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Long-term maintenance of synaptic connections is important for brain function,
which depends on varying proteostatic regulations to govern the functional
integrity of neuronal proteomes. Proteostasis supports an interconnection of
pathways that regulates the fate of proteins from synthesis to degradation.
Defects in proteostatic signaling are associated with age-related functional
decline and neurodegenerative diseases. Recent studies have advanced our
knowledge of how cells have evolved distinct mechanisms to safely control
protein homeostasis during synthesis, folding and degradation, and in different
subcellular organelles and compartments. Neurodegeneration occurs when these
protein quality controls are compromised by accumulated pathogenic proteins or
aging to an irreversible state. Consequently, several therapeutic strategies, such as
targeting the unfolded protein response and autophagy pathways, have been
developed to reduce the burden ofmisfolded proteins and proved useful in animal
models. Here, we present a brief overview of the molecular mechanisms involved
in maintaining proteostatic networks, along with some examples linking
dysregulated proteostasis to neuronal diseases.
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Introduction

From day-to-day operations to adapting to environmental stress, biological
processes in living cells are accomplished through the spatiotemporal and dynamic
integration of protein networks, known as proteostasis, which is composed of various
molecular processes, including protein synthesis, folding, modification, delivery, and
degradation. Neurons are non-dividing and highly polarized cells with specialized and
extended compartments, such as axons and dendrites, for transmitting directional
information between different circuits through specialized structures called synapses.
To support synaptic connectivity and communication over time, tight control of protein
synthesis and degradation is required to shape the synaptic proteome for the long-term
maintenance of synaptic structure and function. Once neuronal proteostasis declines
due to aging or extreme stress, proteome integrity may fail to be preserved, and the
resulting misfolded proteins ultimately lead to neuronal disorders (Hetz, 2021). Here, we
summarize the current understanding and recent findings regarding the mechanistic and
functional roles of proteostatic pathways in neurons.
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Imbalanced mRNA translation in neuronal
disorders

Ribosomes are where the mRNA is translated into protein
products (Figure 1). Upon activation, eukaryotic initiation factor
2 (eIF2) first forms a ternary complex (TC) with the initiator
methionyl tRNA and 40S small ribosome, which scans along the

mRNA to localize the start codon AUG and triggers the initiation of
translation (Cao et al., 2019). Four members of eIF2α kinases in
response to various cellular stresses can phosphorylate eIF2α to
reduce TC formation and global translation (Bhattarai et al., 2020);
however, activating transcription 4 (ATF4) mRNA is preferentially
translated by a mechanism involving upstream open reading frames
(Zhou et al., 2018). Consequently, stressed cells retain most of their

FIGURE 1
The proteostasis network and disease disturbances. RNA translation is divided into three steps and controlled by proteostatic processes. Under
cellular stress, the assembly of initiation and elongation complexes is inhibited to reduce protein synthesis. Moreover, the premature transcript is
degraded by NMD to avoid the generation of aberrant proteins. Mutations in key factors involved in translational procedures induce proteome stress and
cause neuronal disorders. Following synthesis, nascent proteins experience posttranslational modifications to achieve their correct folding and
become functional. However, misfolded proteins are generated by proteome stress and eliminated by three types of protein degradation mechanisms.
Under neuropathies, improper modifications and resistances to degradation attenuate the clearance of misfolded proteins and finally cause the protein
aggregation.
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energy to synthesize essential and stress-responsive proteins for
survival (Advani and Ivanov, 2019). Unfortunately, some of the
induced proteins, including beta-site amyloid precursor protein
cleaving enzyme-1 (BACE1), may increase the production of
pathological proteins in neurodegenerative diseases, such as β-
amyloid precipitation in Alzheimer’s disease (AD) (O’Connor
et al., 2008). Another major pathway controlling translation
initiation depends on the activity of a protein kinase called
mammalian target of rapamycin (mTOR), which phosphorylates
eIF4E and its binding proteins to enhance cap-dependent
translation initiation (Weiss et al., 2021). Dysregulation of mTOR
activity disrupts the balanced production of newly synthesized
proteins (Figure 1). Hyperactivated mTOR signaling in Down’s
syndrome mouse neurons augments dendritic translation and
brain-derived neurotrophic factor (BDNF) synthesis, resulting in
insensitivity to extracellular BDNF signaling (Troca-Marin et al.,
2011). Conversely, hypoactivated mTOR signaling in Rett’s
syndrome downregulates BDNF expression and impairs synaptic
connections (Pejhan et al., 2020).

