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During neurogenesis, the generation and differentiation of neuronal progenitors into
inhibitory gamma-aminobutyric acid-containing interneurons is dependent on the
combinatorial activity of transcription factors (TFs) and their corresponding
regulatory elements (REs). However, the roles of neuronal TFs and their target
REs in inhibitory interneuron progenitors are not fully elucidated. Here, we
developed a deep-learning-based framework to identify enriched TF motifs in
gene REs (eMotif-RE), such as poised/repressed enhancers and putative silencers.
Using epigenetic datasets (e.g., ATAC-seq and H3K27ac/me3 ChIP-seq) from
cultured interneuron-like progenitors, we distinguished between active enhancer
sequences (open chromatin with H3K27ac) and non-active enhancer sequences
(open chromatin without H3K27ac). Using our eMotif-RE framework, we discovered
enriched motifs of TFs such as ASCL1, SOX4, and SOX11 in the active enhancer set
suggesting a cooperativity function for ASCL1 and SOX4/11 in active enhancers of
neuronal progenitors. In addition, we found enriched ZEB1 and CTCF motifs in the
non-active set. Using an in vivo enhancer assay, we showed that most of the tested
putative REs from the non-active enhancer set have no enhancer activity. Two of the
eight REs (25%) showed function as poised enhancers in the neuronal system.
Moreover, mutated REs for ZEB1 and CTCF motifs increased their in vivo activity
as enhancers indicating a repressive effect of ZEB1 and CTCF on these REs that likely
function as repressed enhancers or silencers. Overall, our work integrates a novel
framework based on deep learning together with a functional assay that elucidated
novel functions of TFs and their corresponding REs. Our approach can be applied to
better understand gene regulation not only in inhibitory interneuron differentiation
but in other tissue and cell types.
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Introduction

The human cortex plays critical roles in cognition, motor function,
and emotion (Hensch, 2005). The cerebral cortex comprises complex
neuronal networks produced by two major cell types: the excitatory
glutamatergic projection neurons (pyramidal cells) and gamma-
aminobutyric acid-containing (GABAergic) interneurons
(Whittington and Traub, 2003). Pyramidal neurons are the primary
neural cells that specialize in transmitting information between different
cortical regions and different brain regions. Although interneurons
represent a minority (~20%) of the entire neocortical neuronal
population, they play vital inhibition roles in neuronal circuits and
the cerebral cortex (Whittington and Traub, 2003). In addition, the
inhibitory function of the interneurons shapes the responses of
pyramidal cells and prevents runaway excitation that is required for
normal brain function (Hensch, 2005). In the cortex, these interneurons
are derived from neural precursors generated in the ventral forebrain
(telencephalon) and undergo major tangential migration to their dorsal
target tissues. The ventral telencephalon is divided into three neurogenic
domains, the lateral- medial- and caudal-ganglionic eminences (LGE,
MGE, and CGE respectively). The medial ganglionic eminence (MGE)
is a progenitor domain within the ventral telencephalon that, together
with the lateral ganglionic eminence (LGE), gives rise to the basal
ganglia (striatum and globus pallidus). Via tangential migration, these
structures are also the source of most interneurons in the neocortex,
hippocampus, and olfactory bulb.

During neurogenesis, the generation and differentiation of neurons
into GABAergic or glutamatergic subtypes is partially dependent on the
combinatorial activity of transcription factors (TFs) and their
corresponding regulatory elements (REs). Pro-neural TFs, such as
ASCL1 and NEUROG2, were found to be necessary and sufficient to
initiate neurogenesis (Bertrand et al., 2002; Aydin et al., 2019). They
contribute to the specification of neuronal subtype identity (Guillemot
and Hassan, 2017). The molecular mechanisms by which different TFs
control gene expression and coordinate neurogenesis and inhibitory
interneuron differentiation have begun to be elucidated (Guillemot and
Hassan, 2017; Aydin et al., 2019). However, the remaining gaps in our
knowledge make it difficult to develop diagnostic and therapeutic tools
for research and clinical applications.

Recent large-scale human genetic studies have demonstrated that
nucleotide variants in gene REs contribute to a wide spectrum of
neurodevelopmental disorders (Lowe and Reddy, 2015; Meuleman
et al., 2020). Mutations in the non-coding regions of the genome that
function as gene REs can be the main cause of neurological disorders,
such as epilepsy and autism (Levitt et al., 2004; Brooks-Kayal et al.,
2012). Studies have produced direct evidence of a critical requirement
for the correct function of enhancers in brain development
(Pattabiraman et al., 2014; Nord et al., 2015). Indeed, genomic
studies over the past 20 years significantly advanced the
characterization of active enhancers, but their mechanism of action
and their ability to drive gene expression are not fully understood.

Enhancers can be found in different epigenetic states, which are
associated with their activity. Active enhancers are open chromatin
regions enriched in histone modifications, such as H3K27ac and
H3K4me1, and they are bound by TFs and co-activators (e.g.,
p300 histone acetyltransferase and the Mediator complex) (Bozek
and Gompel, 2020). They are actively transcribed by RNA polymerase
II into enhancer RNA (eRNA) (Carullo et al., 2020). However,
additional REs, such as poised/primed/repressed enhancers,

silencers, and insulators also play a role in transcriptional
regulation and gene expression. As the activity state of REs is
dynamic and can change rapidly during differentiation, a DNA
sequence which functions as an active enhancer in a cell-specific
stage can switch to a repressed enhancer or silencer state to execute the
desired expression program (Huang and Ovcharenko, 2022).

