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Introduction: Maternal immune activation (MIA) is closely related to the onset of
autism-like behaviors in offspring, but the mechanism remains unclear. Maternal
behaviors can influence offspring’s development and behaviors, as indicated in
both human and animal studies. We hypothesized that abnormal maternal
behaviors in MIA dams might be other factors leading to delayed development
and abnormal behaviors in offspring.

Methods: To verify our hypothesis, we analyzed poly(I:C)-induced MIA dam’s
postpartum maternal behavior and serum levels of several hormones related to
maternal behavior. Pup’s developmental milestones and early social
communication were recorded and evaluated in infancy. Other behavioral
tests, including three-chamber test, self-grooming test, open field test, novel
object recognition test, rotarod test and maximum grip test, were performed in
adolescence of pups.

Results: Our results showed that MIA dams exhibit abnormal static nursing
behavior but normal basic care and dynamic nursing behavior. The serum
levels of testosterone and arginine vasopressin in MIA dams were significantly
reduced compared with control dams. The developmental milestones, including
pinna detachment, incisor eruption and eye opening, were significantly delayed in
MIA offspring compared with control offspring, while the weight and early social
communication showed no significant differences between the two groups.
Behavioral tests performed in adolescence showed that only male MIA
offspring display elevated self-grooming behaviors and reduced maximum grip.
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Discussion: In conclusion, MIA dams display abnormal postpartum static nursing
behavior concomitantly with reduced serum levels of testosterone and arginine
vasopressin, possibly involving in the pathogenesis of delayed development and
elevated self-grooming in male offspring. These findings hint that improving dam’s
postpartum maternal behavior might be a potential regime to counteract delayed
development and elevated self-grooming in male MIA offspring.

KEYWORDS
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offspring

Introduction

Autism spectrum disorder (ASD) is a heterogeneous group of
refractory neurodevelopmental disability. It is characterized by
social dysfunction as well as repetitive and stereotyped behavior
(American Psychiatric Association, 2013). According to an umbrella
review of evidence, up to 67 environmental risk factors and
52 biomarkers have been evaluated in the pathogenesis of ASD
(Kim et al., 2019). However, the mechanism of ASD remains unclear
with few effective therapies due to the high clinical and genetic
heterogeneity (Bhat et al., 2014; Bhandari et al., 2020). It is of great
significance to explore the mechanism of ASD, whichmight pave the
road toward novel strategies in therapy.

The prevalence and disability-adjusted life years of ASD have
increased rapidly in countries with high socio-demographic index
from 1990 to 2019 (Solmi et al., 2022). According to the latest data,
the global prevalence of autism is approximately 1/100 (Zeidan et al.,
2022), while in China it is up to 0.70% (Zhou et al., 2020).
Coincidentally, numerous epidemiologic studies provide evidence
that maternal viral infection is growing rapidly in developed
countries (Cannon and Davis, 2005; Ludwig and Hengel, 2009;
Bate et al., 2010; Basha et al., 2014; Taniguchi et al., 2014) and has
significant association with autism (Atladottir et al., 2010b). Croen
et al. (2019) found that women who had an infection accompanied
by a fever during the second trimester are more likely to have
children with ASD. Several meta-analyses of clinical studies also
indicate that maternal infection during pregnancy confers an
increase in risk for autism in offspring (Jiang et al., 2016; Tioleco
et al., 2021). Taken together, we speculate that maternal viral
infection might be one of the most important factors
contributing to the dramatic increase of ASD morbidity.

Maternal viral infection can induce maternal immune activation
(MIA), which affects fetal neurodevelopment via cytokine storm
(Estes and McAllister, 2016). These cytokines are closely related to
the onset of ASD. For example, the level of MCP-1 is significantly
elevated in the amniotic fluid of ASD individuals (Abdallah et al.,
2012). MCP1 is secreted by PDGFRβ vascular wall cell. It is firstly
activated in central nervous system (CNS) responding to
inflammation and in turn increases neuronal excitability by
promoting excitatory synaptic transmission in glutamatergic
neurons of multiple brain regions (Duan et al., 2018). Elevated
levels of IFN-γ, IL-4 and IL-5 in maternal serum are associated with
increased risk for ASD in offspring (Goines et al., 2011). Aberrant
level of IL-17 has been reported in several rodent models of ASD
(Thawley et al., 2022). Maternal IL-17a could promote abnormal
cortical development and autism-like behaviors in mice offspring

(Choi et al., 2016). Poly(I:C)-inducedMIA activates integrated stress
response (ISR) in male but not female mice offspring via an IL-17a-
dependent manner, which reduced global mRNA translation and
altered nascent proteome synthesis (Kalish et al., 2021).

Rodent MIA offspring is likely to be predisposed to ASD. Lee
et al. (2021) found that lipopolysaccharide (LPS)-induced MIAmale
offspring showed social behavior deficits, anxiety-like and repetitive
behavior, hypomyelination and abnormal microbiota profile.
Mycobacterium tuberculosis-induced MIA mice offspring
displayed increased grooming behavior (Manjeese et al., 2021). In
addition, Atanasova et al. (2023) reported that MIA exacerbated
ASD related alterations in Shank3-deficient mice, suggesting the
synergistic effects of MIA and genetic factors in the pathogenesis of
ASD. However, the effects of anti-inflammatory or antioxidant on
ASD are controversial (Hafizi et al., 2019; Pangrazzi et al., 2020).
Although antibiotic used on pregnant women may modify the
influence of MIA on increasing the risk of ASD in child
(Holingue et al., 2020), the incidence of ASD would be reduced
by only 12%–17% if maternal infections could be prevented or safely
treated in a timely manner (Tioleco et al., 2021), suggesting that
MIA induced ASD in offspring through other mechanisms.