After initiation, eukaryotic elongation factors (eEFs)
cooperate to decode the open reading frame sequences and
control the rate of protein synthesis. Dysfunction of the
elongation complex may lead to neuronal diseases, such as the
early stage of epilepsy and intellectual disability with mutations
in eEF1A2 (Long et al., 2020). To decelerate translation under
cellular stress aggregated pathological proteins, eEF2 kinase
(eEF2K) phosphorylates eEF2 to inhibit eEF2-mediated
translocation of nascent peptidyl-tRNAs on ribosomes (Fabbri
et al., 2021). Indeed, elevated eEF2K activity has been identified
in postmortem brains of patients with AD and Parkinson’s
disease (PD) (Jan et al., 2017; Jan et al., 2018). However, the
excessive elongation brake attenuates neuronal responses to
oxidative stress (Jan et al., 2017; Jan et al., 2018), so genetic or
pharmacological inhibition of eEF2K can rescue neuronal loss
and behavioral defects in mouse models of AD, PD and Dravet
syndrome (Beretta et al., 2022). Mutations in the highly
conserved elongator complex for tRNA modification impair
tRNA maturation and the level of charged aminoacyl-tRNA,
thereby leading to imbalanced protein synthesis and familial
dysautonomia, a rare genetic disorder of the autonomic
nervous system (Lefler et al., 2015; Chaverra et al., 2017).

Before termination, transcripts harboring a premature stop
codon are eliminated to avoid the synthesis of aberrant proteins
via a mechanism known as non-sense-mediated RNA decay (NMD)
(Kurosaki et al., 2019). In amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD), mutations in transactive response
DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS)
cause aberrant RNA splicing, and some of the mis-spliced
transcripts need to be degraded through NMD; thus, enhancing
NMD activity protects neurons in the cellular models of ALS and
FTD (Barmada et al., 2015). Moreover, oxidative stress induces the
cleavage of 3′-untranslated region (UTR) of RNA and consequently
the accumulation of isolated 3′-UTRs in ribosomes generates
redundant short-peptides and hinders translation (Sudmant et al.,
2018). Several polymorphisms in the 3′-UTRs of disease-associated
genes have been identified (Grunblatt et al., 2019); however, whether
they contribute to isolated 3′-UTR-related pathogenesis requires
further investigations.

Defective post-translationalmodifications in
neuropathology

Some nascent proteins undergo covalent and enzymatic
modifications, known as post-translational modification (PTM),
to achieve correct folding (Figure 1). Aberrant PTMs can
produce misfolded proteins; if not eliminated properly, they can
increase the probability of forming aggregates, which are toxic
components in many neurodegenerative diseases. For example,
hyperphosphorylation of tau enhances the formation of tau
tangles, a pathological hallmark of AD (Bai et al., 2020). More
than one-third of amino acids in tau can be post-translationally
modified, of which approximately one-fifth are phosphorylated
(Alquezar et al., 2020). In response to aggregation, ubiquitylation
of tau triggers its degradation by the ubiquitin-proteasome system
(UPS) (see the next section for details). Methylation of lysine
residues also attenuates tau aggregation during aging and AD
progression (Balmik and Chinnathambi, 2021). Although
methylation can compete with ubiquitylation to modify some
lysine residues in tau with the same potency to inhibit tau
aggregation, methylation cannot recruit the UPS to degrade tau
(Balmik and Chinnathambi, 2021). Moreover, O-linked β-N-
acetylglucosamine (O-GlcNAc) modification of tau has been
found in AD patients, suggesting that proteostatic signaling is
designed to counteract tau phosphorylation and aggregation to
slow disease progression (Wang et al., 2017; Wang et al., 2020).
In contrast, tau acetylation prevents the degradation of
phosphorylated tau and promotes its aggregation (Caballero
et al., 2021). Another PTM that reciprocally opposes
ubiquitylation is sumoylation, which induces tau
hyperphosphorylation and inhibits its degradation (Luo et al.,
2014). The location and frequency of PTMs on tau change over
time as tauopathy progresses, revealing tau-associated molecular
signatures at distinct disease stages (Wesseling et al., 2020).
Collectively, these studies demonstrate that inappropriate PTMs
impair neuronal proteostasis to drive neuropathogenesis.

