC3-II ↑ 3-MA/protection

Atg 5, 6, 8, 12↑ Compound C/protection

H9C2 cells, C57BL/6J mice Beclin 1 ↑ Increase Ophiopogonin-D/protection Zhang et al. (2015)

LC3II/I ↑ 3-MA/protection

NRCMs GATA4 ↓ Increase 3-MA/protection Kobayashi et al. (2010)

Bcl-2 ↓ Rapamycin/susceptibility

LC3-II ↑ autophagy flux ↑

C57BL/6 J mice; NRCM; H9C2 LC3-II ↑ Decrease Beclin1+/−/protection Li et al. (2016)

Lysosomal cathepsins ↓ Beclin1 overexpression/susceptibility

BafA1/protection

SD Rat; ARCM; AMCM; NRCM; H9C2 TFEB ↓ Decrease TFEB overexpression/protection Bartlett et al. (2016)

Cathepsin B ↓ Torin 1/protection

SD Rat; NRCM; H9C2 AMPK ↓ mTOR ↑ Decrease Astragalus polysaccharides/protection Cao et al. (2017)

LC3-II ↓

Autophagic flux ↓

NRCM, neonatal rat cardiomyocytes; ARCM, adult rat cardiomyocytes; 3-MA, 3-methyl adenine; BafA1, bafilomycin one; AMCM, adult mice cardiomyocytes; TFEB, transcription factor EB; LC3-II,

microtubule-associated protein 1A/1B-light chain three; Atg, autophagy-related protein; SD, sprague dawley; ↓ decrease, ↑ increase.
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permeability (MOMP) and cytochrome C causes the formation of
apoptotic bodies and the activation of caspase-3. Intrinsic apoptosis is
primarily regulated by its effect on mitochondria (Hutt, 2015). In
contrast to intrinsic apoptosis, it is triggered by activation of cell
surface death receptors. When pro-apoptotic death receptors are
activated by their ligands, they form platforms on the cell surface.
In turn, they recruit adapter proteins (TRADD and FADD) and
activate the apoptosis promoters caspase-8 and -10 to induce
apoptosis (Matsuda et al., 2014; Zheng and Kanneganti, 2020).

Apoptosis is the best studied and characterized pathway of
programmed cell death (Figure 1). The treatment with doxorubicin
induces excessive oxidative stress and mitochondrial damage, which
activates apoptosis in cells (Wenningmann et al., 2019). Induced
mitochondrial permeability due to doxorubicin can activate the
intrinsic apoptosis pathway, which results in the proliferation of
the proapoptotic factor cytochrome C (An et al., 2009).
Doxorubicin induces intrinsic apoptosis through several
mechanisms, including activation of p53 leading to Bax activation,
downregulation of GATA4 (L’Ecuyer et al., 2006), which reduces the
activation of the anti-apoptotic Bcl-XL expressing JNK and MAPK,
and inactivation of the PI-3K/Akt-prospurvival pathway. In
cardiomyocytes, doxorubicin also induces exogenous apoptosis
pathways (Nakamura et al., 2000). A death ligand such as FasL or
TNF binds to its receptor and recruits Fas-associated proteins to the
cytoplasm via the FADD (death architecture domain) and the
TRADD (death architecture domain) and TRADD (TNFR-related
death architecture domain) (Kalivendi et al., 2005; Shi et al., 2011).
Induced activation of caspase-8 by FADD and TRADD activates
caspase-3, which leads to apoptosis (Lavrik and Krammer, 2012).

Doxorubicin also promotes an extrinsic apoptosis pathway. This
causes an upregulation of Fas/FasL and p53 and a downregulation
of the FLICE/caspase-8 inhibitor protein FLIP after activating nuclear
factor-activated T cells-4 (Minotti et al., 2001; Nitobe et al., 2003;
Shati, 2020) (Figure 1).

Transtuzumab alters the expression of TopII genes and proteins in
cardiomyocytes, leading to apoptosis, is one reason why
anthracyclines and trastuzumab together increase the risk of
cardiotoxicity. It involves cellular processing with little to no
inflammation in surrounding tissues. In the physiological state,
apoptosis regulates the development of cardiomyocytes and the
stability of the cardiac internal environment (Loreto et al., 2014).
In spite of this, apoptotic dysregulation plays an important role in
cardiac remodeling and left ventricular dysfunction, which are
defining characteristics of DIC. Intrinsic and extrinsic signaling
pathways are the two most common signaling pathways that drive
apoptosis.