Maternal parenting behavior plays an important role in prosocial
behavior development of children (Tang et al., 2022). Abnormal
maternal parenting behavior is common in parents of ASD children
and closely linked to the severity of ASD (Maljaars et al., 2014).
Recently, Zambon et al. (2022) found that MIA disrupts
hypothalamic neurocircuits of maternal care behavior, hinting that
disruptedmaternal care behavior might be involved in the pathogenesis
of ASD induced by MIA. Maternal behaviors are regulated by multiple
hormones. Estradiol, progesterone and prolactin are main peripheral
hormones playing a synergistic role in the regulation of maternal
behavior (Keller et al., 2019). Many neurochemical molecules, such
as oxytocin (OXT) and arginine vasopressin (AVP), are also involved in
regulating maternal behavior. OXT can mediate the formation of
mother-infant connection and enhance maternal care (Mitre et al.,
2016), while the main function of AVP is regulating maternal
aggression (Bayerl and Bosch, 2019). Mothers of autistic children
showed lower plasma levels of OXT and AVP as well as a higher
plasma level of testosterone (Xu et al., 2013). In addition, increased
corticosterone level in mother decreases neural response to baby’s
crying (Laurent et al., 2011). Kirsten et al. (2013) found that
prenatal exposure to LPS increases maternal serum corticosterone
level, causing placental injury and increasing IL-1β level in adult rat
offspring, which are relevant to autism.

Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic
nucleotide dimer which has a great effect on inducing interferon
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(Traynor et al., 2004). In medical research, poly(I:C) is often used to
mimic a viral infection (Schwarze et al., 2016). Exposure to poly(I:C)
during mid-pregnancy in rats can be used as a model investigating
MIA (Vorhees et al., 2012; McColl and Piquette-Miller, 2021).
Importantly, this kind of animal model has been regarded as a
preclinical model for neurodevelopmental disorders, such as autism
and schizophrenia (Haddad et al., 2020).

In this study, we evaluated postpartummaternal behavior as well
as serum levels of sex hormones, OXT, AVP and corticosterone in
poly(I:C)-induced MIA dams. Developmental milestones and
behaviors of MIA offspring were also recorded and analyzed.

Materials and methods

Animals

Male and female Sprague-Dawley (SD) rats (270 g–350 g) were
obtained from the Department of Experimental Animal Sciences,
Peking University Health Science Center. Animals were housed
individually with free access to food and water under a 12–12 h
light-dark cycle. The humidity was 50% ± 10% and temperature was
23°C ± 2°C. This study was carried out following USA National
Institutes of Health Guide for the Care and Use of Laboratory
Animals. The protocols were approved by Peking University Animal
Care and Use Committee (LA2020228).

Construction of poly(I:C)-induced MIA rat
model

We constructed the poly(I:C)-induced MIA rat model according to
previous studies (Vorhees et al., 2012; McColl and Piquette-Miller,
2021). After acclimating for aweek, 12-week-old female rats were paired

with age-matched male rats. The day was considered embryonic day 0
(E 0) in the presence of a vaginal plug. Then pregnant rats were housed
separately. On E 14, pregnant rats received a single intraperitoneal
injection of either 8 mg/kg poly(I:C) (Sigma, P9582) or the same
volume of 0.01M phosphate buffered saline (PBS). After weaning at
postnatal day 21 (PND 21), offspring of the same group and sex but
from different dams were randomly mixed with 4-5 per cage until the
end of the experiments.

Experimental groups

The experiment was designed as 2 parts. In part I, 8 and 12 pregnant
rats were subdivided into control group and MIA group respectively
because poly(I:C) considerably increases the risk of resorption (Thaxton
et al., 2013; Wang et al., 2015). We aimed to evaluate the postpartum
maternal behavior and serum levels of several hormones related to
maternal behavior inMIA dams. The litter size and the offspring’s early
social communication were also evaluated in this part (see Figure 1A for
experimental procedure). In part II, 5 and 3 pregnant rats were
distributed into MIA group and control group, respectively. A total
of 43 offspring (15 control males, 10 control females, 8 MIA males and
10 MIA females) were finally included in this part. We evaluated the
litter size, developmental milestones and adolescent behavioral changes
inMIA offspring. The serum IL-6 level of dams after poly(I:C) injection
was also assessed in this part (see Figure 1B for experimental
procedure).

Serum IL-6 level of dams after poly(I:C)
injection

The serum IL-6 level of dams were used to validate the
establishment of MIA model (Parker-Athill and Tan, 2010). The

FIGURE 1
Experimental procedure. (A) Experimental design for Part I. (B) Experimental design for Part II.
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blood of dams in part Ⅱ was collected via caudal vein 3 h and 6 h
after poly(I:C) injection. Samples were placed at room temperature
for 20 min and centrifuged at 1,600 g for 15 min to separate serum.
The concentration of serum IL-6 was assessed following the kit
instruction (CUSABIO, CSB-E04640r, Wuhan, China).