Impaired degradation of protein aggregates
in neurodegenerative diseases

The accumulation of specific protein aggregates is a hallmark of
many neurodegenerative diseases, so the clearance of neurotoxic
aggregates is a challenging task for neurons. To restore proteostasis,
misfolded and aggregated proteins must be eliminated by
chaperone, UPS or lysosome (Figure 1). Unfortunately, this
refolding/degradation machinery is compromised by aggregated
proteins that cause neurodegeneration. UPS-dependent protein
degradation is achieved by enzymatic addition of polyubiquitin
chains to target proteins, followed by their recruitment to the
26S proteasome. Conjugated ubiquitins have been detected in
extracellular Aβ plaques in AD brains (Bellia et al., 2019),
implying the failure of intracellular protein degradation.
Specifically, as extracellular Aβ peptides enter neurons,
proteasomal activity is decreased in the cortical regions of
patients with AD (Keck et al., 2003; Oh et al., 2005).
Furthermore, intracellular aggregation of tau in AD, α-synuclein
in PD, and huntingtin in Huntington’s disease (HD) also impairs
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proteasomal activity to enhance neuropathies (Liu et al., 2019;
Suzuki et al., 2020; Franco-Iborra et al., 2021).

The lysosome receives cytoplasmic content for enzymatic
degradation in a highly conserved catabolic process known as
autophagy. Lysosome biogenesis is primarily controlled by
transcription factor EB (TFEB), which activates the transcription
of genes responsible for lysosome formation and autophagy
induction (Kobayashi et al., 2019). TFEB downregulation and
abnormal autophagy have been reported in patients with AD and
ALS (Tiribuzi et al., 2014; Wang et al., 2016b), and genetic or
pharmacological induction of TFEB attenuates neuronal loss and
pathological features in AD and PD mouse models (Wang et al.,
2016a; Zhuang et al., 2020). Moreover, mutations in other
autophagy-associated genes have been shown to accelerate the
neuropathogenesis of ALS, FTD, PD and microcephaly (Tresse
et al., 2010; Garcia-Sanz et al., 2017; Deng et al., 2020; Almannai
et al., 2022). Furthermore, mutant tau and mutant α-synuclein
exhibit strong resistance to autophagy (Caballero et al., 2018;
Kirchner et al., 2019), commensurate with the difficulty in
removing these neurotoxic aggregates.

Three major subtypes of autophagy have been identified in
mammalian cells: macroautophagy, microautophagy, and
chaperone-mediated autophagy (CMA) (Yim and Mizushima,
2020). In contrast to microautophagy and CMA, which directly
transport small amounts of cytosolic materials to lysosomes,
macroautophagy begins with the de novo synthesis of double-
membraned vesicles known as autophagosomes, which sequester
large cargos, including damaged organelles (Andrejeva et al., 2020;
Schutter et al., 2020). In neurons, most autophagosomes are
generated in the distal axon and then transported retrogradely
toward the somatic and dendritic compartments (Maday and
Holzbaur, 2014). Dystrophic and swollen neurites with
accumulated autophagosomes are typical and correlated with
synaptic dysfunction in the early stage of AD progression
(Sharoar et al., 2019). Additionally, excessive autophagosomes
have also been observed in cellular models of PD and ALS
(Dehay et al., 2010; Morselli et al., 2011). Although the
autophagosome formation is impervious to HD pathology,
aggregated autophagosomes and impaired autophagy have been
also observed in mouse and cell models of HD (Martinez-Vicente
et al., 2010). Notably, depletion of wild-type huntingtin results in the
abnormal accumulation of defective autophagosomes because of its
function in mediating retrograde transport of autophagosomes
along the axon (Zheng et al., 2010). Genetic or pharmacological
activation of autophagy attenuates pathological protein aggregation
and reduces neuronal pathology in animal models of
neurodegenerative diseases (Heckmann et al., 2019; Pupyshev
et al., 2019; Brattas et al., 2021; Xu et al., 2022). In addition to
promoting translation, mTOR signaling plays an essential role in
hindering autophagy induction. Therefore, pharmacological
inhibition of mTOR enhances autophagy to remove protein
aggregates and ameliorate neurodegeneration (Casillas-Espinosa
et al., 2020).