The primary mechanism of DOX-induced cardiotoxicity is
mitochondrial oxidative stress (Rabelo et al., 2001;
Wattanapitayakul et al., 2005), and N-acetylcysteine and resveratrol
have been reported to be effective strategies to reduce DOX-induced
cardiotoxicity (Burridge et al., 2016; Abe et al., 2018). As a result of
DOX administration, the major glycolytic enzymes, triphosphate
isomerase, enolase, and ubiquinone oxidoreductases (which act as
electron transport proteins in the mitochondrial respiratory chain),
are oxidized in the heart and their activity decreases. The bioenergetic
pathway may be a target of DOX-induced oxidative stress (Chen et al.,
2006). The mitochondria are a source and a target of oxidative stress,
according to many studies (Ascensão et al., 2011). DOX-induced

FIGURE 1
Doxorubicin-induced apoptosis in cardiacmyocytes. Schematic representation of doxorubicin-induced apoptosis in cardiac myocytes. Doxorubicin
induces increased reactive oxygen species production, activation of the MAPK pathway, upregulation of Bax/Bak, and activation of caspases 3, leading to
apoptosis. Mitochondrial calcium overload and activation of the mitochondrial permeability transition pore (mPTP) lead to loss of mitochondrial membrane
potential, mitochondrial swelling, and outer membrane rupture. DOX, doxorubicin; MAPK, mitogen-activated protein kinase; JNK, Jun amino-terminal
kinase; ERK, extracellular signal-regulated kinase.
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cardiac dysfunction, mitochondrial damage, protein nitration and
apoptosis were significantly worse in hearts from mice lacking
glutathione peroxidase (GPX) than in hearts from wild-type mice
(Gao et al., 2008). Although pretreatment of juveniles with oxidative
stress stimulants may enhance antioxidant stress mechanisms in
cardiomyocytes. Similar cellular responses are expected in cancer
cells, which makes clinical application difficult (Figure 1).

DOX exerts its toxic effects through oxidative stress, but an
emerging mechanism is endoplasmic reticulum (ER) stress, whose
activation involves a pro-apoptotic pathway of the protein kinase RNA
(PKR)-like ER kinase (PERK)/activated transcription factor-4
(ATF4)/C/EBP homologous protein (CHOP) axis. These stresses
lead to myocardial dysfunction associated with cell death. Although
a growing body of evidence supports their association with DOX-
induced cardiotoxicity, the mechanisms have not been well elucidated
(Kim et al., 2022). It has been suggested that mitochondrial and ER
stress play an integral role in DOX-induced cardiotoxicity through
interactions in which inhibition of DNA damage-induced transcript-3
(DDIT3) or calnexin is also critical for achieving Dox resistance in
cardiomyocytes (Bagchi et al., 2021). The increase in DDIT3 found in
DOX-treated cardiomyocytes for 24 h suggests that the increase in
MitoBax may promote ER stress-related changes in DDIT3, compared
to breast cancer MCF7 cells that show increased DDIT3 in response to
ER stress in response to DOX as early as 3 h (Bagchi et al., 2021). If ER
stress persists or is exacerbated, cancer cells are unable to re-establish
ER homeostasis through ER-specific unfolded protein response
(UPR), and ER stress shifts from a pro-survival to a pro-apoptotic
state (Ferri and Kroemer, 2001). Therefore, promoting ER stress to
initiate apoptotic pathways may be a therapeutic strategy for
anticancer activity (Tabas and Ron, 2011). Prolonged activation of
inositol-requiring protein-1 (IRE1) and C/EBP homologous protein
(CHOP) can trigger apoptosis under certain physiological and
pathophysiological conditions (Szegezdi et al., 2006). Experiments
have shown that mammalian IRE1α binds Bak and Bax, proteins
involved in the mitochondrial pathway of apoptosis. This interaction
appears to be important for IRE1α activation (Hetz et al., 2006).
Studies using shredded null mice have identified a role for CHOP in
ER stress-induced apoptosis in many disease models, including renal
insufficiency (Zinszner et al., 1998), advanced atherosclerosis
(Tsukano et al., 2010), and cardiac pressure overload (Fu et al.,
2010). One of the more widely cited mechanisms of CHOP-
induced apoptosis is inhibition of the pro-survival protein Bcl-2,
originally based on a study that showed the relevance of CHOP
expression, oxidative stress, apoptosis, and Bcl-2 in CHOP-
transfected rat fibroblast cell lines (McCullough et al., 2001). Most
importantly, genetic recovery of Bcl-2 rescued CHOP-transfected cells
from oxidative stress and apoptosis. The mechanism may involve the
ability of CHOP to interact with one or more transcriptional
repressors to reduce Bcl2 transcription (McCullough et al., 2001).