Current models envision that lineage-specific TFs direct the
activity state of REs (Heinz et al., 2015). Mechanistically, numerous
lineage-specifying TFs were found to be pioneer factors that can bind
their consensus motifs on DNA wrapped around nucleosomes,
suggesting that these factors are critical for initiating chromatin
opening in the locus (Fernandez Garcia et al., 2019; Bozek and
Gompel, 2020). Lineage TFs require cooperation with signal-
dependent TFs that bind in response to the cellular environment.
In this way, the sites selectively bound by signal-dependent TFs reflect
the primed, accessible chromatin landscape that is specific to each cell
type (Field and Adelman, 2020). Poised enhancers are marked by
markers of active enhancers, H3K4me1 and P300, but also by the
repressive histone mark H3K27me3, which is associated with
Polycomb Repressive Complex 2 (PRC2) silencing (Crispatzu et al.,
2021). Silencers and repressed enhancers that can reduce the activity of
a linked promoter are enriched in H3K27me3, which is associated with
the PRC2 repressive complex (Doni Jayavelu et al., 2020; Ngan et al.,
2020). Like enhancers, silencers and repressed enhancers can act in a
position- and orientation-independent fashion and provide binding
sites that recruit regulatory factors, in this case, transcriptional
repressors (Doni Jayavelu et al., 2020; Ngan et al., 2020). This
suggests that repressors are actively involved in silencing by
modifying the chromatin state or occluding activating factors. How
cell-specific TFs and their corresponding REs, not necessarily active
enhancers, control the differentiation of neuronal progenitors toward
inhibitory interneurons is still an open fundamental question.

At the DNA sequence level, a TF binds a motif and by that
activates the associated RE (Field and Adelman, 2020). Many
computational tools were designed to solve the motif discovery
problem, i.e., finding the critical TF motif in a set of REs (Koo and
Ploenzke, 2020; Thibodeau et al., 2021). In general, a dataset of
regulatory genomic sequences is provided as input, and the
computational tool finds short (around 10 nt) statistically over-
represented motifs in the dataset. More than 100 tools aim to solve
this classic bioinformatics problem (Hashim et al., 2019). This large
number reflects the difficulty of the motif discovery problem and the
fact that there is, still, no optimal solution.

Deep learning is a new machine-learning approach that has been
revolutionizing the field of machine learning. Even in molecular biology,
deep learning has been applied successfully to numerous bioinformatics
problems, having outperformed many state-of-the-art methods (Min
et al., 2017). By applyingmachine-learning approaches and bioinformatic
methods together with biological functional assays, we can learn features
and extract motifs affecting the transcription process. As epigenetic
marks are associated with REs activity, we can now implement a deep
neural network to identify gene regulatory networks of human inhibitory
interneurons and thus open a venue for understanding the pathogenesis
of neurodevelopmental disorders, such as epilepsy and autism.

In this work, we aimed to understand the function of gene
regulation during GABAergic inhibitory-like interneuron
differentiation procedure. By analyzing epigenetic datasets (ATAC-
seq and H3K27ac\me3 ChIP-seq) of cultured H9 human embryonic
stem cells (H9-ESC) (Day 0), MGE-like progenitors (Day 26), and
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mature GABAergic-like interneurons (Day 39), we were able to
distinguish between active and non-active enhancers in each cell
differentiation stage. Using our newly developed deep-leading-
based framework, we analyzed these datasets and identified motifs
of TFs that play a role not only in active enhancers, but also in poised/
repressed enhancers and putative silencers that were not elucidated
before.

Results

Identifying putative regulatory elements
during inhibitory GABAergic-like interneuron
differentiation

To achieve an enriched population of inhibitory GABAergic
interneurons, we cultured hESC that were differentiated into
GABAergic-like interneurons based on Liu et al., 2013 (Liu et al.,
2013). In brief, the GABAergic-like interneuron differentiation
procedure follows four major developmental stages for 55 days
culture course (Figure 1). First, the H9-hESC line is induced into
primitive neuroepithelia or neural stem cells over the first 10 days.
Second, the primitive neuroepithelia is patterned into ventral
forebrain progenitors with the MGE feature. Third, the MGE-like
progenitors are differentiated into GABAergic-like interneurons.
Finally, the GABAergic-like interneurons are eventually
differentiated into somatostatin (SST) subtype GABAergic-like
interneurons that can be distinguished based on their
neurotransmitter expression and other molecular markers, such as
somatostatin (SST) and parvalbumin (PVALB). Using
immunofluorescence staining, we verified the differentiation
process during GABAergic-like interneurons differentiation. On
day 26, the differentiated MGE-like progenitors expressed with two

MGE markers of FOXG1 and NKX2-1 that were co-localized with
DAPI (Supplementary Figures S1A–D). On day 39, the matured
GABAergic-like interneurons expressed GAD1 and NKX2-1
(Supplementary Figures S1E–H), and further differentiation of
these interneurons has characterized them as somatostatin-enriched
interneurons that specifically expressed SST and SLC32A1
(Supplementary Figures S1I–L).

To identify and characterize the functional REs during neuronal
differentiation, we used ATAC-seq and H3K27ac ChIP-seq data that
were carried out on H9-ESC (Day 0), MGE-like progenitors (Day 26)
and matured inhibitory GABAergic-like interneurons (Day 39) (Eshel
et al., submitted). The H3K27ac ChIP-seq of MGE-like progenitors
identified 35,000 enhancer candidates, when many of them likely
regulate the expression of key TFs and epilepsy-associated genes. The
peak annotation of H3K27ac from day 26 revealed that most of the
peaks are promotors (45%), some of the peaks are intergenic (24%),
intronic (20%), and the lower number of peaks are in protein-coding
sequences (11%). Therefore, more than 50% of the peaks could be
enhancer candidates that are active in MGE progenitors. As opposed
to enhancer sequences, we also used epigenetic marks that are
associated with repressed regions, such as H3K27me3, to identify
REs other than active enhancers, such as poised enhancers and
silencers. Thus, we identified novel putative REs that could control
the expression of neuronal genes during differentiation.

Determining putative active and non-active
enhancers in MGE-like progenitors

By analyzing the epigenetic dataset (H3K27ac ChIP-seq, and
ATAC-seq) and the expression data (bulk RNA-seq), we aimed to
elucidate the activity of gene REs during neuronal differentiation.
Initially, we divided the putative REs into active enhancers (i.e., ATAC

FIGURE 1
Timeline of inhibitory GABA interneuron generation. Cells are differentiated under a chemically defined system. Differentiation of H9-hESC involves
55 days of culture and four stages, including induction of neuroepithelial cells, patterning of MGE progenitors, differentiation to GABAergic-like interneurons,
and eventually enriched somatostatin marked interneurons. The morphology of the cells is demonstrated in the images (Yellow bars- 500 µm).
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with H3K27ac peaks) and non-active enhancers (i.e., ATAC peaks
without H3K27ac) for each time point. Using REPTILE (He et al.,
2017), we trained our datasets to identify putative active enhancers in
open chromatin regions based on the H3K27ac mark (Figure 2A). The
output of REPTILE is a set of predicted active enhancers among the
input open chromatin regions. Next, we extracted the putative active
enhancers that overlap an H3K27ac ChIP-seq peak, and putative non-
active (poised/repressed) enhancers that do not overlap H3K27ac
ChIP-seq peak in our datasets (Figure 2A). Finally, 18,686 genomic
regions were determined as putative active enhancers and
4,614 genomic regions as non-active enhancers on Day 26
(Supplementary Tables S1, S2).