Basal maternal care

The basal maternal care of dams was assessed as previously
reported (Lonstein and Fleming, 2002). Cotton and tissue paper
were given as nesting materials during the perinatal of female rats.
The nests built by dams were scored by 2 experimenters who were
blinded to the groups on PND 0, PND 1 and PND 2 (0 point: no
nest, paper strips still scattered over entire floor of the cage; 1 point:
poor nest, not all paper strips are used and the nest is flat; 2 point:
fair nest, all paper is used but the nest is flat; 3 point: good nest, all
paper is used and the nest wall is lower than 5 cm; 4 point: excellent
nest, all paper is used and the nest wall is higher than 5 cm) and took
the average. The nest score was the average of the 3-day scores. In
addition, after delivery, the following indicators of offspring were
recorded: with or without skin scar; attachment or removal of
placenta; survival rate.

Maternal behavior

Maternal nurturing behaviors of dams were assessed as
previously reported (Lonstein and Fleming, 2002). On PND 2,
dams were separated from the pups for 30 min and placed
individually in the home cage. Pups were placed on a heating
pad (37°C). After separation, dams were removed from the cage
transitorily and pups were quickly placed in the four corners of
the home cage. Then we placed dams back to the home cage and
videotaped for 30 min. The maternal care nursing behaviors
mainly include static nursing and dynamic nursing. Static
nursing includes latency and duration of retrieval and
crouching the pups. Dynamic nursing consists of the duration
of hovering above and licking the pups. All the maternal
behaviors were evaluated by an observer blinded to grouping.
In addition, we analyze the dam’s grooming time and nest
building time (Berger et al., 2018).

Determination of serum testosterone,
estradiol, progesterone, prolactin,
corticosterone, oxytocin and AVP in dams

Serum levels of these hormones in dam were determined at
PND 7. Blood was collected via decapitation and serum was
separated. The levels of testosterone (CUSABIO, Wuhan, China),
estradiol (CUSABIO, Wuhan, China), progesterone (CUSABIO,
Wuhan, China), prolactin (CUSABIO, Wuhan, China),
corticosterone (CUSABIO, Wuhan, China), oxytocin (Enzo life
sciences, PA, USA) and AVP (Enzo life sciences, PA, USA) were
assessed according to the kit instruction. All the 8 control dams in
part II were included in this section. But among the 9 MIA dams,
we failed to get blood in 1 MIA dam, and no enough serum was

separated from another MIA dam. Finally, the serum hormone
analytes had n = 8 per group except testosterone and
corticosterone had n = 7 for the MIA group.

Offspring’s developmental milestones

We recorded the offspring’s developmental milestones from
PND 2 to PND 15, including body weight, pinna detachment
day, incisor eruption day and eye-opening day. For each group,
the number of pups achieving these developmental goals was daily
recorded.

Isolation-induced ultrasonic vocalizations
(USVs)

Offspring’s early social communication was tested by isolation-
induced USVs on PND 7 between 18:00 and 22:00 in a quiet
environment with dim light. Offsprings were individually
removed from the home cage and gently transferred to the test
cage on a heating pad (37°C). USVs were recorded for 300 s for each
pup and collected by an ultrasonic microphone (CM16/CMPA,
Avisoft Bioacoustics, Berlin, Germany) hanging 25 cm above the
cage floor. The connected amplifier (AUSG-116H, Avisoft
Bioacoustics, Berlin, Germany) was set at a sampling frequency
of 250 kHz with a 125 kHz low-pass filter. The recorded files were
analyzed by Avisoft SASLab Pro (Version 4.52) using a fast Fourier
transform (512 FFT-length, 100% frame size, hamming window,
50% time-window overlap). The number and duration of total USVs
were recorded.

Offspring’s behavioral tests in adolescence

Adolescent offspring began behavioral tests on PND 35. Male
and female offspring were performed three-chamber test and self-
grooming test on PND 35 and PND 37, respectively. In order to
explore the underlying mechanism of elevated stereotypic behavior
in male offspring, we performed open field test, novel object
recognition test, rotarod test and maximum grip test on PND 39,
PND 43, PND 46 and PND 49, respectively, in male offspring since
rodent self-grooming has a strong association with sensation, motor
and memory (Kalueff et al., 2016). All the behavioral tests were
conducted in this particular order.

Three-chamber test

Social preference and social novelty of offspring were evaluated
on PND 35 by three-chamber test during the dark cycle (Dai et al.,
2018). The three-chamber apparatus comprises three identical
rectangular plexiglass chambers (40 cm × 34 cm × 24 cm). Each
side chamber connected to the central chamber by a corridor. The
subject rat was placed in the central chamber and explore freely for
5 min for habituation. Then two successive stages were followed.
Stage I for social preference. An unfamiliar, weight and sex matched
SD rat (Stranger 1) was locked in a wire cage and placed in one side
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chamber. An identical empty wire cage was placed in the other side
chamber. The subject rat was placed in the central chamber and
explored the three chambers for 10 min. Stage II for social novelty.
Another unfamiliar, weight and sex matched SD rat (Stranger 2) was
placed in the empty wire cage of the Stage I. The subject rat was then
allowed to access to the three chambers freely for 10 min. During the
experiment, the time spent in every chamber was automatically
recorded. To minimize the impact from residual rat odors, the entire
apparatus was thoroughly cleaned with 70% ethanol at the
beginning of each trial.