It has also been shown that DOX-mediated cardiomyocyte
apoptosis is associated with the Hippo-YAP signaling pathway.
DOX-induced cardiotoxicity is mediated by vascular injury,
resulting in reduced cardiac blood flow and leading to
cardiomyocyte apoptosis through activation of Hippo-YAP
signaling. Furthermore, exercise (Ex) inhibits these effects by
promoting the migration of BM stem cells to the heart to repair
cardiac vessels damaged by DOX and by inhibiting DOX-induced
Hippo-YAP signaling-mediated apoptosis. These data support the
concept of using exercise as an intervention to reduce DOX-induced

cardiotoxicity (Tao et al., 2021). Furthermore, DOX treatment
successfully induced Akt/glycogen synthase kinase-3β (Gsk3β)
inactivation via Hippo signaling pathway activation and
promoted YAP degradation, thereby inhibiting colorectal
tumorigenesis (Hu et al., 2023). It has also been shown that
RASSF6 is downregulated in human bladder cancer and regulates
DOX sensitivity and mitochondrial membrane potential through
the hippocampal signaling pathway (Tan et al., 2019).
RASSF6 belongs to the RASSF family with a Ras-associated
structural domain, which has been reported to be involved in the
Hippo signaling pathway. RASSF6 overexpression was found to
affect the Hippo signaling pathway by downregulating YAP.
depletion of YAP downregulated Bcl-xL expression and abolished
the effect of RASSF6 on Bcl-xL. YAP depletion also upregulated the
level of apoptosis and downregulated mitochondrial membrane
potential. Yap siRNA abrogated the effect of RASSF6 on DOX-
induced apoptosis and loss of mitochondrial membrane potential
(Tan et al., 2019). Thus the Hippo signaling pathway is also an
important target for attenuating DOX-mediated apoptosis in
cardiomyocytes.

Cisplatin is a chemotherapeutic agent used in several cancers,
and cisplatin-treated cardiomyocytes show mitochondrial
abnormalities such as mitochondrial membrane depolarization,
increased inflammatory response and ER stress, which
ultimately stimulate cystein-3 activity and induce apoptosis
(Chowdhury et al., 2016). In addition, emerging evidence
suggests a close link between oxidative stress and cisplatin-
induced apoptosis in cardiomyocytes. El-Awady el et al. found
that cisplatin ameliorated lipid peroxidation, decreased GSH
content and inhibited SOD activity, implying cisplatin-induced
oxidative stress (El-Awady el et al., 2011). In addition,
mitochondrial DNA damage and nuclear DNA damage were
also observed. Antioxidant natural products such as tutin
(vitamin P1), gingerone and anthocyanins inhibited cisplatin-
induced inflammatory infiltration, DNA damage and
mitochondrial dysfunction, suggesting a key role of oxidative
stress in cisplatin-induced cardiomyocyte apoptosis (Qian et al.,
2018; Soliman et al., 2018; Topal et al., 2018). Cyclophosphamide is
commonly used in the treatment of malignancies such as leukemia
and lymphoma, and also as an immunosuppressant for the
treatment of systemic lupus erythematosus and polymyositis.
Due to the dose-dependent approach, cyclophosphamide
induced cardiotoxicity is largely consistent with high-dose
therapy (Nishikawa et al., 2015). Acrolein, the active metabolite
of cyclophosphamide, has been shown to be a major cause of
cardiomyocyte death (Kurauchi et al., 2017). Cardiomyocyte
injury induced by cyclophosphamide treatment includes
sarcoplasmic reticulum expansion, mitochondrial disruption,
and nuclear membrane invagination (Lushnikova et al., 2008).
Further studies attributed these injuries to oxidative stress,
elucidating that acrolein causes oxidative and nitrosative stress
by inhibiting intracellular GSH and SOD and increasing MDA
(Omole et al., 2018). Corresponding lipid peroxidation initiates
impairment of mitochondrial function, which further leads to
collapse of APT production and activation of cystein-3, leading
to apoptosis (Refaie et al., 2020). In addition, cyclophosphamide
was verified to stimulate TLR4, via TLR4/NF-κB signaling to
trigger an inflammatory response and ultimately apoptosis (El-
Agamy et al., 2017).
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3.3 Ferroptosis