Next, we aimed to determine whether these two sets of REs can be
distinguished by specific characteristics. Enhancers exhibited a
significantly high proportion of GC content and CpG islands. In
the human genome, 70%–80% of CpG cytosines are methylated
(Ehrlich et al., 1982; Xiong et al., 2018). Data emerging from
recent genome-wide analyses suggest that active enhancers and

eRNA-producing enhancers are typically hypomethylated at CpG
dinucleotides (Pulakanti et al., 2013; Schlesinger et al., 2013). We
analyzed the GC content of active and non-active enhancer sets. As TF
motifs may be influenced by different nucleotide content, we
calculated the frequency of G/C nucleotides in each sequence and
found a significant difference in GC-content between active and non-
active RE datasets in the three differentiation stages: Day 0, Day 26,
and Day 39 (p-value = 5.62E-9, 2.64E-13, and 7.45E-8, respectively;
Wilcoxon rank-sign test, Supplementary Figure S2).

A novel framework for enriched motifs in
regulatory elements (eMotif-RE) discovers
neuronal TF motifs in putative non-active
enhancers

To identify de-novomotifs of TFs that play a role in the activity of
neuronal gene REs, we developed the motif-enriched RE (eMotif-RE)

FIGURE 2
A novel framework for analyzing regulatory elements and their corresponding de novo transcription factor motifs. (A) Data preprocessing and filtering.
We extracted putative regulatory elements from open-chromatin regions using REPTILE. Then, we generated the positive set of active enhancer regions by
filtering out regions that do not overlap a H3K27ac peak in our dataset. In parallel, we generated the negative set by excluding open-chromatin regions that
overlap a H3K27ac peak in our datasets. Moreover, sequences annotated by HOMER as promoter-TSS were excluded from both positive and negative
sets. (B) CNN for active enhancer classification. The positive and negative DNA sequences are one-hot encoded as a pre-processing step to the network. In
the convolutional layer, including a non-linear activation function, the filters are applied on the inputmatrix. Then, amax-pooling layer scans the output vector
(the purple rectangle denotes the maximum value in each vector). Last, a fully connected layer models interactions, followed by an output neuron, which
applies the sigmoid activation function for binary classification. (C) Motif extraction. We used the Integrated Gradients approach to highlight important
nucleotides in each sequence. Then, we applied TF-MoDISco to aggregate these results to a list of putative motifs in PWM format. Redundant positions of the
motifs were removed using an information-content criterion.
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framework based on deep neural networks (Figure 2B). We performed
a complete analysis of the trained models to discover TF binding sites
that are enriched in putative REs. We trained a convolutional neural
network (CNN) for binary classification of active and non-active
enhancers to distinguish between two sets of REs, which performed
much better than a linear-regression model (Supplementary
Figure S3).

Then, we used TF-MoDISco to detect motifs through the datasets
and trained networks (Figure 2C). Furthermore, we performed a post-
analysis of the identified motifs using TOMTOM, which compares the
motifs to known TF motifs (Gupta et al., 2007). Moreover, we applied
the analysis of motif enrichment (AME) to test the enrichment of the
identified motifs in the active and non-active enhancer datasets
(McLeay and Bailey, 2010) (Supplementary Table S3, S4).

By applying our newly developed framework on our epigenetic
data, we analyzed the motif enrichment and compared our framework
results with established motif-finding methods, including DREME,
MEME, and BaMM (Bailey et al., 2015; Siebert and Soding, 2016;
Kiesel et al., 2018). We obtained a list of motifs that are enriched in the
active enhancer set and showed a high similarity to known TFs
(Supplementary Table S5). Moreover, we found a subset of motifs
that are enriched in the non-active enhancer set and showed a high

similarity to known TFs (Supplementary Table S5). As various
methods for de novo motif finding produce putative spurious
motifs, we filtered out motifs according to guideline criteria (see
disqualifying spurious motifs; Materials and Methods). Finally, we
ranked the motifs by the expression levels of their corresponding TFs
in Day 0 and Day 26 (Supplementary Table S6).

We found two enriched de-novomotifs in the active enhancers set:
“CAGCTGC” and “CCTTTGT” (Figure 3A). The first motif
(‘CAGCTGC’) is homologous to the binding site of two neuronal
TFs: The Achaete-Scute Family BHLH Transcription Factor 1
(ASCL1), which plays a role in the neuronal commitment and
differentiation. ASCL1 acts as a pioneer TF accessing closed
chromatin to allow other factors to bind and activate neural
pathways (Castro et al., 2011; Wapinski et al., 2013; Woods et al.,
2022); and The Nescient helix-loop-helix 1 (NHLH1) that has a
similar binding motif as ASCL1. NHLH1 is expressed in the
neuroepithelium and plays a role in neuronal differentiation
(Kruger and Braun, 2002). The second motif (“CCTTTGT”) is
homologous to the binding site of Sox family members, including
SOX4 and SOX11. Interestingly, SOX4, together with SOX11 and
SOX12, forms the group C type of SRY-related TFs (Dy et al., 2008).
They play key roles, often in redundancy, in multiple developmental

FIGURE 3
Enriched motifs in active and non-active enhancer sets with differential RNA expression levels at Day 26. (A) Enriched motifs in active and (B) non-active
enhancer sets following a motif analysis using TF-MoDISco and TOMTOM. (C) RNA expression levels of NHLH1, ASCL1, and SOX4/11 TFs were highly
expressed in the active set at Day 26. (D) RNA expression levels of ZEB1, NEUROG2, CTCF, and NR2F1 TFs were highly expressed in the non-active set at
Day 26.
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pathways, including neurogenesis. De novo SOX11 heterozygous
mutations have been shown to cause intellectual disability, growth
deficiency, and dysmorphic features compatible with mild Coffin-Siris
syndrome (Mu et al., 2012; Zawerton et al., 2019). SOX4 and
SOX11 target the promoters of genes that are induced in neuronal
differentiation. Moreover, ASCL1 strongly synergized with SOX4 and
SOX11 in the activation of neuronal enhancers when the two TFs were
overexpressed together (Minieri, 2014). We analyzed the co-
occurrence of ASCL1 and SOX4/11 motifs in active and non-active
enhancer sets and found that out of 13,688 ASCL1 sites and
10,334 SOX4/11 sites in active enhancers, 6,944 sites share the
same active enhancer (p-value<10–16, Fisher exact test). Thus, we
conclude that ASCL1 and SOX4/11 motifs are significantly co-
enriched motifs in active enhancers, supporting their potential
synergetic effect in activating neuronal enhancers.

