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Background: Lung adenocarcinoma (LUAD) is the most common variant of
non–small cell lung cancer (NSCLC) across the world. Recently, the rapid
development of immunotherapy has brought a new dawn for LUAD patients.
Closely related to the tumor immune microenvironment and immune cell
functions, more and more new immune checkpoints have been discovered,
and various cancer treatment studies targeting these novel immune
checkpoints are currently in full swing. However, studies on the phenotype
and clinical significance of novel immune checkpoints in LUAD are still limited,
and only a minority of patients with LUAD can benefit from immunotherapy.

Methods: The LUAD datasets were downloaded from The Cancer Genome Atlas
(TCGA) and the Gene Expression Omnibus (GEO) databases, and the immune
checkpoints score of each sample were calculated based on the expression of the
82 immune checkpoints-related genes (ICGs). The weighted gene co-expression
network analysis (WGCNA) was used to obtain the genemodules closely related to
the score and two different LUAD clusters were identified based on these module
genes by theNon-negativeMatrix Factorization (NMF) Algorithm. The differentially
expressed genes between the two clusters were further used to construct a
predictive signature for prognosis, immune features, and the response to
immunotherapy for LUAD patients through a series of regression analyses.

Results: A new immune checkpoints-related signature was finally established
according to the expression of 7 genes (FCER2, CD200R1, RHOV, TNNT2, WT1,
AHSG, and KRTAP5-8). This signature can stratify patients into high-risk and low-
risk groups with different survival outcomes and sensitivity to immunotherapy, and
the signature has been well validated in different clinical subgroups and validation
cohorts.

Conclusion: We constructed a novel immune checkpoints-related LUAD risk
assessment system, which has a good predictive ability and significance for
guiding immunotherapy. We believe that these findings will not only aid in the
clinical management of LUAD patients but also provide some insights into
screening appropriate patients for immunotherapy.
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Introduction

Lung cancer is one of the most common cancers and the leading
cause of cancer death worldwide. Lung cancer has been the subject of
several studies to improve its management, including more accurate
diagnosis and improved treatment (Thai et al, 2021). Non-small cell
lung cancer (NSCLC) accounts for 83% of lung cancers, and lung
adenocarcinoma (LUAD) is the predominant subtype of NSCLC
with a consistently high incidence (Kadara et al, 2012; Bray et al,
2018). Surgical lobectomy is the most ideal treatment for patients
with early LUAD. However, 10%–44% of these patients have a poor
prognosis 5 years after surgery (Neal et al, 2019). In addition, since
lung adenocarcinoma is usually found at an advanced stage or even
with metastases, only radiotherapy, conventional chemotherapy, or
immunotherapy can be used, but drug insensitivity still leads to poor
prognosis (Denisenko et al, 2018). Therefore, it is of great
significance to construct an effective and reliable prognostic
signature for LUAD patients to help the early diagnosis of LUAD
and reasonable treatment plans to treat different patients, so that
patients can receive more suitable treatment for their conditions and
get optimum treatment results accordingly.

Including active immunotherapy, passive immunotherapy,
immune checkpoint blockade, etc., tumor immunotherapy is
becoming a hot topic in tumor treatment and is continuously
being discussed. Numerous studies have reported that the human
immune-related system can play a critical role in the development
and progression of aggressive cancers (Angell and Galon, 2013;
Gentles et al, 2015). LUAD is the most studied subtype of lung
cancer, and studies have identified its genomic changes and operable
mutations (O’Brien et al, 2018). Therefore, immunotherapy
targeting immune-related antigens produced by LUAD may be a
potentially effective treatment. In recent years, the rapid
development of immune checkpoint inhibitors (ICIs), represented
by targeting programmed cell death 1 (PD-1)/programmed cell
death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4
(CTLA4), has brought a new dawn for the treatment strategy of
LUAD (Reck et al, 2022). It is reported that patients with LUADwho
received immunotherapy had amedian survival of 13 months longer
than those who received chemotherapy (Reck et al, 2021). In
addition, the US Food and Drug Administration (FDA) and the
European Medicines Agency (EMA) have currently approved
various ICIs for the treatment of advanced NSCLC (Reck et al,
2022). However, due to the presence of tumor heterogeneity and the
complexity of carcinogenic mechanisms, immunotherapy is only
applicable to limited patients, and there are significant individual
differences in therapeutic effects (Rooney et al, 2015; Li et al, 2016).
Thus, it is of great clinical significance to assess the responsiveness of
different LUAD patients to immunotherapy to achieve optimal and
personalized treatment to improve patient outcomes.

In our study, we conducted a comprehensive analysis of ICGs in
lung adenocarcinoma. Based on 82 ICGs, we used the “GSVA” R
package to calculate the ICs score for each lung adenocarcinoma
sample, and theWCGNA algorithm was used to select module genes
significantly associated with ICs scores. Based on the expression

levels of these genes, we used the NMF machine learning method to
classify LUAD samples into two subgroups with different prognoses
and immune characteristics. Based on the immune-related genes
differentially expressed between subgroups, we further used COX
and LASSO algorithms to construct a new hierarchical signature
containing 7 genes. The nomogram constructed based on this
signature can accurately and reliably predict the prognosis of
LUAD patients in the TCGA database. Besides, LUAD patients
classified based on this signature are greatly different in the
sensitivity of immunotherapy and targeted therapy. Overall, the
signature is helpful for doctors to make early diagnosis and
prognosis judgments for LUAD patients and provides some
theoretical basis for individualized treatment.

Materials and methods

LUAD datasets and sample extraction

We firstly downloaded RNA sequencing data, gene copy data,
somatic mutation data, and accompanying clinical information of
LUAD patients from The Cancer Genome Atlas (TCGA) database.
The data type of the TCGA database is TPM, and the id conversion
method is to convert the ID of the Ensemble annotation library to a
molecular name (Symbol). Similarly, we obtained the gene
expression matrix and clinical information of LUAD patients in
GSE72094 (Schabath et al, 2016) and GSE41271 (Sato et al, 2013)
microarray datasets from the Gene Expression Omnibus (GEO)
database. The “IMvigor210CoreBiologies” R package (http://
research-pub.gene.com/IMvigor210CoreBiologies) was utilized to
obtain transcriptome data and clinical information of patients
with metastatic urothelial carcinoma who received
immunotherapy to verify the efficiency of our signature in
predicting the effectiveness of immunotherapy (Bellmunt et al,
2016). A total of 82 ICGs involved in the analysis of this study
were summarized from previously published studies.