In addition to assisting the conformational folding of proteins,
chaperones deliver misfolded proteins to proteasomes and
lysosomes for degradation. Chaperones help ubiquitin ligases
recognize misfolded targets (Ciechanover and Kwon, 2017) and
bring misfolded proteins to lysosomal membranes for embedding

(Johnston and Samant, 2021). Importantly, chaperones can
disengage insoluble proteins from stable aggregates that are
believed to be further refolded or degraded (Shorter, 2011).
During aging or neurodegeneration, the balance of chaperone
expression is temporarily altered: some chaperones are induced
to defend against proteostatic stress, while others are reduced due
to disease insults (Auzmendi-Iriarte and Matheu, 2020). Although
insufficient degradation of aggregated proteins eventually disrupts
proteostasis and causes neuronal death, it also implies potential
therapeutics for treating neurodegenerative diseases. For example,
the genetic induction of chaperone or delivery of chaperone-
simulating nanomaterials facilitates the clearance of neurotoxic
proteins and promotes neuronal survival (Huang et al., 2014; Ma
et al., 2022). Chaperones require non-client-binding partners as
regulators of chaperone action. For example, the binding of
misfolded proteins to heat shock protein (HSP) 70 is commenced
by interaction with its co-chaperone HSP40 (Morgner et al., 2015).
The induction of co-chaperones also alleviates the neurotoxicity-
caused by pathogenic proteins (Park et al., 2018). Another example
is Valosin-containing protein precursor (VCP)/p97, which is a
chaperone containing ATPase activity to assist protein folding,
sorting or degradation (Parzych et al., 2019). By ATP hydrolysis-
dependent changes of its conformation, VCP/p97 interacts with
more than 30 cofactors that connect it to different targets (Riehl
et al., 2021). Dysfunction of VCP/p97 impacts various cellular
activities and mutations in VCP/p97 are associated with several
neurological disorders including ALS (Hall et al., 2017; Matsubara
et al., 2021).

Disturbance of organelle proteostasis in
neuronal diseases

In living cells, protein quality control requires the cooperation of
not only lysosomes but also other organelles. Membrane and
secretory proteins are synthesized by ribosomes on the
endoplasmic reticulum (ER), and then enter the ER tubules for a
series of PTMs to complete conformational folding. Critically,
misfolded proteins are detected and transferred to the
endolysosomal or proteasomal system for degradation. Other
organelles, including the nucleus, Golgi apparatus, and
mitochondria, also collaborate to maintain proteostasis through
specific and partially overlapping molecular pathways (Figure 2).
Errors in protein synthesis cause prolonged expression of misfolded
proteins to induce ER stress and the unfolded protein response
(UPR), and consequently activates a conserved proteostatic pathway
known as ER-associated protein degradation (ERAD) (Gariballa and
Ali, 2020). During ERAD, a cascade of enzymatic ubiquitination
processes labels misfolded protein substrates and directs them to
proteasomal degradation (Carroll and Marqusee, 2022). When the
ERAD capacity is overwhelmed by increasing accumulation of
pathological proteins, neurons begin to undergo
neurodegeneration (Abisambra et al., 2013; Leitman et al., 2013).

UPR signaling is initiated by three transmembrane sensors:
protein kinase R-like ER kinase (PERK, which is an eIF2α kinase),
inositol-requiring enzyme 1 (IRE1), and activating transcription
factor 6 (ATF6) (Figure 2). Genetic or pharmacological
manipulation of UPR signaling changes the pathological
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progression in mouse models of neurodegeneration and aging
(Ganz et al., 2020; Krukowski et al., 2020). Upon ER stress,
PERK phosphorylates eIF2α, and consequently inhibits
translational initiation to relieve the loading of protein
synthesis (Bhattarai et al., 2020). Conversely, some transcripts
with unique characteristics, such as ATF4, are preferentially
translated in response to stress (Zhou et al., 2018). ER stress
also degrades mRNAs via the endonuclease activity of IRE1 to
reduce protein synthesis (Tavernier et al., 2017). IRE1 also

mediates splicing of X-box binding protein 1 (XBP1) mRNA to
produce transcripts for making functional XBP1 proteins, which
then translocate to the nucleus to activate transcription of genes
involved in UPR and ERAD (Belyy et al., 2020). Following stress-
induced translocation to the Golgi apparatus, ATF6 is
proteolytically processed to release a cytosolic fragment that
then enters the nucleus and activates the transcription of
numerous genes involved in protein folding and degradation
(Glembotski et al., 2019). In conclusion, selective inductions of