We found four enriched de-novo motifs in the non-active
enhancers set: “CCAGGTG”, “GTCATATG”, “CCAGGGGGCGA”,
and “GAGGTCAA” (Figure 3B). The first motif (“CCAGGTG”) is
homologous to the binding site of Zinc finger E-box-binding
homeobox 1 (ZEB1), a TF that can function both as activator and
repressor depending on its target gene and tissue (Zhang et al., 2019).
ZEB1 is an essential factor for neocortical development, expressed in
several neuronal tissues, as well as the proliferative zones in the brain
and spinal cord of mouse embryos (Liu et al., 2019; Wang et al., 2019).
The secondmotif (“GTCATATG”) is a homologous to the binding site
of Neurogenin 2 (NEUROG2) which is a pro-neural factor that
increases chromatin accessibility, mediates enhancer activity, and
facilitates chromatin looping (Noack et al., 2022). The third motif
(“CCAGGGGGCGA”) is a homologous to the binding site of CCCTC-
binding factor (CTCF), a highly conserved zinc-finger protein that
functions as a transcriptional activator, repressor, or insulator protein,

blocking the communication between enhancers and promoters (Kim
et al., 2015). The fourth motif (“GAGGTCAA”) is a homologous to the
binding site of (NR2F1), coding for a transcriptional regulator
belonging to the steroid/thyroid hormone receptor superfamily that
is known to play key roles in several brain developmental processes,
from proliferation and differentiation of neural progenitors to
migration and identity acquisition of neocortical neurons (Tocco
et al., 2021). In comparison, competing motif analysis methods
found only spurious motifs or detected only the ZEB1 motif
among a long list of spurious motifs (Supplementary Figure S4;
Supplementary Table S5).

Next, we analyzed the expression level of these motif-enriched TFs
in hESC (Day 0), MGE-like progenitors (Day 26), and mature
GABAergic-like interneurons (Day 39). Using RNA-seq, we found
that the expression levels of the TFs with enriched motifs in the active
set (i.e., ASCL1, NHLH1, SOX4, and SOX11) were elevated during
differentiation (Day 0 vs. Day 26) (Figure 3C), and the expression
levels of the TFs with enriched motifs in the non-active set (i.e., ZEB1,
NEUROG2, CTCF, and NR2F1), were also elevated during
differentiation, except for CTCF that is highly expressed in the
three differentiation stages (Figure 3D). Thus, the identified motif-
enriched TFs from eMotif-RE correlate with their expression levels,
supporting their regulatory activity.

Putative regulatory elements function as in
vivo active and poised enhancers

To characterize the in vivo activity of the putative REs, we used an
enhancer assay in zebrafish, which is a rapid and cost-effective assay to
determine the spatiotemporal enhancer activity. We selected several

TABLE 1 Enhancer activity of selected putative regulatory elements using zebrafish enhancer assay.

Human
hg38
assembly

ATAC-seq signal H3K27ac ChIP-seq signal

Name Expression patterns of the enhancer activity Chr. Start End Day 26 Day 26

ZEB2e2 Notochord chr2 144430328 144431310 + +

ZEB2e3 Midbrain, hindbrain, spinal cord, somitic muscles chr2 144430502 144432268 + +

ZEB2e4 Notochord, non-specific neurons chr2 144438728 144440073 + +

MEF2Ce7 Notochord chr5 89703170 89704367 + +

MEF2Ce9 Midbrain, hindbrain, spinal cord chr5 89822526 89823501 + +

RE1 Negative chr12 54993195 54993747 + -

RE2 Negative chr12 54715951 54716496 + -

RE3 Specific neurons in the forebrain, Somitic muscles chr14 36604850 36605388 + -

RE4 Negative chr2 44466627 44467238 + -

RE5 Negative chr1 27349403 27350221 + -

RE6 Negative chr19 6753176 6753722 + -

RE7 Negative chr1 16226632 16227187 + -

RE8 Forebrain, specific neurons around the eye chr6 126143965 126144514 + -
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putative REs that marked as active and non-active enhancers in
cultured human MGE-like progenitors of Day 26 (Table 1).
Moreover, the selected putative active enhancers are located near
highly expressed gene/s at Day 26 and the selected non-active
enhancers are located near genes that are differentially expressed at
Day 26. We amplified these putative REs from human genomic DNA
and cloned them into a zebrafish enhancer assay vector, containing an
E1b minimal promoter followed by the green fluorescent protein
(GFP) reporter gene. These vectors were microinjected into one-
cell stage zebrafish embryos along with the Tol2 transposase to

facilitate genomic integration. The transgenic embryos were
monitored for GFP expression at 24-48 hours post fertilization
(hpf). We have previously shown that putative REs that are
marked as active enhancers drove consistent GFP expression
(≥30% of GFP expressed embryos) in specific neuronal tissues (Bar
Yaacov et al., 2019; D’Haene et al., 2019). Neuronal-specific enhancers
of ZEB2 and MEF2C drove GFP expression in the brain, notochord,
and spinal cord that resemble the expression of these two genes
(Figure 4; Table 1) (Bar Yaacov et al., 2019; D’Haene et al., 2019).
Moreover, the zebrafish orthologous TFs with the enriched motifs in

FIGURE 4
The in vivo activity of regulatory elements marked as active enhancers at 24/48 hpf zebrafish embryos. (A) ZEB2e2 drove GFP expression in the
notochord. (B) ZEB2e3 drove GFP expression in themidbrain, hindbrain, spinal cord, and somitic muscles. (C) ZEB2e4 drove GFP expression in notochord and
non-specific neurons. (D) MEF2Ce7 drove GFP expression in the notochord. (E) MEF2Ce9 drove GFP expression in the midbrain, hindbrain, and spinal cord.
The pattern of each enhancer is represented by images of two independent transgenic zebrafish embryos.