Samples with incomplete transcriptome data and clinical
information in each dataset were excluded from further analysis.
We transformed RNA sequencing data in the TCGA-LUAD dataset
into log2 (TPM+1) to maintain comparability with the microarray
dataset. The screening threshold to filter lowly expressed genes is
that the average TPM expression value of all samples is greater than
0.1. The “sva” R package was used to eliminate batch effects on
microarray datasets (Leek et al, 2012). The Flowchart of the present
study design was shown in Figure 1.

Construction of immune checkpoints (ICs)
scores and co-expression network

ICs scores were calculated for each sample using the “GSVA” R
package based on the expression levels of 82 ICGs in the TCGA,
GSE72094, and GSE41271 datasets (Hänzelmann et al, 2013).
Weighted gene co-expression network analysis (WGCNA) was
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utilized to identify gene modules with similar expression patterns
and analyze the correlation between ICs scores and gene modules
(Langfelder and Horvath, 2008). The scale independence and
average connectivity of the networks were tested with different
power values (from 1 to 20). The appropriate power value was

determined when the independent scale was greater than 0.9 and
the connectivity was high. Then, the similarity matrix was
transformed into a topological matrix with the topological
overlap measure (TOM) describing the correlation between
genes. The genes were clustered by using 1-TOM as the

FIGURE 1
The flowchart of this study.
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distance. A dynamic hybrid cutting method was used to establish a
hierarchical clustering tree to identify co-expressed gene modules.
Each leaf of the tree represents a gene, and genes with similar
expression data aggregate to form a branch of the tree and each
branch represents a gene module. The correlation between module
feature genes and ICs scores was calculated using Pearson
correlation analysis, and the genes in the modules most relevant
to the ICs scores in the three datasets were intersected.

Non-negative matrix factorization (NMF)
algorithm

Based on the genes obtained by WGCNA analysis, a cluster
analysis of the TCGA-LUAD samples was conducted through the
“NMF” R package to explore potential molecular subtypes
(Devarajan et al, 2015). The “brunet” criterion was selected and
iterated 100 times. We set the number of clusters (k) from 2 to
10 and set the minimum number of members of each cluster to 25.
We utilized the R package “NMF” to determine the average contour
width of the common membership matrix. The cophenetic
correlation coefficients (from 0 to 1) were used to reflect the
stability of clusters, while the residual sum of squares (RSS) was
used to reflect the model’s clustering performance. The optimal k
was selected based on the cophenetic, dispersion, and silhouette
metrics. LUAD samples were eventually divided into different
molecular clusters through the above algorithm and the optimal k.

Assessment of tumor microenvironment
and immune infiltration

The “ESTIMATE” R package was used to estimate the tumor
microenvironment, and we obtained the stromal score, immune
score, ESTIMATE score, and tumor purity of each sample
(Yoshihara et al, 2013). The reference for the signature genes of
23 immune cells were derived from the TISIDB database (http://cis.
hku.hk/TISIDB/) (Supplementary Table S1). Based on the signature
genes of 23 immune cells, we also utilized the ssGSEA algorithm to
assess the infiltration of 23 immune cells in each sample.

Functional enrichment analysis

Using the “clusterProfiler” R package, we performed Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis (Yu et al, 2012). GSEA
analysis was conducted to compare significantly different
biological processes between the high-risk group and the low-risk
group. Pathways with FDR < 0.25 and p< 0.05 were considered
statistically enriched (Subramanian et al, 2005). Using the “GSVA” R
package, we performed ssGSEA analysis to evaluate the activity of
specific biological pathways in each sample. We used the Spearman
correlation test to calculate the correlation between the risk score
and the pathway activity, and screen out the pathways with R > 0.3.
Reference gene sets included in specific biological pathways were
obtained from the MSiDB (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) database.

Prediction of the immunotherapy response
and drug sensitivity

We used Tumor Immune Dysfunction and Exclusion (TIDE)
score to assess the immune escape potential and immunotherapy
effect of each LUAD sample (Jiang et al, 2018). The lower the TIDE
score, the less likely the tumor is to evade immunity and the more
likely the patient will benefit from immunotherapy. To predict the
patient’s response to the use of PD-1 and CTLA4 blockers, we also
obtained the immunophenotype score (IPS) of LUAD samples from
The Cancer Immunome Atlas (TCIA) (Charoentong et al, 2017).
Moreover, the correlation between patient risk characteristics and
immunotherapy benefits was verified in the IMvigor210 dataset.

The “pRRophetic” R package was used to predict the sensitivity
of LUAD patients to targeted drugs. Specifically, with the gene
expression profile and IC50 value of cancer cells under the
corresponding drug treatment in the GDSC database (https://
www.cancerrxgene.org/) as a reference, the IC50 value of targeted
drugs is estimated according to the gene expression profile of LUAD
samples through the ridge regression of 10 times cross validation.

Calculation of tumor mutational burden
(TMB) and copy number variation (CNV)

TMB represents the number ofmutations permillion bases in tumor
tissue, including base insertions, base deletions, base substitutions, and
genetic coding errors. Scholars have proposed that tumor tissues with
higher TMB are more easily recognized by the immune system, so
immunotherapy against themmay bemore effective. Therefore, the TMB
score of each LUAD patient was calculated based on the somatic
mutation data downloaded from the TCGA database. Besides,
according to the copy number variation (CNV) data from the TCGA
database, we calculated the CNV frequency of the corresponding gene
and displayed the results in the form of a lollipop plot.