Self-grooming test

The self-grooming test performed on PND 37 is used to measure
the severity of stereotyped behavior in offspring. The rat was placed
into an empty cage similar to the home cage and explored freely for
10 min. Then rat behavior was video-taped for 10 min and total self-
grooming time was calculated by a researcher who was blinded to
grouping (Song et al., 2019). Self-grooming behaviors include: 1)
wiping nose, face, head and ears with forepaws; 2) licking body,
anogenital area and tail (Kalueff et al., 2016).

Open field test

Anxiety behavior and spontaneous activity of male offspring
were evaluated in open field test on PND 39. The subject rat was
initially placed in the center of the acrylic box (100 cm × 100 cm ×
40 cm) and explored freely for 10 min. Videos were processed by
SMART software (v2.5.21, Panlab Harvard Apparatus). The total
distances traveled in the open field represents spontaneous activity,
while the time spent in the outer zone (the area ratio of center zone
and outer zone is 1:3) represents anxiety behavior.

Novel object recognition test

Learning and memory ability of male offspring were evaluated
by the novel object recognition test during the dark period on PND
43 under dim red illumination according to a previous study (Song
et al., 2019). A subject rat was placed in the arena (60 cm × 40 cm ×
40 cm) for 10 min of habituation on the first and second day (PND
41 and PND 42). On the third day (PND 43), the rat was allowed to
explore two identical objects in the arena for 20 min. One hour later,
one of the two objects was replaced by a new object (with similar size
but different color and shape). The rat was placed into the arena
again exploring freely for 10 min and videotaped. The object
exploration time was calculated by a researcher blinded to
grouping. The object exploration behavior was defined as the
nose of the rat touching the object or being oriented toward the
object within 2 cm (Wang et al., 2011).

Rotarod test

Male offspring’s motor ability was tested by a rotarod test.
Subject rats were placed on the rotarod (Bioseb, France) for

5 min with a rotating speed of 4 rpm at the same time for
2 consecutive days (PND 44 and PND 45). At the same time of
the third day (PND 46), subject rats were placed on the rotarod for
5 min with the rotating speed going from 4 rpm to 40 rpm. Every
subject rat went through three repeated trials with an interval of
10 min. The latency to fall was recorded every time and the mean of
three recordings was calculated.

Maximum grip test

The male offspring’s maximum grip strength was measured
by maximum grip test. All the male pups were trained to be
adapted to the maximum grip test 2 consecutive days (PND
47 and PND 48). We gently placed the pups on the grid of the
dynamometer (Bioseb, France) and pulled their tails in the
opposite direction. On PND 49, the maximum grip strength
exerted by the pup before losing grip was recorded. We
repeated 3 measurements on each pup, allowing a 30 s
recovery time between each measurement. The mean of
3 measurements on each pup was calculated.

Statistical analysis

Data are presented as the mean ± SEM. Statistical analysis was
conducted by unpaired t-test (quantitative data with normal
distribution and equal variance) or Mann-Whitney U test
(quantitative data with non-normal distribution). Shapiro-
Wilk test was used to check normal distribution. Two-way
ANOVA was used to analyze the pup weight. A paired t-test
was used to determine within-group side preference in three-
chamber test and object exploration time in novel object
recognition test. Data were analyzed and graphed by
GraphPad Prism software (version 8.0.1). A double-tailed p <
0.05 was considered statistically significant.

Results

Poly(I:C)-induced MIA dams showed acute
elevated serum IL-6 level as well as reduced
litter size

To validate the establishment of MIA model, we accessed the
serum level of IL-6 inMIA dams 3 h and 6 h after poly(I:C) injection.
The serum IL-6 level in MIA dam was significantly increased 3 h
after poly(I:C) injection (Unpaired t-test, t = 4.059, df = 6, p =
0.0067, Figure 2A) but significantly decreased 6 h after poly(I:C)
injection (Unpaired t-test, t = 3.032, df = 6, p = 0.0230, Figure 2A). In
addition, we accessed the litter size of dams. The number of pups in
MIA dams is significantly lower than that in control dams (Unpaired
t-test, t = 3.204, df = 18, p = 0.0049, Figure 2B, part I; Unpaired t-test,
t = 2.905, df = 6, p = 0.0272, Figure 2B, part II), which is consistent to
previous studies (Kowash et al., 2019). This result indicated that
poly(I:C) injection induced acute inflammation and reduced litter
size in dams, suggesting that the MIA model construction is
successful.
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Poly(I:C)-induced MIA dams showed
abnormal static nursing behavior but normal
basic care and normal dynamic nursing
behavior