FIGURE 5
The in vivo enhancer activity of regulatory elements (REs) from the non-active enhancer set. (A) RE3 drove GFP expression in specific neurons in the
forebrain and somiticmuscles at 24 hpf zebrafish embryos. (B) RE8 droveGFP expression in the forebrain at 24 hpf zebrafish embryos (red arrows in biological
replicates).
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active and non-active REs (such as ASCL1, ZEB1, and CTCF) are
evolutionarily conserved with an average of 60% identity (48%–76%)
and 72% (62%–83%) similarity to human protein sequences
(Supplementary Table S7). Thus, open chromatin regions marked
by H3K27ac function as active enhancers, but the function of non-
active enhancer regions are barely investigated.

As the open chromatin regions that are not marked as active
enhancers may function as poised enhancers, we tested if these regions
could function as neuronal enhancers at later stages of differentiation.
We selected eight putative REs located near genes that are highly
expressed in Day 0 compared to Day 26 (such as STYL1, TRIP10,
ARHGEF19, and CENPW) or near genes that are not expressed in Day
0 but have high expression levels in Day 26 (such as NEUROD4,
NKX2-1/8, UNCX, and SIX3). Moreover, the selected REs are enriched
with predicted binding sites for ZEB1, CTCF, and NEUROG2 that
likely play a repressive role in regulating these elements. We found that
two out of the eight tested putative REs (RE3 and RE8) showed
neuronal enhancer activity, while no enhancer activity was observed
for the other six putative REs (Table 1). RE3 drove GFP expression in
specific neurons of the forebrain and in somitic muscles (Figure 5A),
and RE8 drove GFP expression in the forebrain, specific neurons
above the eye, and along the developing body of zebrafish embryos at
24 hpf (Figure 5B). Thus, these two REs likely function as poised
enhancers during development, but most of the selected REs did not
show enhancer activity in the zebrafish assay suggesting that they
might function as repressed enhancers or silencers (Table 1;
Supplementary Table S8).

Deletions of ZEB1 and CTCF predicted
binding motifs increased the activity of their
targeted regulatory elements

To test whether the selected REs function as repressed
enhancers or silencers, we deleted the binding sites of ZEB1 and
CTCF from the REs and tested their activity as enhancers. Since
ZEB1 and CTCF can function as transcription repressors, we
selected RE1 and RE6, as two putative REs that are enriched for
ZEB1 and CTCF binding motifs. We deleted the two predicted
ZEB1 binding sites from RE1 and the CTCF binding site that
overlaps with a ZEB1 binding site (Supplementary Figure S5). We
also deleted the three ZEB1 binding sites and a CTCF binding site
from RE6 (Supplementary Figure S5). Next, we tested the activity
of RE1 and RE6 mutants using a zebrafish enhancer assay. While
RE1 and RE6 did not function as active enhancers in vivo (<30% of
live embryos), the RE1 and RE6 mutants drove GFP expression in
neuronal tissues with a higher number of positive GFP embryos.
RE1 mutant embryos drove GFP expression in specific neurons in
the brain and the notochord with a 6-fold increase compared to the
reference sequence (Figures 6A, B). RE6 mutant embryos drove
GFP expression in the forebrain and somitic muscles with a 2-fold
increase compared to the reference sequence (Figures 6C, D).
Thus, our results show that deletions of ZEB1 and CTCF
binding sites increase the RE1 and RE6 activity in this assay
suggesting that these open chromatin regions might function as
repressed enhancers.

FIGURE 6
In vivo activity of repressed enhancers at 24 hpf zebrafish embryos. (A) RE1 mutant sequence drove GFP expression in specific neurons in the brain and
around the eyes and notochord (red arrows). (B) Six-fold increase in the number of positive zebrafish embryos with the RE1mutant sequence compared to the
reference sequence. (C) RE6 mutant sequence drove GFP expression in forebrain and somitic muscles (red arrows). (D) Two-fold increase in the number of
positive zebrafish embryos with the RE6 mutant sequence compared to the reference sequence.
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Discussion

In this study, we deciphered the activity of REs enriched for motifs
of specific TFs that play a role in their spatiotemporal activity during
neuronal differentiation. We developed a novel framework for de novo
motif finding (eMotif-RE), which utilizes recent advancements in deep
neural networks for motif-finding tools via interpretation of CNNs
predictions (Lundberg Scott, 2017; Maslova et al., 2020; Ting Zhang
et al., 2021). By focusing on finding motifs of TFs that control the
activity of neuronal gene REs, we analyzed unique genomic datasets,
which encompass open-chromatin regions (ATAC-seq) and active
enhancer regions (H3K27ac ChIP-seq) during neuronal
differentiation. Using REPTILE, we pre-processed these datasets to
generate two confident sets of active and non-active enhancers. We
took advantage of the capabilities of CNNs, which have shown great
success in many bioinformatic challenges in recent years (Barshai
et al., 2020; Zeng et al., 2020; He et al., 2021), to learn the important
features in sequence data to predict whether a DNA sequence belongs
to an active or non-active enhancer region. Moreover, with the trained
models and sequence datasets, we used the Integrated Gradient
method to highlight the important features in every sample in the
dataset and aggregated the results by TF-MoDISco to extract putative
regulatory motifs. In TF-MoDISco, the output motifs include
redundant positions and spurious motifs. Therefore, we used
information-based criteria to remove redundant positions and filter
spurious motifs. Furthermore, we examined the gene expression
(RNA-seq) levels of the TFs with enriched binding sites. This test
allowed us to verify that the identified TFs are indeed important in
neuronal cells. We performed another statistical analysis using the
AME tool to verify the enrichment of the putative motifs in the
sequence datasets.