Construction of the immune checkpoints-
related prognostic stratification signature
for LUAD

Differential expression analysis was performed on the two different
LUAD clusters obtained by the NMF algorithm, and | log2FC | > 1 and
FDR < 0.05 were set as the threshold. The rank sum test was utilized to
perform differential expression analysis. The screening threshold for low
expression genes is that the averageTPMexpression value of all samples is
greater than 0.1. Repeated samples were averaged using the avereps
function of the “limma” R package. Immune-related genes (IRGs) were
the result of IRGs union sets downloaded from the Immport (https://
www.immport.org/) and InnateDB (https://www.innatedb.ca/) databases.
Thenwe randomly divided theTCGAdataset into the training set and the
validation set at a ratio of 7: 3. Using univariate cox regression analysis to
identify genes with good prognostic ability in the training set (HR≠ 1 and
p-value< 0.05). To further simplified the predictive signature, we used the
LASSO regression algorithm in the “glmnet” R package to eliminate
overfitting biases through 10-fold cross-validation to obtain a more
concise prognostic genes combination (Simon et al, 2011). Finally, we
utilized multivariate cox regression to construct the final signature. The
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coefficient value of each gene is derived, and the risk score is equal to the
expression of each gene multiplied by the corresponding regression
coefficient.

Risk Score � ∑
n

i�1
coef i × Exp i( )

The time-dependent receiver operating characteristic (ROC) curve
was used to assess the predictive power of the above risk signature and
the survival differences of patients in different risk groups was
compared by the K-M survival curve. Using the same method, the
accuracy of the predictive signature was then verified in the validation
dataset, the whole dataset, the GSE72094, and the GSE41271 dataset.

Independent prognostic analysis and
nomogram construction

We performed univariate cox and multivariate cox regression
analysis on the risk score and some other clinical information and
risk scores to screen for independent prognostic factors for LUAD
patients. C-index and time-dependent ROC curves were used to
evaluate the prognostic efficacy of independent prognostic factors.
By using the “regplot” R package, we finally constructed a more
accurate predictive nomogram using the independent prognostic
factors of LUAD and plotted a calibration curve to assess the
prognostic accuracy of the nomogram (Marshall, 2020).

Cell cultures, RNA extraction and real-time
quantitative PCR (RT-qPCR)

Human bronchial epithelial cells (16HBE cells) and human lung
cancer cell lines (SPC-A-1 cells, NCI-H1975 cells) were cultured in
DMEM (HyClone, United States). All mediums were supplemented
with 10% fetal bovine serum (Gibco, United States), 100 U/mL of
penicillin and 100 U/mL of streptomycin (Gibco, United States).
The conditions of cell cultures were 37°C and 5% CO2.

Total RNA were extracted from cultured cells by TRIzol
(Invitrogen, Shanghai, China). Reverse transcription reactions were
then performed by using a first-strand cDNA synthesis kit
(novoprotein, Shanghai, China). Real-time PCR system was
configured according to an ABI SYBR Green Master Mix (Applied
Biosystems, United States), and the mRNA expressions of genes were
detected by using a real-time fluorescent quantitative PCR instrument
(QuantStudio 3, Thermo Fisher Scientific, United States). 2−ΔΔCT

method was used to caculated the relative expression levels of the
genes. GAPDHwas used as an internal reference. Primers used in RT-
qPCR were listed in Supplementary Table S2.

RNA interference and RT-qPCR

The SPC-A-1 cells were seeded into plates at an appropriate
density. According to themanufacturer’s protocols, small interfering
RNA (siRNA, 50–100 nmol/L) and lipofectamine RNAiMAX
transfection reagent (Invitrogen, Carlsbad, CA, United States)
were used for transfection. Subsequently, RT-qPCR was
performed to detect the efficiency of gene knockdown.

Scratch assay and transwell assay

After the SPC-A-1 cells were transfected for 48 h, 100 mL of
Eppen-dorf Tip was used to scratch the cell plate and the cells were
washed 2-3 times to remove cellular debris. Observe the changes of
cells in each group at 0 h and 48 h with an inverted microscope.

For Transwell migration or invasion assays, 1.5 × 104 cells
suspended in medium without serum were seeded in the upper
chamber membranes coated without/with Matrigel (BD
Biosciences). Then, 600 μL of medium with 10% fetal bovine
serum (FBS) was added to the lower chamber. After 24 h, the
underside of the membrane was fixed for 30 min and stained with
0.1% crystal violet. The inner side of the membrane was wiped with a
cotton swab. Then, the cells were quantified under a microscope.

Cell viability and cell colony formation assay

The SPC-A-1 cells were divided into groups of Control, SPC-A-
1+si RHOV NC, SPC-A-1+si RHOV. After 48 h of transfection, the
cells were digested with trypsin and were seeded in a 96-well plate at
4 × 104 cells/well. After 0, 24, and 48 h, 10 μL of Cell Counting Kit-8
(CCK8) (DoJinDo, Japan) was added to each well and incubated at
37°C for 4 h. Then using a microplate reader (Thermo,
United States) to measure the absorbance at 450 nm.

The SPC-A-1 cells at the logarithmic growth stage were taken for
the preparation of cell suspension and inoculated at 800 cells/well in
the six-well plates. According to the experimental grouping, each
group had three multiple wells and was cultured for 3 weeks. When
visible colony mass appeared in the Petri dish, cell culture was
terminated. The supernatant was discarded, 4% paraformaldehyde
(Leagene Biotech, DF0135, China) was applied for fixation for 20 min,
followed by crystal violet staining (Leagene Biotech, DZ0053, China)
for 15 min. The colony formation rate is calculated by (Number of
clones/Number of inoculated cells) × 100%.

Statistical analysis

All statistical analyses in our study were performed by R software
(version 4.2.1). The student’s t-test was used to compare continuous
variables, and the Wilcoxon rank sum test was used to compare non-
normal distribution variables. Two groups of categorical variables
were compared using the chi-square test. All statistical tests were two-
sided, and p-value < 0.05 was considered statistically significant.