Iron-dependent accumulation of lipid peroxide is the hallmark of
ferroptosis, a recently identified type of cell death, and ferroptosis is
another mechanism of cardiac cell death through which doxorubicin
induces cardiotoxicity (Fang et al., 2019; Su et al., 2020; Chen et al.,
2021; Koppula et al., 2021) (Figure 2). ROS are produced by lipid
peroxides, and iron plays a critical role in DIC. Doxorubicin treatment
increases the toxic levels of unstable iron in cells. Doxorubicin
interferes with ferritin iron regulatory protein (IRE) mRNA,
resulting in decreased ferritin levels and increased levels of unstable
iron (Canzoneri and Oyelere, 2008). In a similar manner, excess iron is
released into the cell as a result of an increased amount of iron released
by doxorubicin transferrin receptors (TfRs). Consequently, inhibition
of TfR reduces iron uptake, intracellular oxidant formation, and cell
death (Kotamraju et al., 2002; He et al., 2021). Kai Hou and colleagues
studied the effects of TRIM21 in TRIM21 knockout mice in a
doxorubicin treatment model and a left anterior descending branch
(LAD)-induced cardiotoxicity model and found that
TRIM21 knockout mice were protected from heart failure and
death in both models. The hearts of wild-type mice treated with
doxorubicin showed malformed mitochondria and increased lipid
peroxidation and condensation of produced iron, which were
attenuated in TRIM21 knockout mice. Mechanistically, in TRIM21-
deficient heart tissue, Keap1 secretion by p62 is increased and
protected from doxorubicin-induced ferritin. Reconstitution of
TRIM21 mutants deficient in wild-type but not in p62 E3 ligase
and death binding would prevent protection from doxorubicin-
induced cell death (Hou et al., 2021).

By inhibiting glutathione peroxidase 4 (GPX4), doxorubicin
causes excessive lipid peroxidation in mitochondria via the DOX-
Fe2+ complex. The mitochondria-dependent ferroptosis that leads to
DIC is caused by mitochondria-dependent ferroptosis (Tadokoro
et al., 2020). As a result of the activation of nuclear factor red
lineage two related factor 2 (NRF-2), doxorubicin induces
ferroptosis in mice by increasing the expression of heme oxygenase
1 (hmox1) (Fang et al., 2019). Heme degradation is catalyzed by
Hmox1, leading to oxidized lipid accumulation in mitochondrial
membranes and free iron release. As well as inhibiting the
antiferritin protein glutathione peroxidase 4 (GPX4) in the
mitochondria and cytoplasm, doxorubicin-Fe induces excessive
lipid peroxidation (Tadokoro et al., 2020; Wang et al., 2022a)
(Figure 2).

In doxorubicin-induced ferroptosis, mitochondria play a critical
role in ferroptosis. This evidence highlights the importance of
ferroptosis in DIC (Liu et al., 2020). MitoTempo, a mitochondrial
antioxidant that completely inhibits ferroptosis (Fang et al., 2019), and
ferroinhibitor-1 may be promising cardioprotective agents to mitigate
the cardiotoxic effects of doxorubicin (Xue et al., 2020; Zhang et al.,
2021b; Jiang et al., 2021). Lei Sun and colleagues found that Fer-1
reversed the trastuzumab-induced decrease in cell viability, GSH/
GSSG ratio, mitochondrial membrane potential and ATP content
in a dose- and time-dependent manner. Fer-1 also reversed the effect
of trastuzumab on GPX4, mitochondrial optical atrophy 1–1/2 and
nematocystin expression levels. Trastuzumab-induced increases in
mitochondrial ROS and iron levels were reversed by Fer-1 in
H9C2 cells, and levels of acyl coenzyme A protein expression were
increased as well (Sun et al., 2022). Shengting Wang and colleagues