We tackled a couple of limitations in our eMotif-RE framework.
First, as TF-MoDISco does not provide statistical information on the
identified motifs, we used MEME-suite statistical tools and defined
unique guideline criteria to filter out irrelevant motifs. Second, it is
possible that under other hyper-parameters values of the CNN we
would have obtained different motifs. We solved this issue by using
grid-search to find the optimal hyper-parameters. The disadvantage of
using grid search is the high run-time, which limits the parameter
space that can be searched.

The outcome of the eMotif-RE analysis revealed that ASCL1 and
SOX4/SOX11 are enriched in active enhancers of inhibitory
interneuron-like progenitors. Both ASCL1 and SOX4/SOX11 are
known to function as TFs in neuronal differentiation, but our
analysis suggests that they function together by regulating the
activity of specific enhancers in neuronal progenitors as we found
significant co-enrichment of the two motifs in active enhancers.
ASCL1 functions as a pioneer TF accessing closed chromatin to
allow other factors to bind and activate neural pathways (Castro
et al., 2011; Aslanpour et al., 2020; Woods et al., 2022) and SOX4/
SOX11 induce the activity of neuronal differentiation by regulating
promoters. Moreover, over-expression of ASCL1 and SOX4/
SOX11 showed a synergetic effect on the activation of neuronal
enhancers (Minieri, 2014) supporting that these TFs are likely
working together.

Our results showed that the ASCL1 motif is enriched in active
enhancers, while the NEUROG2 motif is enriched in the poised/
primed/repressed REs. Therefore, these two factors, ASCL1 and
NEUROG2, might have an opposite regulatory effect on the REs of

inhibitory interneuron progenitors. Indeed, direct neuronal
programming of embryonic stem cells showed that these two main
vertebrate pro-neural factors, ASCL1 and NEUROG2, bind to largely
different sets of genomic sites to induce different neuronal fates
(Aydin et al., 2019). While ASCL1 binds and activates enhancers
that are required for the differentiation of GABAergic inhibitory
interneurons, NEUROG2 is required for differentiation toward
glutamatergic neurons. Our data suggest that during differentiation
of GABAergic inhibitory interneurons, ASCL1 binds and activates the
desired enhancers and NEUROG2 might play a role in regulating
primed/repressed REs, which constrain terminal cell fates and
enforces the differentiation toward GABAergic interneurons and
not glutamatergic neurons.

ZEB1 and CTCF motifs were enriched in the non-active enhancer
set. Both ZEB1 and CTCF can function as repressors and inhibit
enhancer activity required for regulating the transcriptional program.
ZEB1 is an essential factor for neocortical development, expressed in
several neuronal tissues, as well as the proliferative zones in the brain
and spinal cord of mouse embryos (Liu et al., 2019; Wang et al., 2019).
CTCF is mainly known as a chromatin remodeler and insulator to
define loops and TAD boundaries, but it is also known to function as a
TF to regulate gene expression (Kim et al., 2015; Nora et al., 2017).
Indeed, we showed that deletions of the ZEB1 and CTCF predicted
binding sites in RE1 and RE6 induced the number of GFP-positive
zebrafish embryos (Figure 6). The elevated activity of the mutated
RE1 and RE6 supports the repressive effect of ZEB1/CTCF on REs that
require to maintain their repression.

Finally, we classified the REs into active and non-active enhancer
sets. While the active enhancer set is well defined, the non-active
enhancer set that is characterized by open chromatin can be divided
into additional classes according to their activity. We showed that they
can function as poised enhancers that are not active at progenitor cells
(Day 26) but are likely to become active at later stages of neuronal
differentiation, such as RE3 and RE8. These two REs are marked as
open chromatin but showed function as neuronal enhancers at only
later stages of development (Figure 5). Moreover, REs can also
function as repressed enhancers/silencers as deletions of
transcription repressor binding sites, such as in RE1 and RE6,
elevated their activity as enhancers (Figure 6). The other tested
putative REs that did not show enhancer activity might function as
different REs, such as silencers or insulator elements.

In this study, we analyzed human sequences for their in vivo
enhancer activity using a zebrafish enhancer assay. Given that human
sequences are tested for enhancer activity in the zebrafish model, one
potential pitfall is that they may not be functional in zebrafish. This
assay is not a high-throughput functional analysis of REs and the
tested human sequences portray regulatory activity even if they do not
have homologous sequences in zebrafish. Human sequences that did
not show activity in this assay may have enhancer activity in the
spatiotemporal endogenous context when the required TFs and
additional associated proteins are expressed.

To conclude, our development of eMotif-RE framework allowed
us to identify de-novo motifs in various REs and elucidate novel roles
for these TFs in regulating neuronal transcription patterns. Our
eMotif-RE framework emphases the interplay between TFs and
various classes of REs to execute the spatiotemporal expression
programs required for neuronal differentiation and normal brain
development. Disruption of these various classes of active/poised/
repressed/silenced REs may lead to mis-expression with the outcome
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of neurodevelopmental disorders. Further functional studies are
needed to explore the molecular mechanism and function of REs
such as poised/repressed enhancers or silencers, specifically during
neuronal differentiation.

Materials and methods

Data pre-processing and filtering

Dataset source
We used datasets encompassing open chromatin (ATAC-seq) and

active enhancers (H3K27ac ChIP-seq) experimental datasets of H9-
hESC (Day 0), MGE-like progenitors (Day 26), and inhibitory-like
interneurons (Day 39). We used Model-based Analysis of ChIP-Seq
(MACS) (Feng et al., 2012) for peak calling to identify open chromatin
and H3K27ac-enriched genomic regions based on raw sequencing files
(GEO; accession number GSE218668). Then, we identified active and
non-active regions using REPTILE which locates enhancers based on
genome-wide DNA methylation and histone modification profiling
(He et al., 2017). As methylation data was not available in our study,
we only used the H3K27ac epigenetic mark, which is associated with
active enhancers. We trained REPTILE on ChIP-seq experiments
conducted in mouse embryonic stem cells, which were provided as
example files with the REPTILE software package. This training data
included a H3K27ac ChIP-seq dataset in bigwig format, and a ground
truth file with annotations of active and non-active enhancers. We
trained REPTILE to identify active enhancers in open chromatin
regions based on the H3K27ac mark alone (Figure 2A). The output
of REPTILE is a set of predicted active enhancers among the input
open chromatin regions. From the regions defined by REPTILE, we
further extracted the putative active enhancers that overlap an
H3K27ac ChIP-seq peak, and putative non-active (poised/
repressed) enhancers that do not overlap any H3K27ac ChIP-seq
peak (Figure 2A). To extract the sequences corresponding to the
genomic coordinates, we used BEDTools (Quinlan and Hall, 2010), an
efficient tool to analyze and process large genomic datasets. Since deep
neural networks require fixed-size samples, we set all sequence lengths
to be the length of the shortest sample size in the set. For length N, we
selected N/2 nucleotides upstream and downstream of the center of
each peak (Figure 2A). We set the sample size of the dataset to the
shortest sample size, which was 500 nt for Day 26 and Day 39 and
101 nt for Day 0.