Results

Identification and enrichment analysis of ICs
score-related gene modules in LUAD

All of the ICGs used for ssGSEA analysis were shown in
Supplementary Table S3 and the box plot showed the differential
expression of ICGs between different ICs score subgroups in
Supplementary Figure S1. The Baseline characteristics of the
LUAD patients in this study were shown in Supplementary Table
S4. Figures 2A–D showed the relationship between ICs scores and
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clinical characteristics (including age, gender, clinical stage, and
outcome of treatment) of patients in the TCGA-LUAD cohort. It
is observed that female patients had significantly higher ICs scores
than male patients. Moreover, patients with earlier clinical stages had
higher ICs scores, and CR/PR (Complete Response/Partial Response)
patients had higher ICs scores than PD/SD (Progressive Disease/

Stable Disease) patients. This seems to indicate that ICs score was
negatively associated with the progression of lung cancer. Immune cell
infiltration results showed that the abundance of various immune cells
including B cells, CD4+ T cells, CD8+ T cells, T regulatory cells,
macrophages, etc. was significantly higher in the high ICs score group
(Figure 2E), which indicates that immune cell infiltration in the tumor

FIGURE 2
The comparisons of age (A), gender (B), clinical stage (C), and main outcome (D) between different ICs score subgroups. (E) The pod plot displaying
the difference in immune cell infiltration between different ICs score subgroups. (F, G) GSEA enrichment analysis between the two subgroups. ns, not
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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FIGURE 3
The coexpression network was established using weighted gene coexpression network analysis methods based on the LUAD RNA-seq profiles from
(A) the TCGA-LUAD database, (D) GSE72094 dataset, and (G) GSE41271 dataset. Heatmap demonstrating the correlation between module eigengenes
and immune checkpoints in the (B) TCGA-LUAD dataset, (E) GSE72094 dataset, and (H) GSE41271 dataset. (C) The red module had the strongest
correlation with ICs score in the TCGA-LUAD dataset (Cor = 0.88, P � 1. 7e−93). (F) The blue module had the strongest correlation with ICs score in
the GSE72094 cohort (Cor = 0.96, P < 1e−200). (I) The brown module had the strongest correlation with ICs score in the GSE41271 dataset (Cor = 0.96,
P < 1e−200). (J) Venn diagram displaying the ICs score-related selected intersection genes from different datasets. (K, L) Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses of ICs score-related intersecting genes.
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microenvironment was more abundant in patients with high ICs
score. Figures 2F–G showed the main results of GSEA enrichment
analysis between the above two subgroups. The waterfall graphs
further showed the relationship between ICs scores and the
mutation status of common driving genes (Supplementary Figure S2).

To further screen the genes significantly associated with ICs score,
we performedWCGNA analysis. In the TCGA cohort (Figures 3A–C),
the red module was most closely related to ICs scores in 11 modules
(R2 = 0.71, p = 2e-83). In the GSE72094 cohort (Figures 3D–F), the
bluemodule in the 13modules wasmost closely related to the ICs score
(R2 = 0.75, p = 3e-81). In the GSE41271 queue (Figures 3G–I), the
brown module in the 18 modules was most closely related to the ICs
score (R2 = 0.75, p = 9e-35). By intersecting the above three hub gene
modules, we totally identified 205 genes significantly related to the ICs
score (Figure 3J). The genes belonging to each module of TCGA
cohort, GSE72094 cohort and GSE41271 cohort and the results of the
intersection of the three modules were shown in Supplementary Table
S5. GO enrichment analysis showed that these ICs-associated genes
were mainly enriched in immune-related biological processes, such as
T cell activation, lymphocyte proliferation, leukocyte proliferation, etc.
(Figure 3K). The results of the KEGG pathway enrichment analysis
were also enriched in immune-related pathways such as PI3K-Akt
signaling pathway, Cytokine-cytokine receptor interaction,
Chemokine signaling pathway, JAK-STAT signaling pathway, and
TNF signaling pathway (Figure 3L).

Stratification of LUAD patients based on ICs
score-related hub genes

Based on the above ICs score-related hub genes, we utilized the
NMF algorithm to cluster TCGA-LUAD patients. According to the
steepness of the “cophenetic” decline, the optimal number of clusters
selected was two (k = 2) (Figures 4A, B). PCA analysis showed that the
gene expression profile of the C1 (n = 319) cluster classified by ICs-
related genes was significantly different from that of the C2 (n = 207)
cluster (Figure 4C). Prognostic analysis showed that LUADpatients in
the C2 cluster had significantly better OS (HR = 0.65, p � 0.006) and
DSS (HR = 0.63, p � 0.019) than LUAD patients in the C1 cluster
(Figures 4D, E). The Baseline characteristics of the LUAD patients in
the two clusters (C1 and C2) shown in Supplementary Table S6.

Biological characteristics of ICs related
clusters

The tumor environment and immune cell infiltration of the two
clusters were compared to verify the effectiveness of the above clustering
method. In terms of the tumor microenvironment, the samples in the
C1 cluster had significantly lower stromal scores, immune scores, and
ESTIMATE scores and significantly higher tumor purity than the
C2 cluster (Figures 5A, B). Correspondingly, the results of immune
cell infiltration showed that 23 immune cells except neutrophils were
significantly higher in the C2 cluster (Figure 5C). We performed
immune function enrichment analysis and found that immune
functions were more enriched in the C2 cluster (Figure 5D). As for
the expression levels of ICGs, we found that the differentially expressed
ICGs were mainly upregulated in the C2 cluster (Figure 5E). IPS

analysis can predict the ability of patients to respond to ICIs. We
can see that the IPS scores of patients in the C2 cluster were significantly
higher than those in the C1 cluster (Figures 5F–I), which means that
such patients have stronger immunogenicity and may benefit more
from immunotherapy.

To further explore potential mechanisms, we conducted a
differential analysis of the gene expression profiles between the two
clusters and finally obtained 314 differentially expressed genes (DEGs).
Figures 6A, B showed a volcano plot of the difference analysis and a heat
map of DEGs between the two groups. GO and KEGG enrichment
analyses were performed based on these 314 genes. The results of GO
enrichment analysis mainly enriched in immune-related biological
processes such as leukocyte proliferation, regulation of leukocyte
proliferation, leukocyte mediated immunity, regulation of
lymphocyte proliferation, and regulation of mononuclear cell
proliferation (Figure 6C). The results of KEGG enrichment analysis
also included cytokine receptor interaction, Phagosome, Intestinal
immune network for IGA production, Chemokine signaling
pathway, B cell receptor signaling pathway, etc. (Figure 6D). All the
above results showed that tumor immunity was significantly different
between the two subgroups classified by the NMF algorithm.