FIGURE 2
Doxorubicin-induced ferroptosis in cardiomyocytes. Schematic diagram of the doxorubicin-induced ferroptosis pathway in cardiomyocytes.
Doxorubicin upregulates TfR and inactivates ferritin, which induces lipid peroxidation by inhibiting GPX4 in cell membranes and mitochondria, leading to
ferroptosis. Free iron binds to doxorubicin to generate reactive oxygen species (ROS). In mitochondria, doxorubicin causes iron overload by blocking MitoFer
and ABCB8. IRP, iron response regulatory protein; Tf, transferrin; TfR, transferrin receptor; Lipid-OO, lipid peroxidation; PUFA, polyunsaturated fatty acid;
GSH, reduced glutathione; GSSG, glutathione disulfide; GPX4, glutathione Peroxidase; MitoFerrin, mitochondria ferritin; ABCB8, ATP-binding cassette
transporter eight; ROS, reactive oxygen species; DOX, doxorubicin.
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found that cir-BGN levels were significantly higher in trastuzumab-
resistant breast cancer cells and tissues, which was associated with
poor overall survival. cir-BGN degradation reduced the viability of
breast cancer cells and significantly restored their sensitivity to
trastuzumab. Erastin, a small molecule ferroptosis inducer,
effectively restored the antitumor effect of trastuzumab, and the
results suggest a novel circRNA that controls trastuzumab
resistance by regulating ferroptosis. This provides a new treatment
strategy and research platform for trastuzumab-resistant breast cancer
patients (Wang et al., 2022b).

3.4 Pyroptosis

A key player in cardiovascular diseases is now widely
recognized as pyroptosis, discovered in 2001 (Jia et al., 2019; Yu
et al., 2021). Inflammation of caspase-1, caspase-3, and caspase-11,
as well as increased and activated NLR-containing family 3
(NLRP3) pyridine structural domains are characteristic of
Pyroptosis, which leads to cleavage of hasdermin D (GSDMD)
or GSDME and plasma membrane rupture, allowing release of
interleukin-1 (IL-1) and IL-18 (Ruan et al., 2020; Zeng et al., 2020).
Doxorubicin-induced pyroptosis is characterized by increased
NLRP3 expression, IGF2BP recruitment, caspase-1 activation,
GMDSD-N cleavage, and IL-1 and IL-18 release (Meng et al.,
2019) (Figure 3). In contrast, MCC950 protects cells from
doxorubicin-induced cell death (Meng et al., 2019). It has also
been demonstrated that doxorubicin mediates pyroptosis in
mitochondria via the activation of Bnip3 (Zheng et al., 2020).

Protection against DIC has also been demonstrated with
embryonic stem cell-derived exosomes by blocking the NLRP3/
caspase-1 marker. The overexpression of heat shock protein 22 and
the inhibition of NLRP3 by pharmacological agents (Tavakoli
Dargani and Singla, 2019). By activating the NRF-2/
SIRT3 signaling pathway, Gu and colleagues found that PCT
inhibited NLRP3 and protected cardiomyocytes from
doxorubicin-induced pyroptosis damage (Gu et al., 2021).
NLRP3 was inhibited by sirtuin one activation and
cardiomyocytes were protected from doxorubicin-induced
pyroptosis (Sun et al., 2020). There may be a limit to new
strategies against DIC if pyroptosis-associated molecules such as
NLRP3, caspase-1, and Bnip3 are inhibited (Figure 3).

3.5 Necroptosis

In addition to necroptosis, doxorubicin also causes a form of
necrosis known as necrosis that is controlled by signaling
molecules called cytokines (Linkermann and Green, 2014). It is
similar in mechanics to apoptosis and morphologically to
necroptosis (Christofferson and Yuan, 2010). The necroptosis
cascade is mediated primarily by the receptor-like cytoplasmic
kinase1 (RIPK1), RIPK3 and mixed-spectrum kinase structural
domain-like pseudokinase (MLKL), while necroptosis inhibitor-1
(Nec-1) inhibits necroptosis. The first inhibitor known to
specifically block RIPK1 in necroptosis (Degterev et al., 2008).
Pattern recognition receptors (PRRs), tumour necrosis factor
receptor (TNFR) superfamily members, and other stimuli can