FIGURE 2
Subcellular proteostasis and UPR signaling. Schematic presentations of proteostasis signaling and protein trafficking in distinct organelles. Main
stress sensors and transcription factors are presented. Misfolded proteins are transferred between the ER and Golgi apparatus for refolding, or to the
lysosome or nucleus for degradation. In the ER, three major UPR signaling pathways trigger proteostatic processes. First, PERK phosphorylates eIF2α to
inhibit the assembly of the initiation ternary complex, thereby suppressing general translation. Additionally, mitochondrial damage also induces
phosphorylation of eIF2α. Conversely, some proteins such as transcription factor ATF4 are preferentially produced. Second, IRE1 mediates RNA splicing
and promotes the synthesis of transcription factor XBP1. Third, ATF6 is transferred to the Golgi apparatus and cleaved into a short and active form.
Furthermore, the proteome stress dephosphorylates and activates transcription factor TFEB. Together, these transcription factors drive the induction of
UPR genes to ensure proteostasis.
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UPR genes under global translational repression are caused by
proteome stress. Elevated UPR activation is frequently observed in
neurodegenerative brains, because the accumulation of misfolded
proteins is a hallmark of neurodegeneration (Hughes andMallucci,
2019).

Similar to the response to ER stress, mitochondrial damage also
activates eIF2α kinases to phosphorylate eIF2α (Fessler et al., 2020; Guo
et al., 2020) and eventually initiates eIF2α-independent translation of
pro-survival factors. Mitochondria also uptake misfolded proteins from
the cytoplasmic matrix to activate their own UPR (Ruan et al., 2017).
Interestingly, exogenous mitochondria can be delivered from astrocytes
to neurons to help neurons recover after injury (Hayakawa et al., 2016).
Unfortunately, mitochondrial function and integrity decline in aging
and neurodegenerative diseases (Godoy et al., 2021). When
mitochondria are irreversibly damaged, they can be removed via
mitophagy, a subtype of macroautophagy. However, excessive
mitophagy hinders neuronal recovery from UPR stress, which is
often observed in neurodegenerative diseases (Fang et al., 2019;
Yakhine-Diop et al., 2019).

As a post-ER compartment in the synthesis of membrane and
secretory proteins, the Golgi apparatus controls protein quality
through two distinct pathways, returning abnormal proteins back
to the ER (Brauer et al., 2019; Pennauer et al., 2022) or transferring
these proteins for lysosomal degradation (Hellerschmied et al.,
2019). Continuous sorting of mutant proteins from the Golgi
apparatus to the ER leads to aberrant accumulation in
neurodegeneration (Sirkis et al., 2017). Interestingly, the
population of misfolded mutant prions persists in the Golgi
rather than in the ER (Ashok and Hegde, 2009; Zavodszky and
Hegde, 2019), implying that mutant prions have altered trafficking
routes and/or the resistance to protein quality control. In contrast to
the well-studied ER and mitochondrial UPR mechanisms, Golgi
UPR is less understood. Accumulating evidence indicates that Golgi
stress responses can trigger specific transcriptional signals
(Taniguchi et al., 2016; Serebrenik et al., 2018) and activate ER-
resident molecular chaperones (Miyata et al., 2013).

Although the nucleus rarely encounters the accumulation of
misfolded proteins, it retains proteasome-dependent
degradation to ensure its architecture and genome stability
(Almacellas et al., 2021; Shmueli et al., 2022). Nuclear
proteasomes eliminate not only nuclear proteins but also
proteins transported from the cytoplasmic compartment.
Under cellular stress, heat shock proteins help deliver
misfolded proteins from the cytoplasm to the nucleus for
proteasomal degradation (den Brave et al., 2020), suggesting
their essential role in partitioning protein degradation loads
between the cytoplasmic and nuclear compartments. However,
several neuropathic proteins, such as mutant huntingtin and
aggregated tau, impede nucleocytoplasmic transport (Grima
et al., 2017; Lester et al., 2021), thereby attenuating protein
turnover and leading to neurodegeneration.