Construction and validation of immune-
related risk signature

To better classify the above subgroups for clinical treatment
guidance and quantify the specific risk score for each LUAD
patient, we intersected 314 differentially expressed genes (DEGs)
with 2660 immune-related genes (IRGs) and finally obtained
116 immunologically relevant differentially expressed genes (IR-
DEGs) (Figure 7A). In the training set, we performed univariate
Cox regression on the above IR-DEGs, and 44 genes with significant
prognostic values were identified (Figure 7B). Then, we performed
LASSO regression analysis to further screen the 44 IR-DEGs described
above to refine the predictive signature (Figures 7C, D) and obtained
12 candidate genes. The list of the 116 IR-DEGs and the 44 genes with
significant prognostic values were shown in Supplementary Table S7.
To construct the final signature, a multivariate Cox regression analysis
was performed on these 12 genes, with the risk score (RS) for each
sample multiplying the expression of the final 7 genes by the
coefficients of their multivariate cox regression (Figure 7E).

Based on the median value of RS in the training set, we divided
LUAD patients in the training set, the validation set, and the external
validation set (GSE72094 and GSE41271) into high-risk and low-risk
groups. As was shown in the K-M survival analysis, the patients of the
high-risk group had significantly worse OS than the low-risk group in
either cohort (Figures 7F–I). For the training set, the AUC at 1-year, 3-
year, and 5-year were 0.74, 0.73, and 0.73, respectively. For the
validation set, the AUC at 1-year, 3-year, and 5-year were 0.72, 0.73,
and 0.62. For the whole set, the AUC at 1-year, 3-year, and 5-year were
0.73, 0.73, and 0.70. As for the external validation set, the AUCat 1-year,
3-year, and 5-year were 0.67, 0.67, and 0.68 (Figures 7J–M). Besides, we
validated our signature in different clinical subgroups (based on age,
gender, smoking status, and tumor clinical stage), and found that
patients in the low-risk group had a better prognosis than those in
the high-risk group (Supplementary Figure S3). All the results
confirmed that our risk signature had a good predictive ability.
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Correlation analysis of clinical
characteristics and construction of
nomogram

LUAD patients in the above different classification modes can be
intuitively reflected in the Sankey diagram (Figure 8A). Clinical
correlation analysis results showed that male, PD/SD, late clinical
stage, higher T stage, and higher N stage LUAD patients had higher
risk scores, while clinical characteristics such as patient age, smoking,
and M stage did not appear to be associated with risk score (Figures
8B–I). Supplementary Figure S4 showed comparations of the tumor
environment and immune cell infiltration of the two risk groups.
Univariate and multivariate cox analyses were utilized to further
determine whether the risk score is an independent prognostic
factor for LUAD, and the results showed that the risk score based
on 7 gene expression was an independent prognostic factor for LUAD
patients, and the clinical stage was also an independent prognostic
factor (Figure 8J). The C-index and ROC curves showed that the

predictive ability of the risk score was better than age, gender, smoking,
lung cancer location, clinical stage, and other clinical characteristics
(Supplementary Figure S5). To further provide a more accurate clinical
prediction protocol, we constructed a prognostic nomogram based on
the risk score and the patient’s clinical characteristics, which visually
showed the 1-year, 3-year, and 5-year estimated survival rates of LUAD
patients (Figure 8K). As demonstrated by the calibration curves, there
was good agreement between the predicted patient survival and the
actual survival (Figure 8L), which also indicates that our nomogramhad
a better prognostic value for LUAD patients.

Enrichment analysis based on risk signature

In order to further explore the potential biological mechanisms
that lead to so many differences between the two risk groups, GSEA
enrichment analysis and GSVA enrichment analysis were performed
based on the Hallmarks gene set (h.all.v7.2.symbols.gmt) in the

FIGURE 4
Cluster analysis of intersection genes related to ICs in the TCGA cohort. (A, B) According to the steepness of the ’ cophenetic ’ decline, the LUAD
dataset in the TCGA cohort was divided into two distinct clusters when k = 2. (C) The 3D PCA plots showed the cluster could distinguish lung
adenocarcinoma (LUAD) patients based on the expression profiles of the LUAD dataset. (D, E) The Kaplan–Meier curve survival analysis of Overall Survival
(OS) and Disease-Specific Survival (DSS) between different cluster groups.
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FIGURE 5
(A) The comparisons of the stromal score, immune score, and ESTIMATE score between different clusters. (B) The comparisons of tumor purity
between different clusters. (C) The pod plot displaying the difference in immune cell infiltration between different clusters. (D) The boxplot illustrating the
difference in immune-related functions between different clusters. (E) The boxplot illustrating the difference in the expression of differentially expressed
ICs genes between different clusters. The comparison of immunophenotype score (IPS) between different cluster groups. (F) CTLA4+_PD1+, (G)
CTLA4+_PD1−, (H) CTLA4−_PD1+, (I) CTLA4−_PD1−. ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
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MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
database. The two types of enrichment analysis showed that
compared with the tumors of patients in the low-risk group,

there were more obvious features of MYC_TARGETS_V1, MYC_
TARGETS_V2, and more deficient COMPLEMENT and KRAS_
SIGNALING in the tumors of high-risk patients (Figures 9A, B).

FIGURE 6
The volcano plot (A) and the heatmap (B) showing the differentially expressed genes (DEGs) in different clusters. (C) The GO analysis of the
differentially expressed genes between different clusters. (D) The KEGG pathway enrichment analysis of differentially expressed genes between different
clusters.
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FIGURE 7
Development and validation of the immune-related signature. (A) Venn diagram displaying a total of 116 immune-related differentially expressed
genes resulting from the intersection of 314 differentially expressed genes (DEGs) with 2660 immune-related genes (IRGs). (B) The forest plot displaying
the HR (95% CI) and p-values for selected differentially expressed genes between different clusters using the univariate Cox regression analysis (top 10,
according to p-value). (C, D) 12 candidate genes were obtained by LASSO regression analysis. (E) The coefficients of the 7 genes in the signature. The
Kaplan–Meier curve survival analysis for LUAD patients stratified by the risk score in the TCGA training set (F), the TCGA validation set (G), the overall TCGA
set (H), the external validation set (GSE72094 and GSE41271) (I). ROC analysis at 1, 3, and 5 years of LUAD patients in the TCGA training set (J), the TCGA
validation set (K), the overall TCGA set (L), and the external validation set (GSE72094 and GSE41271) (M).
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FIGURE 8
(A) The Sankey diagram revealed the potential connection between ICs score, NMF cluster, risk score, and survival status. (B–I) The comparisons of
the risk score in LUAD patients with different gender, ages, main treatment outcomes, smoking status, clinical stage, T stage, N stage, and M stage. (J)
Univariate and multivariate Cox regression analyses showed that risk score is an independent prognostic factor of LUAD. (K) The nomogram combining
risk score and other clinicopathological parameters was developed to predict 1-, 3-, and 5-year survival. (L) Calibration curves showing the
predictions of the nomogram that we established for 1-, 3-, and 5-year overall survival. ns, not significant; * p < 0.05; *** p < 0.001.
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Figure 9C showed the heat map of the GSVA enrichment scores of
the four characteristics of each patient.