We evaluated the postpartum maternal behavior of dams.
The nesting score between the 2 groups showed no significant
difference (Mann-Whitney U test, U = 33.5, p = 0.7529,
Figure 3A). The placental adnexa tissue of all pups was
cleaned and all the pups survived with no skin lesions (data
not shown). These results suggested that the basal maternal care
of MIA dams did not change compared with control dams.
Regarding maternal behavior, the latency (Mann-Whitney U
test, U = 25.5, p = 0.3356, Figure 3B) and duration (Unpaired
t-test, t = 1.504, df = 15, p = 0.1534, Figure 3C) of retrieving
the pups tended to be elevated in MIA group, while the latency of
crouching the pups is significantly elevated (Mann-Whitney U
test, U = 11, p = 0.0183, Figure 3D) and the duration of
crouching the pups is significantly decreased in MIA group
(Mann-Whitney U test, U = 15, p = 0.0480, Figure 3E).
These results indicate that static nursing in MIA group is
abnormal. The time spent in hovering above (Unpaired t-test,
t = 0.3803, df = 15, p = 0.7091, Figure 3F) and licking (Unpaired
t-test, t = 0.3257, df = 15, p = 0.7492, Figure 3G) the pups also
showed no significant differences between control and MIA
group, suggesting that the dynamic nursing did not change in
MIA dams. We also evaluated the time spent in grooming
(Unpaired t-test, t = 0.1559, df = 15, p = 0.8782, Figure 3H)
and nest building (Mann-Whitney U test, U = 33, p = 0.8148,
Figure 3I), which showed no significant differences between
2 groups.

Poly(I:C)-induced MIA dams showed
reduced serum levels of testosterone
and AVP

To evaluate the potential mechanisms of abnormal static
nursing behavior in poly(I:C)-induced MIA dams, we

evaluated the serum levels of several hormones related to
maternal behavior. We found that the serum levels of
testosterone (Mann-Whitney U test, U = 8, p = 0.0205,
Figure 4B) and AVP (Unpaired t-test, t = 2.548, df = 14, p =
0.0232, Figure 4F) in MIA dams were significantly reduced
compared with control dams. The serum levels of estradio
(Unpaired t-test, t = 0.7375, df = 14, p = 0.4730, Figure 4A),
progesterone (Unpaired t-test, t = 0.02518, df = 14, p = 0.9803,
Figure 4C), prolactin (Unpaired t-test, t = 0.01691, df = 14, p =
0.9867, Figure 4D), oxytocin (Unpaired t-test, t = 0.2538, df = 14,
p = 0.8033, Figure 4E) and corticosterone (Unpaired t-test, t =
0.4756, df = 13, p = 0.6422, Figure 4G) showed no significant
differences between the 2 groups.

Poly(I:C)-induced MIA offspring showed
delayed developmental milestones with
normal weight and normal early
communication

To evaluate the developmental milestones in poly(I:C)-
induced MIA offspring, we recorded the pup’s weight, pinna
detachment, incisor eruption and eye opening from PND 2 to
PND 15. The pup’s weight showed no significant difference
between the two groups (two-way ANOVA, df = 6, p =
0.9466, Figure 5A), while the day of pinna detachment
(Mann-Whitney U test, U = 90, p < 0.001, Figure 5B), incisor
eruption (Mann-Whitney U test, U = 108, p = 0.0018, Figure 5C)
and eye opening (Mann-Whitney U test, U = 120, p = 0.0039,
Figure 5D) in MIA offspring were significantly later than that in
control offspring, suggesting that the developmental milestones
were significantly delayed in MIA offspring. The early social
communication in offspring was evaluated on PND7. The
isolation-induced USVs showed that total USVs number
(Mann-Whitney U test, U = 1490, p = 0.4257, Figure 5E) and
total USVs duration (Mann-Whitney U test, U = 1431, p =
0.2601, Figure 5F) were comparable between MIA and control
group, implying that MIA offspring had normal early social
communication.

FIGURE 2
Model validation. (A) Serum level of IL-6 in dams 3 h or 6 h after Poly(I:C) injection. Ctrl dam, n = 3; MIA dam, n = 5; *p < 0.05 based on Unpaired
t-test. **p < 0.01 based on Unpaired t-test. (B) Litter size of dams. Part I Ctrl dam, n = 8; MIA dam, n = 12; **p < 0.01 based on Unpaired t-test. Part II Ctrl
dams, n = 3; MIA dams, n= 5; *p < 0.05 based onUnpaired t-test. Ctrl, control. MIA, maternal immune activation. Error bars in this figure represent mean ±
SEM of the mean values of each experiment.
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Male MIA offspring showed elevated self-
grooming behaviors and reduced maximum
grip

In order to assess the autism-like behaviors in MIA offspring, we
performed three-chamber test and self-grooming test on PND
35 and PND 37, respectively. In three-chamber test, at Stage I
(social preference), both control and MIA offspring spent more
time in the side with Stranger 1 than in the empty cage (paired t-test;
control male, t = 18.73, df = 14, p < 0.001; control female, t = 15.25,
df = 9, p < 0.001; MIA male, t = 10.10, df = 7, p < 0.001; MIA female,
t = 9.358, df = 9, p < 0.001; Figures 6A, B), while at Stage II (social
novelty), both control and MIA offspring spent more time in
proximity to Stranger 2 than Stranger 1 (paired t-test; control

male, t = 10.11, df = 14, p < 0.001; control female, t = 6.698,
df = 9, p < 0.001; MIA male, t = 5.999, df = 7, p < 0.001; MIA female,
t = 6.097, df = 9, p < 0.001; Figures 6C, D), showing that both male
and female MIA offspring had normal social preference and social
novelty. Self-grooming test showed that the self-grooming time was
significantly elevated in male MIA offspring (Unpaired t-test, t =
2.581, df = 21, p = 0.0174, Figure 6E) but not changed in female MIA
offspring (Unpaired t-test, t = 0.5895, df = 18, p = 0.5629, Figure 6F).