FIGURE 3
Doxorubicin-induced cardiomyocyte pyroptosis. Schematic representation of doxorubicin-induced cardiomyocyte pyroptosis. Doxorubicin recruits
IGF2BP and increases NLRP3 expression by upregulating TINCR, which in turn activates caspase1, cleaves GMDSD-N, and releases IL-1β, IL-18. Doxorubicin
activates Bnip3 in mitochondria, which activates caspase3 and causes GSDME-dependent pyroptosis. Bnip3, BCL2-interacting protein three; TINCR, terminal
differentiation-induced NcRNA; NLRP3, NOD-, LRR-, and pyrin domain-containing protein three; GSDME, gasdermin E; GSDMD, gasdermin D; IGF2BP1,
insulin-like growth factor 2 mRNA-binding protein 1.
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activate the necroptotic cell death pathway. The TCRs on T cells
and several chemotherapeutic agents play a key role in cancer
(Lalaoui et al., 2015). The tumor necrosis factor (TNF)/TNFR
pathway is considered a prototype among the various stimuli
and has received the most attention (Fulda, 2013). Thus, events
in the TNF signalling pathway may be focused on the onset of
necroptosis. TNF- activates the TNFR1-associated death domain
(TRADD) protein via TRFR1, which then phosphorylates RIPK1.
To form necrosomes, it recruits and phosphorylates RIPK3 (Li
et al., 2012; Choi et al., 2019). The necrosomes then phosphorylate
a structural protein resembling the structural domain-like protein
(MLK1) of mixed protein kinase. An immune response is triggered
by the release of organelles and inflammatory factors, which results
in the death of cells (Linkermann and Green, 2014).

Researchers have found that left ventricular samples from
patients with end-stage heart failure have increased expression
of necroptosis proteins, suggesting that this disease may contribute
to heart failure (Szobi et al., 2017). Notably, necroinhibitor-1 is
protective in vitro in DIC. It is suggested that both apoptosis and
necroptosis are involved in the pathogenesis of DIC when
dexrazoxane is used in conjunction with doxorubicin treatment
(Yu et al., 2020). Evidence suggests that high doses or prolonged
exposure to DOX treatment induces necroptosis of
cardiomyocytes, instead of apoptosis and autophagy. The
accumulation of ROS and peroxynitrite and the dose-dependent
increase in DOX increase the death rate of cardiomyocytes during
necroptosis (Fulbright et al., 2015). DOX is usually administered at
a dose of 20 mg/kg in vivo and 1 μM in vitro. In mice, a dose of
25 mg/kg DOX can cause immediate necroptosis and heart failure
when injected intraperitoneally once (Li et al., 2014), and 2 μM
DOX can directly induce necroptosis of cardiomyocytes in vitro
(Bernuzzi et al., 2009). When cardiomyocytes are exposed to DOX
for a prolonged period of time, initial apoptosis evolves into
necroptosis, with cells preferentially exhibiting early DNA
damage and nuclear swelling (Rharass et al., 2016). Moreover,
doxorubicin induces necroptosis through alternative and neo-die
cellular pathways, resulting in more cell death than apoptosis
(Zhang et al., 2016). Furthermore, Ting Zhang discovered that
doxorubicin activates RIPK3 to regulate the opening of the
mitochondrial permeability transition pore (mPTP), and
promoting the binding and phosphorylation of RIPK3 with
calmodulin kinase II (CaMKII), leading to apoptosis and
necroptosis. Necroptosis also appears to be possible in the
absence of RIPK1 and MLKL (Zhang et al., 2016). A better
understanding of the specific participants in the doxorubicin-
induced necroptosis process will allow new drugs to be
identified that may stop this process. A CAMKII inhibitor, KN-
93, and necroinhibitor-1 have been shown to protect against DIC in
experimental models (Zhang et al., 2016). As previously stated,
oxidative stress can disrupt lysosomal function and normal
autophagy. As a result, delayed autophagy causes more severe
apoptosis secondary to necroptosis in cardiomyocytes
(Dimitrakis et al., 2012; Li et al., 2014). These findings lend
support to the theory that necroptosis occurs after prolonged
exposure to DOX treatment.

4 Outlook

Cardiotoxicity caused by common anticancer drugs remains a
major clinical problem that can affect the quality of life and overall
survival of cancer patients. Although the mechanisms underlying
cardiotoxicity of antineoplastic drugs are multifactorial and appear
to involve several different pathways, there is increasing evidence
that antineoplastic drugs cause direct or indirect mitochondrial
damage. Aside from affecting mitochondrial bioenergetics,
mitochondrial DNA replication, mitochondrial oxidative and
nitrosative stress, antineoplastic drugs can also cause cell death.
Several studies have shown that dysregulation of mitochondrial
dynamics contributes to antineoplastic drug-dependent
cardiotoxicity. Therefore, understanding mitochondrial
processes in cardiovascular toxicity is crucial to developing
effective strategies to prevent myocardial harm or loss from
various factors.
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