Guiding significance of risk signature for
immunotherapy of LUAD patients

In the TCGA cohort, 439 LUAD patients received one or more
treatment regimens, including 331 CR/PRpatients and 108 PD/SD
patients. Comparing the risk scores of the two groups of patients,
we noticed that PD/SD patients had significantly higher risk scores than
CR/PR patients (Figure 10A). To better provide individualized
treatment guidance for each LUAD patient, the role of the risk
score in immunotherapy was further comprehensively analyzed.
Figure 10B showed that a variety of classical immune checkpoint
molecules, including CD274, CTLA4, PDCD1, and SIGLEC15, were
more highly expressed in low-risk patients, which seems to suggest that
the application of corresponding immune checkpoint inhibitors to such
patients was more beneficial. According to the TIDE algorithm, low-
risk patients had significantly lower Tide scores and Dysfunction scores

and significantly higher Exclusion scores than high-risk patients,
indicating that the possibility of immune escape in such patients is
lower, and the efficacy may be better when using immunotherapy
(Figures 10C, E, F). Correspondingly, for patients receiving
immunotherapy, we can see that the percentage of patients
responding to treatment in low-risk patients was significantly higher
than that in high-risk patients (Figure 10D). Figures 10G–J showed a
comparison of IPS scores between the two groups, where low-risk
patients had significantly higher three IPS scores than high-risk patients,
further suggesting that low-risk patients may be more sensitive to
immunotherapy. TMB is a potential indicator for evaluating
immunotherapy, and it has been reported that the higher the TMB
of a tumor, the more neoantigens it is exposed to, and therefore more
easily recognized and eliminated by the immune system.We found that
the tumors of patients in the low-risk group had higher TMB
(Figure 10K), so low-risk patients were more likely to benefit from
immunotherapy, which also verified the above conclusion. Figure 10L
showed the ratio of TCGA immune subtypes in patients with different
risk groups, and significant differences in the immunophenotype did
exist among patients in different risk groups.

FIGURE 9
(A) Venn diagram displaying a total of four pathways resulting from the intersection of GSVA enrichment analysis with GSEA enrichment analysis
based on differentially expressed genes in different risk groups. (B) GSEA enrichment analysis of the four pathways. (C) The heat map displaying GSVA
enrichment scores of the four pathways of each patient.

Frontiers in Cell and Developmental Biology frontiersin.org14

Hua et al. 10.3389/fcell.2023.1060086

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1060086


Subsequently, we verified the response of immunotherapy in the
IMvigor210 cohort. Figure 10M showed that the high-risk patients
in the IMvigor210 cohort had worse OS than low-risk patients,

consistent with the TCGA cohort and the GEO cohort. For
immunotherapy, the percentage of low-risk patients with a good
outcome of immunotherapy was significantly higher than that of

FIGURE 10
(A) The comparisons of the risk score in TCGA-LUAD patients with treatment outcomes. (B) The boxplot displaying the difference in immune
checkpoint genes between different risk groups. The comparisons of the TIDE score (C), Dysfunction score (E), and Exclusion score (F) between different
risk groups. (D) Percentage of immunotherapy response among risk groups of LUAD patients. The comparison of immunophenotype score (IPS) between
different risk groups. (G)CTLA4+_PD1+, (H)CTLA4+_PD1−, (I) CTLA4−_PD1+, (J)CTLA4−_PD1−. (K) The comparisons of tumormutational burden
(TMB) of patients in different risk groups. (L)Comparison of the differences in immune subtype between different risk groups. (M) The Kaplan–Meier curve
survival analysis between the high- and low-risk groups in the IMvigor210 cohort. Predictive value of risk score for immunotherapy response in the
IMvigor210 cohort. (N) The percentage of immune response type among risk groups of patients in the IMvigor210 cohort. (O) The percentage of immune
cell (IC) level type among risk groups of patients in the IMvigor210 cohort. (P) The percentage of tumor cell (TC) level type among risk groups of patients in
the IMvigor210 cohort. (Q) The percentage of immune subtypes among risk groups of patients in the IMvigor210 cohort. Specimens were scored as
immunohistochemistry IC0, IC1, IC2, or IC3 if <1%, ≥1% but <5%, ≥5% but <10%, or ≥10% of ICwere PD-L1 positive, respectively. Specimenswere scored as
immunohistochemistry TC0, TC1, TC2, or TC3 if <1%, ≥1% but <5%, ≥5% but <50%, or ≥50% of TC were PD-L1 positive, respectively. ns, not significant; *
p < 0.05; ** p < 0.01; *** p < 0.001.
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high-risk patients (Figure 10N). The percentages of immune cells
and tumor cells expressing PD-L1 were higher in low-risk patients
than in high-risk patients (Figures 10O, P). Inflammatory-immune
subtype analysis showed that low-risk patients had a higher
percentage of “immune-inflamed” tumors and lower percentages
of “immune-desert” and “immune-excluded” tumors compared to
high-risk patients (Figure 10Q). The ROC curves showed that the
predictive ability of the risk score in predicting the response of IO
treatment was better when compared with PD-L1 levels
(Supplementary Figure S6).

Guiding significance of risk signature for
chemotherapeutic and targeted therapy of
LUAD patients

To explore the guiding role of the risk signature in
chemotherapeutic and targeted therapy for LUAD patients, we
evaluated the relationship between risk scores and IC50 values of
several common chemotherapy drugs such as cisplatin, docetaxel,
gemcitabine, DMOG, rapamycin, Bortezomib, Erlotinib, Gefitinib.
The results in Figure 11 indicate that patients in the high-risk group
may be more sensitive to docetaxel, rapamycin, and Erlotinib, while
patients in the low-risk group may benefit more from cisplatin,
gemcitabine and DMOG.