In order to explore the motor ability potentially related to
elevated self-grooming behavior in male MIA offspring, open
field test, novel object recognition test, rotarod test and
maximum grip test were performed on PND 39, PND 43, PND
46 and PND 49, respectively. In open field test, MIA and control
male offspring travelled comparable distance in the experimental

FIGURE 3
Postpartum maternal behavior in Ctrl and MIA dams. (A) Nesting score. Ctrl dam, n = 8; MIA dam, n = 9. Mann-Whitney U test. (B–E) Static nursing.
Ctrl dam, n = 8; MIA dam, n = 9. (B) Latency of retrieval. p=0.3356 based onMann-Whitney U test. (C)Duration of retrieval. p= 0.1534 based on Unpaired
t-test. (D) Latency of crouching. *p < 0.05 based on Mann-Whitney U test. (E) Duration of crouching. *p < 0.05 based on Mann-Whitney U test. (F–G)
Dynamic nursing. Ctrl dam, n = 8; MIA dam, n = 9. (F) Time spent in hovering. Unpaired t-test. (G) Time spent in licking. Unpaired t-test. (H) Time
spent in grooming. Ctrl dam, n = 8; MIA dam, n = 9. Unpaired t-test. (I) Time spent in nest building. Ctrl dam, n = 8; MIA dam, n = 9. Mann-Whitney U test.
Ctrl, control. MIA, maternal immune activation. Error bars in this figure represent mean ± SEM of the mean values of each experiment.
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arena (Unpaired t-test, t = 0.3804, df = 21, p = 0.7069, Figure 7A) and
spent comparable time in the outer zone (Unpaired t-test, t = 0.6431,
df = 21, p = 0.5260, Figure 7B), hinting that the anxiety behavior and
spontaneous activity did not change in male MIA offspring. In novel
object recognition test, both control and MIA male offspring spent
more time exploring novel object than familiar object (paired t-test,
Ctrl male, t = 7.326, df = 14, p < 0.001, MIA male, t = 4.391, df = 7,
p = 0.0023, Figure 7C), showing that maleMIA offspring had normal
learning and memory ability. Rotarod test showed that the latency to
fall from the rotarod showed no significant differences between
control and MIA offspring (Unpaired t-test, t = 0.2923, df = 21, p =
0.7744, Figure 7D), suggesting that male offspring’s motor ability did
not differ between the 2 groups. Maximum grip test showed that the
maximum grip of male MIA offspring was significantly reduced
(Mann-Whitney U test, U = 8, p = 0.0205, Figure 7E), implying that
the muscle of male MIA offspring was weak.

Discussion

In the current study, we established a poly(I:C)-inducedMIA rat
model to evaluate postpartum maternal behavior in MIA dams and
autism-like behaviors in MIA offspring. MIA dams showed reduced
litter size and abnormal static nursing behavior. The serum levels of
testosterone and AVP significantly decreased in MIA dams. The
early developmental milestones in MIA offspring were significantly

delayed with no significant changes in weight and social
communications. Both male and female MIA offspring have
normal social preference and social novelty, while self-grooming
behaviors are significantly elevated in male but not female MIA
offspring. The strength grip of male MIA offspring was significantly
reduced. Open field test and novel object recognition test showed no
significant differences between the two groups. Our results hinted
that abnormal maternal behavior in MIA dams might play an
important role in the pathogenesis of delayed development and
elevated self-grooming behaviors in male rat offspring.

MIA has been linked to an increased risk of ASD in offspring
through affecting the development of the CNS via inflammatory
molecules (Ciaranello and Ciaranello, 1995; Atladottir et al., 2010a).
A recent study reported that MIA destroys hypothalamic
neurocircuits of maternal care behavior (Zambon et al., 2022),
which brings us a new clue that abnormal maternal behavior
might be involved in the pathogenesis of autism-like behavior in
MIA offspring. We found that MIA dams showed elevated latency
and decreased duration of crouching the pups. The time spent in
hovering above and licking pups as well as grooming and nest
building time did not change between the 2 groups. These results are
not consistent with a previous study reporting that poly(I:C)-
induced MIA C3H/He mice dams showed reduced licking/
grooming behaviors and elevated nesting building time (Berger
et al., 2018). We speculate that behavioral and immunological
effects of MIA on dams are strain-dependent. In addition, the