Aberrant aggregation of neuropathic
proteins in stress granules

In addition to membrane-bound organelles, many membrane-less
organelles are liquid-like droplets that arise from the condensation of

cellular materials. Membrane-less RNA-containing organelles can exist
constantly like nucleoli and P-bodies or form under specific conditions
such as stress granules (SGs), all of which contribute to proteostatic
regulation, including ribosome biogenesis, RNA degradation, and
translational repression (Riggs et al., 2020; Lafontaine et al., 2021).
The formation of these membrane-less condensates depends on the
sequestration of biomolecules, including RNAs, RNA-binding proteins,
and other proteins, which function like liquid droplets that allow the
molecular components to switch between diluted and condensed phases
(Espinosa et al., 2020). This demixing phenomenon is referred to as
liquid-liquid phase separation (LLPS). By locally increasing the protein
concentration, these granules create a condition for phase separation
between dissolution and accumulation of internal proteins, finally leading
to protein condensation with solid-like characteristics (Guo et al., 2018;
Garaizar et al., 2022). Interestingly, many RNA-binding proteins contain
not only RNA-binding domains, but also intrinsically disordered regions
that drive phase transitions to assemble RNA granules that include
translationally silenced mRNAs (Hayashi et al., 2021). Stress-induced
eIF2α phosphorylation also initiates the transient assembly of SGs
containing 40S ribosomal subunits, translation initiation factors, RNA-
binding proteins and mRNAs, thereby retaining these molecules for
protein synthesis after recovery from stress (Riggs et al., 2020).

Under prolonged cellular stress, phase separation can also
promote the formation of insoluble protein aggregates. The
assembly of SGs is initially beneficial because the high
concentration of RNA and poly ADP-ribose (PAR) keeps
proteins accumulated during liquid-liquid phase separation
(McGurk et al., 2018a; Mann et al., 2019). However, the
persistent or repetitive assembly of SGs evolves the phase
transition into neurotoxic aggregates (Hofweber et al., 2018;
Zhang et al., 2019). Numerous disease-related proteins, including
FUS, Tau, and TDP-43, have been reported to aggregate in liquid
droplets (Murthy et al., 2019; Conicella et al., 2020; Parolini et al.,
2022). FUS and TDP-43 are nucleus-abundant RNA-binding
proteins that are phase-segregated into SGs in the cytoplasm;
therefore, such a stress-induced phase transition has been
proposed to facilitate their cytoplasmic aggregation to cause ALS.
Moreover, pathogenic mutations in the diverse regions of FUS and
TDP-43, including RNA recognition motifs, oligomerization
domains and intrinsically disordered and low-complexity regions,
promote phase separation and protein aggregation (McGurk et al.,
2018a; Murthy et al., 2019; Conicella et al., 2020) because some
mutations of FUS and TDP-43 disrupt their electrostatic
interactions through posttranslational modifications such as
phosphorylation and subsequently affect protein phase separation
(McGurk et al., 2018a; Owen et al., 2020). Furthermore, the genetic
or pharmacological inhibition of PARylation suppresses phase
separation and granule formation (McGurk et al., 2018b; Duan
et al., 2019). During AD progression, tau protein also displays an
intrinsically disordered conformation, which can undergo liquid-
liquid phase separation and eventually become neurotoxic
aggregates (Boyko et al., 2020; Parolini et al., 2022).

Conclusion

FrommRNA translation to protein degradation, the proteostatic
machinery ensures the functional and conformational integrity of
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neuronal proteomes. Many molecular pathways have been
discovered to contribute to the proteostatic networks of different
organelles. Recently, accumulating evidence has shown that
defective protein quality control caused by accumulating
pathogenic proteins and the aging-associated decline in the
regulation of proteostasis have a dramatic impact on the
progression of neurodegenerative diseases. Further research may
provide the basis for understanding the neuropathy caused by
misfolded and aggregated proteins to facilitate the development
of clinical applications.
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