The RHOV gene is closely related to the
development of LUAD

The chromosomal locations of the 7 genes in the risk signature were
respectively shown in Figure 12A. Analysis of copy number variation
frequencies showed that all seven signature genes exhibited significant
CNV alterations (Figure 12B). In addition, FCER2, CD200R1, and
RHOV in the signature were strongly associated with the clinical stage
of the tumor (Figure 12C), and univariate cox analysis showed that
except for TNNT2, WT1 and KRTAP5-8, the remaining signature
genes were closely correlated with the prognosis of LUAD patients
(Figure 12D). To further evaluate the importance of these genes for the
prognostic contribution of LUAD patients, we performed a random
forest analysis of these genes based on risk scores and patient survival
status and found that the mean decrease Gini of RHOV was higher in
both analyses (Figures 12E–H). In view of the important impact of
RHOV on the survival and prognosis of LUAD patients, we conducted
an in-depth study on it. Through K-M survival analysis, we found that
LUADpatients with highRHOVexpression had significantly worseOS,
DSS, and PFI than LUAD patients with low RHOV expression (Figures
12I–K). The results of clinical correlation analysis showed that LUAD
patients with late clinical stage, late N stage, and poor treatment effect
had higher RHOV expression levels, which further confirmed that
RHOV expression was closely related to the occurrence and
development of LUAD (Figure 12L).

Experimental verification

We performed RT-qPCR to validate the expression of RHOV in
16HBE cells, SPC-A-1 cells, and NCI-H1975 cells. As shown in

Figure 13A, compared with 16HBE cells, the expression levels of
RHOV were significantly increased in SPC-A-1 cells and NCI-H1975
(p< 0.05), which was consistent with our previous analysis results.
Besides, we also selected RHOV in the SPC-A-1 cells to further verify
the accuracy of our model. The SPC-A-1 cells were transfected with
siRNA-RHOV and siRNA- NC respectively. The results of RT-qPCR
showed that the expression level of RHOV in the siRNA-RHOV
group was significantly reduced when compared with the blank
control group and the siRNA-NC group (Figure 13B).
Subsequently, we performed a scratch assay and a transwell assay
to evaluate the effect of the knockdown of RHOV on the migration of
the SPC-A-1 cells. After knocking out RHOV, a decrease in migration
ability was observed (Figures 13C, D). We also performed a
proliferation assay. As shown in Figure 13E, after transfection of
SPC-A-1 cell lines with siRNA-RHOV, the cell growth was
significantly reduced at 24 and 48 h. Finally, the rate of cell colony
formation was detected respectively and the knockdown of RHOV
reduced the energy metabolism of SPC-A-1 cells and affected the
effect of colony formation (Figure 13F).

Discussion

The incidence of lung cancer has increased worldwide in recent
years. Lung adenocarcinoma is the most common subtype of lung
cancer and the 5-year survival rate for lung adenocarcinoma is very
frustrating. Surgical lobectomy is the main treatment for LUAD at
present, but the results are unsatisfactory due to the limited surgical
outcomes and malignant nature of LUAD. Since patients with
refractory malignancies including lung cancer benefit greatly from
immune checkpoint inhibitors (Brahmer et al, 2015; Hellmann et al,
2017), immunotherapy is emerging as a new treatment option for
cancer patients. As the key to immunotherapy, immune checkpoint
molecules can play a critical role in the immune environment
homeostasis by regulating the activation or inhibition of immune
cells (Yu et al, 2020). So far, several ICIs targeting immune
checkpoints, including Pembrolizumab, have shown tremendous
potential in the treatment of various malignant tumors such as
LUAD, and have been approved by the FDA for clinical treatment
(Zhai et al, 2020). Unfortunately, although ICIs showed better efficacy
and fewer side effects in LUAD patients, most patients did not benefit
from ICIs (Schoenfeld and Hellmann, 2020). Some scholars have
proposed that we may not be able to accurately identify patients who
may be clinically eligible for immunotherapy only by the expression
levels of classic ICGs such as CTLA4, PD-1, and PD-L and
comprehensive analysis of ICGs in tumor tissues may be able to
assess the responsiveness of patients more accurately to
immunotherapy (Topalian et al, 2016).

In this study, we collected asmany ICGs as possible asmentioned in
the published literature. LUAD patients in TCGA and GEO datasets
were scored according to a total of 82 ICGs expression levels, and
module genes closely related to ICs scores were obtained by the
WCGNA algorithm. Based on these genes, we classified LUAD
patients into two subgroups with significant differences in prognosis
and immune characteristics by NMF algorithm. Survival analysis
showed that OS and DSS in the C2 group were significantly better
than those in the C1 group. Tumormicroenvironment and immune cell
infiltration analysis showed that the immune and matrix scores were
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lower in C1 tumors, and the infiltration abundance of immune cells
such as CD4 +T, CD8 +T, and B cells was also lower.Moreover, for the
vast majority of ICGs differentially expressed in the two types of tumor

tissues, their expression levels were significantly lower in C1 tumor
tissues than in C2. The results of IPS immunotherapy analysis also
confirmed that the response of C2 patients to ICIs did seem to be better

FIGURE 11
The relationship between risk scores and IC50 values of several common chemotherapy drugs. ns, not significant; * p < 0.05; ** p < 0.01; ***
p < 0.001.
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FIGURE 12
(A)Circus plots of chromosome distributions of selected genes from the risk model. (B) Frequencies of gain and loss for selected genes from the risk
model. (C) The comparisons of risk model gene expression in patients with different clinical stages. (D) Univariate Cox regression analysis was performed
on these risk model genes. (E–H) To further evaluate the importance of these genes for the prognostic contribution of LUAD patients, we performed a
random forest analysis of these genes based on risk scores and patient survival status and found that the mean decrease Gini of RHOV was higher in
both analyses. (I–K) The Kaplan–Meier curve survival analysis showing the relationship between the expression of RHOV and overall survival (OS),
disease-specific survival (DSS), and progress-free interval (PFI). (L) The expression of RHOV in TCGA-LUAD patients with different pathologic stages, T
stage, N stage, M stage, and primary therapy outcomes. ns, not significant; ** p < 0.01; *** p < 0.001.
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FIGURE 13
(A) The histogram showed the relative expression levels of RHOV evaluated by RT-qPCR in the 16HBE cells, SPC-A-1 cells, and NCI-H1975 cells. (B)
Using RT-qPCR to evaluate the efficiency of gene knockdown by siRNA in the SPC-A-1 cells. (C, D) The effect of RHOV on cell migration was studied by
scratch assay and transwell assay. (E) CCK-8 assay results showed the relative proliferation the siRNA-RHOV cells and the siRNA-NC cells. (F) The results
of Cell colony formation assay. ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
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than that of C1 patients. Enrichment analysis showed that the
differentially expressed genes between the two subtypes were
enriched in a variety of immune-related biological processes and
signaling pathways.