FIGURE 4
Serum levels of several hormones in dams on PND 7. (A) Estradio. Ctrl dam, n = 8; MIA dam, n = 8. Unpaired t-test. (B) Testosterone. Ctrl dam, n = 8;
MIA dam, n= 7. *p < 0.05 based onMann-Whitney U test (C) Progesterone. Ctrl dam, n= 8;MIA dam, n=8. Unpaired t-test. (D) Prolaction. Ctrl dam, n=8;
MIA dam, n = 8. Unpaired t-test. (E)Oxytocin. Ctrl dam, n = 8; MIA dam, n = 8. Unpaired t-test. (F) Arginine vasopressin. Ctrl dam, n = 8; MIA dam, n = 8.
*p < 0.05 based on Unpaired t-test. (G) Corticosterone. Ctrl dam, n = 8; MIA dam, n = 7. Unpaired t-test. Ctrl, control. MIA, maternal immune
activation. Error bars in this figure represent mean ± SEM of the mean values of each experiment.
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litter size of MIA dams was significantly reduced compared with that
of control dams. A previous study reported that reduction of litter
size increased arched-back posture and licking pups in lactating rats
(Enes-Marques and Giusti-Paiva, 2018), implying that litter size
reduction might affect the results of postpartum maternal behavior.
The influence of litter size should be eliminated in our future studies
to make our conclusions more rigorous.

Furthermore, we evaluated serum levels of several hormones
related to maternal behavior. We collected the serum of dams on
PND 7 after pups’ early social communication was detected. Results
showed that the serum levels of testosterone and AVP were
significantly reduced in MIA dams. AVP has the twin peptide
with OXT and plays a similar role in maternal behavior
regulation (Bosch and Neumann, 2012) and aggression (Bosch
and Neumann, 2012; Carter, 2017). Our previous clinical study
reported that the plasma AVP level in mothers of ASD children
tended to be lower than that of normal children (Zhang et al., 2016).
It is interesting that the serum level of testosterone is significantly
decreased in MIA dams, which is inconsistent with previous clinical
findings, reporting that the serum level of testosterone is

significantly elevated in mothers of ASD individuals (Ruta et al.,
2011; Palomba et al., 2012; Xu et al., 2013). For there is still no direct
evidence from the women experiencing inflammation, the reason of
decrease of testosterone in MIA model needs more in-depth
researches.

Self-grooming is a complex innate behavior frequently
performed in rodents with an evolutionary conserved sequencing
pattern. It is related with not only pattern of action but multiple
motor abilities. Self-grooming behavior is regulated by multiple
brain regions, including hypothalamus, striatum, neocortex,
amygdala, brainstem and cerebellum (Kalueff et al., 2016).
Elevated self-grooming behavior has been reported in many
neurological and neuropsychiatric disorders, such as
schizophrenia and ASD (American Psychiatric Association,
2013). In this study, we found that self-grooming behaviors were
significantly elevated in male MIA offspring but not changed in
females, indicating that MIA-induced autism-like behavior showed
significant sex differences. The maximum grip of male MIA
offspring was significantly reduced, implying that the muscle of
male MIA offspring was weak. Haida et al. reported that male MIA

FIGURE 5
Offspring’s developmental milestones and early social communication. (A–D) Offspring’s developmental milestones. Ctrl offspring, n = 25; MIA
offspring, n = 18. (A)Weight. Two-way ANOVA. (B) Pinna detachment. ***p < 0.001 based on Mann-Whitney U test. (C) Incisor eruption. **p < 0.01 based
onMann-Whitney U test. (D) Eye opening. **p < 0.01 based onMann-Whitney U test. (E,F) Isolation-Induced USVs in offspring. Ctrl offspring, n = 64; MIA
offspring, n = 51. (E) Total USVs number. Mann-Whitney U test. (F) Total USVs duration. Mann-Whitney U test. Ctrl, control. MIA, maternal immune
activation. Error bars in this figure represent mean ± SEM of the mean values of each experiment.
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mice offspring show reduced motor development and coordination
deficits, as well as a significant decrease in the number of Purkinje
cells in cerebellum and neurons in the motor cortex (Haida et al.,
2019). In addition, reduced litter size can increase repetitive and
stereotyped movements in offspring (de Novais et al., 2021). Similar
results have also been reported in MIA mice offspring, showing that
the autism-like behavior is more serious in male MIA offspring than
that in females (Carlezon et al., 2019; Haida et al., 2019). It is well-
acknowledged that the incidence of ASD is obviously male biased
(Maenner et al., 2021). But the male-to-female ratio of ASD is
heterogeneous, 6-16:1 in mild ASD population and 1-2:1 in severe
ASD population (Fombonne, 2009; Jacquemont et al., 2014),
suggesting that pregnancy infection is likely to cause mild ASD
in offspring. Carlezon et al. reported in MIA offspring that the anti-
inflammatory factors are decreased in males and increased in

females (Carlezon et al., 2019), which to some extent explained
the male biased morbidity of autism-like behavior induced by MIA.
Taken together, we speculate that elevated self-grooming behavior in
male MIA rat offspring is caused by multiple factors, including
abnormal maternal behaviors, reduced litter size as well as
immunological factors. The long-term effects of the maternal
gestational environment or maternal behavior on pup phenotype
need to be further evaluated.