Enhancer annotation by Homer
We used Homer (Heinz et al., 2010), a toolkit for motif discovery

and next-generation sequencing analysis, for enhancer annotation.
Homer includes a script for genomic annotation to any genomic
coordinate. We used annotatePeaks.pl to remove sequences that
regulate the transcription process and are adjacent (−1,000, 100) to
the transcription start site (TSS). These control sequences are
annotated as “promoters-TSS” in the output of the script.

Deep neural network architecture
We developed a CNN for the binary classification of active or non-

active enhancers (Figure 2B). The active enhancer set is the positive
set, and the non-active enhancer set is the negative set. The network
architecture was inspired by common CNNs in genomics (Zeng et al.,
2016). The network receives a single type of data as input, a DNA

sequence of length L. Each nucleotide is encoded as a one-hot vector of
dimension d = 4. The first layer of the network is a 1D-convolutional
layer. A rectified linear unit, f(x) =max (0, x), is applied as a non-linear
activation function on the convolution output. The max-pooling layer
scans the output vector of each filter and outputs the maximum value
in it. A mid-level flattening is required to get an output vector
composed of all maximum filter outputs. A fully connected layer
computes a weighted sum of the input from the previous layer.
Network training and testing, including evaluation of prediction
performance and hyper-parameters search, are described in
Supplementary Information.

Motif extraction by TF-MoDISco
TF-MoDISco (Avanti Shrikumar, 2018) was developed to identify

short motifs (around 10 nt) given a sequence dataset, importance
scores, and hypothetical importance scores associated with each
sequence in the dataset as calculated over a trained neural
network. To obtain the importance scores and hypothetical
importance scores for each sequence, we used the Integrated
Gradients method (Sundararajan et al., 2017). Integrated Gradients
receives as input a sequence and a trained model, and outputs
importance scores for each nucleotide in the sequence based on
the trained network. The hypothetical importance scores inform
what the importance scores would be for nucleotides, other than
the ones in the given sequence. TF-MoDISco combines the
contribution of multiple pattern detectors and extracts important
sequence features. The output of TF-MoDISco is a list of motifs in the
form of position weight matrices (PWMs) (Figure 2C). Technically,
the output comprises three files for each motif: i) a motif pattern
PWM, ii) a motif importance score matrix, and iii) a motif
hypothetical importance score matrix. A positive motif importance
score means that the motif is enriched in the positive set, and a
negative motif importance score means the motif is enriched in the
negative set. TF-MoDISco outputs 70 nt-long motifs, but most motif
lengths, that represent a TF binding site, are approximately 10 nt-
long. Hence, the output of each motif contains around 60 redundant
positions, which are typically characterized by high entropy
(Figure 2C). Unfortunately, there is no known optimal entropy
threshold for removing redundant positions in a PWM (Pan and
Phan, 2008). Therefore, we used the information-content (IC)
criterion to remove redundant positions (Eq. 1). The first position
with a score of over 0.3 is the start of the motif, and the first position
from the other side is the end of the motif. Denote Pj the j-th column
of PWM P, and by Pi,j the probability having nucleotide i at position j.
The information content of Pj is defined as:

IC Pj( ) � 2 + ∑
i� A,C,G,T{ }

Pi,jlog2Pi,j (1)

Motif post-analysis

Applying MEME-suite for motif enrichment and
similarity analysis

We used AME (McLeay and Bailey, 2010) to test the enrichment of
a givenmotif in an active enhancer compared to a non-active enhancer
set. We used TOMTOM (Gupta et al., 2007) to calculate the similarity
of a given motif to a database of target motifs. Technical details of how
MEME-suite methods were used are in Supplementary Information.
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Calculating PWM stringency
Some of the irrelevant motifs detected by the motif-finding tools can

be easily excluded by calculating their stringency. Each position in a PWM
represents the preference for each one of the nucleotides A, C, G, and T. It
is unlikely that a PWM of TF will be represented as a stringent motif
(Weirauch et al., 2013). We define a stringent position by IC > 1.9 bits.

Disqualifying spurious motifs
The various methods for de novo motif finding produce a list of

putative motifs. Within those lists, there are some spurious motifs,
which can be identified by different criteria. We defined multiple
criteria to filter out spurious motifs. We kept the motifs that passed the
following criteria.

1) Bias <80% (GC-rich test, GC/AT percentage of the most preferred
nucleotides in each position does not exceed 80%)

2) Length >4 nt
3) Stringent <75% (the number of stringent positions is less

than 75%)
4) Correspond (the motif corresponded to at least one known TF

motif as detected by TOMTOM)
5) Overlap >70% (the motif must align with an overlap of at least 70%

to at least one known TF motif as detected by TOMTOM)
6) q-value <0.05 (TOTOM motif similarity of significance)
7) Differential expression of TF in neuronal progenitors (2-fold

change)

Transposase-accessible chromatin with high
throughput sequencing (ATAC-seq)