A hierarchical signature consisting of 7 genes was constructed by
Cox and LASSO algorithms based on the differentially expressed
immune-related genes between the above two subgroups. LUAD
patients were divided by the signature into two groups: low-risk
patients and high-risk patients. Survival analysis showed that patients
in the low-risk group had better OS than those in the higher-risk
group in the TCGA and GEO patient cohorts. Clinical correlation
analysis showed that the risk score was closely related to the gender,
clinical stage, T stage, and N stage of LUAD patients. Independent
prognostic analysis has shown that risk score and clinical stage were
independent risk factors for LUADpatients. Integrating the above risk
factors, the nomogram was constructed to predict the prognosis of
LUAD patients, and the results were in good agreement with the
actual survival rate of patients. To further guide the precise treatment
of LUAD patients, we evaluated their responsiveness to
immunotherapy through the TIDE algorithm, IPS algorithm, and
TMB analysis and the results showed that low-risk patients seemed to
be more likely to benefit from immunotherapy. According to the
study of Thorsson et al (2018) on tumor immunotyping in TCGA, we
found that the proportion of patients with C1 and C4 tumors in low-
risk patients was lower than that in high-risk patients, and the
proportion of patients with C2 and C3 tumors in low-risk patients
was higher. As for the IMvigor210 cohort, we further verified the
above analysis results. The response of patients in the high-risk group
to immunotherapy was worse than that of patients in the low-risk
group. As was shown in the immune subtypes analysis, “immune
inflamed” tumors were more common in low-risk patients, while
“immune desert” tumors were less common in high-risk patients.

As for the GSEA and GSVA enrichment analysis, the tumors of
high-risk patients had obvious characteristics of the Myc pathway, and
the tumors of low-risk patients had obvious characteristics of the
complement system and KRAS signaling pathway. The Myc family of
transcription factors consists of c-Myc, N-Myc, and L-Myc, and high
expression of Myc contributes to tumorigenesis, including cell growth
andmetabolism of tumor cells, reduction of cell adhesion andmetastasis,
unrestricted proliferation, and inhibition of differentiation (Scognamiglio
et al, 2016). As an important part of innate immunity, the complement
system can effectively remove foreign bodies and maintain homeostasis.
It has been reported that the complement system is not only involved in
the killing and monitoring of tumor cells, but also in the process of
promoting tumorigenesis (Li et al, 2018; Qian et al, 2019). Complement
regulatory proteins such as CD35, CD46, CD55, and CD97 can inhibit
the cytolysis of complement and evade immune surveillance. KRAS is a
murine sarcomatoid virus oncogene and is responsible for controlling the
path of regulating cell growth. When KRAS is mutated, it can lead to
abnormal protein function and disorder of intracellular signal
transduction, which leads to the continuous proliferation of tumors.
The study of Sunaga et al (2011) showed that the detection rate of KRAS
carcinogenic mutations in LUAD patients was > 25%, and these
mutations predicted poor patient outcomes.

For the seven genes in the signature, we found FCER2, CD200R1,
and RHOV closely correlated to the prognosis and clinical stage of
LUAD patients. RHOV was identified as the most critical gene in this
signature. Peng et al (2011) found that RHOV was differentially

expressed in prostate cancer, and its expression level was closely
related to the occurrence and development of tumors. In an earlier
study, RHOV was considered to be overexpressed in NSCLC and may
be a potential prognostic or diagnostic indicator for NSCLC (Shepelev
and Korobko, 2013). In recent years, the understanding of the
relationship between RHOV and LUAD has been further deepened.
Zhang et al (2021) found that RHOV is closely related to LUAD
metastasis. By activating the Jun N-terminal Kinase (JNK)/c-Jun
signaling pathway and regulating the expression of markers of
epithelial-to-mesenchymal transition, RHOV overexpression
promotes the proliferation, migration, and invasion of LUAD cells,
which indicates a shorter survival time. Chen et al (2021) found that
RHOV overexpression promoted lung cancer progression and EGFR-
TKI resistance and this might result from the activation of the AKT/
ERK pathway. In this study, we found that RHOVwas highly expressed
in tumors of LUAD patients, and RHOV overexpression indicates a
worse survival outcome. RHOV is also closely correlated with the
clinical features of LUAD patients. To further study the relationship
between RHOV and the occurrence and development of lung cancer,
we carried out cytological experiments. The results showed that RHOV
is significantly overexpressed in human lung cancer cell lines and after
inhibiting RHOV expression, the proliferation and migration capacity
of tumor cells decreased. Until now, the mechanism of how RHOV
plays a role in the occurrence and progression of LUAD is not very
clear, which needs further exploration in the future.

Compared with some recent studies about lung cancer
immunotherapy (Xu et al, 2020; Ling et al, 2021; Chen et al,
2022), our research adopts different grouping methods, and the
analysis of immune microenvironment is more comprehensive, and
our risk signature has a higher AUC. Besides, we also validated our
risk model gene through experiments in cell lines.

In summary, we performed a comprehensive analysis of the
expression profile of ICGs in LUAD tumor tissues and thus
constructed an immune-related signature based on the global
landscape of ICGs. Stratified by this signature, the high-risk and
low-risk patients are different in prognosis prediction, clinical
characteristics, and treatment sensitivity. According to the results
of our model analysis, early identification, timely intervention, and
individualized treatment of the two types of patients are helpful to
improve their quality of life and long-term survival rate. Finally, our
study provides an important theoretical basis for further study of the
role of ICGs in LUAD.
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