However, results from different studies are heterogeneous. For
example, Malkova et al. (2012) found that poly(I:C)-induced MIA
mice offspring displayed reduced early social communication,
decreased sociability and increased repetitive/stereotyped
behaviors. Lee et al. (2021) constructed the MIA rat model by
intraperitoneally injecting LPS on pregnant rats, finding that
LPS-induced MIA rat offspring show reduced social ability and

FIGURE 6
Offspring’s autism-like behaviors. (A–D) Three-chamber test. Ctrl males n = 15; Ctrl females n = 10; MIA males n = 8; MIA females n = 10. (A) Social
preference of male offspring. ***p < 0.001 based on paired t-test. (B) Social preference of female offspring. ***p < 0.001 based on paired t-test. (C) Social
novelty of male offspring. ***p < 0.001 based on paired t-test. (D) Social novelty of female offspring. ***p < 0.001 based on paired t-test. (E,F) Self-
grooming test. Ctrl males n = 15; Ctrl females n = 10; MIAmales n = 8; MIA females n = 10. (E) Self-grooming time of male offspring. *p < 0.05 based
on Unpaired t-test. (F) Self-grooming time of female offspring. Unpaired t-test. Ctrl, control. MIA, maternal immune activation. Error bars in this figure
represent mean ± SEM of the mean values of each experiment.
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increased anxiety-like and repetitive behavior. Gzielo et al. (2021)
constructed MIA rat model by intraperitoneal injection of 5 mg/kg
poly(I:C) on PND 15, finding that male offspring showed deficits in
social play behaviors, while elevated repetitive behaviors were found
in both sexes. These phenomena are also appearing in the real world.
During the COVID-19 pandemic, the potential effects of pregnancy
SARS-CoV-2 infection on maternal and perinatal outcomes are
controversial (Vergara-Merino et al., 2021). The outcomes of
pregnancy and newborn can be affected by the symptoms and
severity of COVID-19 as well as the infection time. Comparing
with asymptomatic patients, symptomatic pregnant woman infected
with SARS-CoV-2 are more likely to suffer from cesarean (Jenabi
et al., 2022) or premature birth (Vimercati et al., 2022; Wilkinson
et al., 2022). Fetuses born to symptomatic COVID-19 pregnant

women have a significantly higher risk of suffering from low body
weight comparing with those born to asymptomatic pregnant
women (Jenabi et al., 2022). No significant relationship was
found between asymptomatic pregnant women and fetal growth
restriction (Narang et al., 2023). Fetuses born to SARS-CoV-2-
infected women are more likely to suffer from neuromotor
developmental disorders (Fajardo Martinez et al., 2023). They
also had lower scores in communication, problem solving and
personal-social domains (Cheng et al., 2021). Ayed et al. (2022)
found that pregnant women infected by SARS-CoV-2 in the first and
second pregnant trimesters were more likely to have children with
developmental disorders than those infected in the third trimester of
pregnancy. Wu T. et al. (2021) found that SARS-CoV-2 infection in
the third pregnant trimester did not increase the risk of

FIGURE 7
Male offspring’s other behavioral tests. (A,B)Open field test ofmale offspring. Ctrl males n= 15; MIAmales n= 8. (A) Total distance traveled. Unpaired
t-test. (B) Time spent in outer zone. Unpaired t-test. (C) Novel object recognition test of male offspring. Ctrl males n = 15; MIA males n = 8. **p <
0.01 based on paired t-test. ***p < 0.001 based on paired t-test. (D) Rotarod test of male offspring. Ctrl males n = 15; MIAmales n = 8. Unpaired t-test. (E)
Maximum grip test of male offspring. Ctrl males n = 13; MIA males n = 7. *p < 0.05 based on Mann-Whitney U test. Ctrl, control. MIA, maternal
immune activation. Error bars in this figure represent mean ± SEM of the mean values of each experiment.
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developmental disorders at the age of 3 months. We speculate that
the dosage and the time window of poly(I:C) exposure can affect the
offspring’s neural development and behavior in various degrees.
Different strains of animals or people in different states might also
respond differently to poly(I:C), LPS or virus. In addition, poly(I:C)
from different companies have different properties (Kowash et al.,
2019). These problems might be valuable lines of research direction
in the future.

Limitations

This study has some limitations. Firstly, the number of dams was
slightly small compared with similar studies (Lins et al., 2018; Gzielo
et al., 2021). Secondly, as is described above, different methods
constructing the MIA model may produce different results. Poly(I:
C) is an analogue of viruses, not a virus. We speculated that MIA
induced by poly(I:C) may be inconsistent with MIA induced by
virus. A viral infection-induced MIA animal model, such as
COVID-19 or cytomegalovirus infection animal model, may be
closer to clinical practice. Thirdly, we did not access the serum
level of IL-6 in Part Ⅰ. We consider that collecting blood from dams
via caudal vein 3 h and 6 h after poly(I:C) injection on E 14 may
affect the accuracy of basal maternal care and maternal behavior.
The causal relationship among MIA, abnormal maternal behavior
and autism-like behavior in offspring needs to be explored with
more complicated model.

Conclusion

In general, our present study showed that poly(I:C)-induced
MIA dams displayed abnormal static nursing behavior as well as
reduced serum levels of testosterone and AVP, accompanied with
delayed early development and elevated self-grooming behavior in
male offspring. This is the first study systematically evaluating both
dams’ maternal behavior and offspring’s autism-like behaviors in
one model of MIA. More in-depth and detailed studies exploring the
relationship between maternal behavior in dams and autism-like
behaviors in offspring as well as the internal mechanisms will be
carried out in our future research.
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