ATAC-seq is a technique used inmolecular biology to assess genome-
wide chromatin accessibility (Buenrostro et al., 2013). ATAC-seq is a
faster and more sensitive analysis of the epigenome than DNase-seq or
MNase-seq. ATAC-seq was performed on MGE-like progenitors (Day
26) and GABAergic-like interneurons (Day 39) in duplicates. The cells
were counted, and 50,000 cells were taken for each experiment. Cells were
washed with cold PBS and were lysate. Immediately after lysis the nuclei
were taken to transposition reaction using Nextera Tn5 Transposase,
(IlluminaCat.FC-121-1030) and incubated at 37°C for 30 min, with gentle
mixing. After the transposition reaction, the pellet was purified using a
QiagenMinElute PCRPurification kit (Qiagen cat. 28004, Germany). The
purified transposed DNA fragments were amplified using NEBNext
High-Fidelity 2X PCR Master Mix (New England Labs Cat.M0541,
United States) with 25uM PCR Primer 1 (AATGATACGGCGACC
ACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG), Barcoded
PCR Primer 2 (CAAGCAGAAGACGGCATACGAGATTCGCCT
TAGTCTCGTGGGCTCGGAGATGT, CAAGCAGAAGACGGC
ATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT). The
PCR program was as published in the protocol: 1 cycle of 5 min
72°C, 30 s 98°C followed by 5 cycles of 10 s 98°C, 30 s 63°C, 1 min
72°C. To reduce bias to size and GC content the PCR must be stopped
before saturation. Therefore, a qPCR side reaction was done to
determine the number of PCR cycles to add. A 5 μL of previously
PCR-amplifiedDNA using NEBNext High-Fidelity 2× PCRMasterMix
and 100× SYBR Green I the fragment were amplified in qPCR using the
protocol: 1 cycle of 30 s 98°C and 20 cycles of 10 s 98°C, 30 s 63°C, 1 min
72°C. The cycle number 6 showed one-third of the maximum
fluorescent intensity is the cycle to add to the PCR and therefore it

was chosen for the following reaction. The remaining PCR reaction
(45 μL) was amplified in a second PCR using the program: 1 cycle of 30 s
98°C and 6 cycles of 10 s 98°C, 30 s 63°C, 1 min 72°C. The libraries were
purified using Qiagen MinElute PCR Purification Kit. The
concentration of the purified libraries was calculated using Qubit
and Bioanalyzer. The amplified libraries were sequenced by Next-seq
for pair-end reads with a coverage of 40M reads per sample.

Chromatin immunoprecipitation followed by
sequencing (ChIP-seq)

ChIP-seq is a method used to analyze protein interactions with
DNA. ChIP-seq combines with massively parallel DNA sequencing to
identify the binding sites of DNA-associated proteins. 106 differentiated
cells fromDay 26, Day 39, andDay 55 stages were cross-linked using 1%
formaldehyde. The lysate with sodium dodecyl sulfate-based reagents
and chromatin was sonicated for 18 cycles (60 s On, 60 s Off) using
Bioruptor. The sonicated samples were immunoprecipitated using
magnetic beads 25 μL protein A (Invitrogen cat.10002D) and 25 μL
protein G (Invitrogen cat.10004D). The samples were reverse
crosslinked using Proteinase K overnight at 650°C. The sonicated
fragments were 300-500bp in size. The DNA fragments were
purified using the phenol-chloroform protocol. ChIP was performed
using antibodies against H3K27ac (Abcam Ab4729) and H3K27me3
(Abcam Ab4729). Prepared libraries from ChIP and input DNA were
sequenced using the HiSeq instrument (Illumina, United States). The
ChIP libraries were analyzed and mapped to hg19 using BWA (Li and
Durbin, 2009) and peaks were called using MACS (Zhang et al., 2008).

RNA-seq analysis

We extracted RNA using a total RNA purification micro kit (Norgen
cat.35300, Canada). We treated the lysate on the column with DNase I to
remove DNA contamination. We extracted RNA from the three
differentiation stages i.e., days 0, 26, and 39 in triplicates, and libraries
were prepared by Illumine kits. The libraries were sequenced on Hi-Seq
2000with 40 M reads per sample.We defined a TF degree of expression as
follows: if the level of expression increases by at least 2-fold fromDay 0 to
Day 26, and the level of expression decreases/does not change from Day
26 to Day 39, then the TF is transcribed on day 26; otherwise, the TF was
considered as not transcribed. This definition is used as a filter to eliminate
TF binding to the REs of neuronal progenitors.

Extant methods for de-novo motif discovery

We compared the motifs our framework detected to motifs found
by well-known and established motif finders. The MEME-suite toolkit
includes methods for de novo motif discovery. Given two sets of
nucleotide sequences Multiple EM for Motif Elicitation (MEME)
(Bailey and Elkan, 1994; Bailey et al., 2006) and Discriminative
Regular Expression Motif Elicitation (DREME) (Bailey, 2011) find
enriched motifs in one set compared to the other. We usedMEME and
DREME to find enriched motifs in the active enhancer compared to
the non-active enhancer set and vice versa. BaMM webserver uses a
probabilistic method for de novo motif discovery (Siebert and
Soding, 2016; Kiesel et al., 2018). We used BaMM to discover
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enriched motifs in nucleotide sequences compared to a background
model. An extra feature of BaMM is to compare the enriched motifs
to motifs from known databases. The parameter settings and details
on running the methods are described in Supplementary
Information.

Transgenic enhancer assays

We designed primers to amplify candidate sequences of REs
from human genomic DNA (Supplementary Table S9). We cloned
PCR products into the E1b-GFP-Tol2 enhancer assay vector containing
an E1b minimal promoter followed by the green fluorescent protein
(GFP) reporter gene. We injected these constructs into zebrafish
embryos using standard procedures. For statistical significance, we
injected at least 100 embryos per construct in at least two different
injection experiments along with Tol2 mRNA to facilitate genomic
integration. We observed and annotated GFP expression at 24, 48, and
72 hpf). We compared the annotation of the GFP expression driven by
the tested minimal enhancer sequences to the GFP expressed pattern.
We annotated the GFP expression using a Stereo Discovery
V12 fluorescence stereomicroscope (Zeiss).

Site-directed mutagenesis by overlap
extension using the polymerase chain
reaction

We generated site-directed deletions of predicted ZEB1 and CTCF
binding sites on an e1b-GFP-Tol2 plasmid containing RE1 or RE6.
Specific primers with the desired mutations (Supplementary Table S10)
were designed to amplify the entire plasmid template using a PCR
protocol. We removed the parent template using DpnI (methylation-
dependent endonuclease) (NEB, #R0176) and transformed bacteria with
the nuclease-resistant nicked plasmid (the PCR product). We isolated
plasmids from the resulting colonies and screened them for the desired
modification. We verified the positive clones by Sanger sequencing for
the desired modification and the absence of additional modifications.
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