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Introduction: Increasing evidences have shown that hypoxia and the immune

microenvironment play vital roles in the development of osteosarcoma.

However, reliable gene signatures based on the combination of hypoxia and

the immune status for prognostic prediction of osteosarcoma have so far not

been identified.

Methods: The individual hypoxia and immune status of osteosarcoma patients

were identified with transcriptomic profiles of a training cohort from the

TARGET database using ssGSEA and ESTIMATE algorithms, respectively.

Lasso regression and stepwise Cox regression were performed to develop a

hypoxia-immune-based gene signature. An independent cohort from the GEO

database was used for external validation. Finally, a nomogramwas constructed

based on the gene signature and clinical features to improve the risk

stratification and to quantify the risk assessment for individual patients.

Results: Hypoxia and the immune status were significantly associated with the

prognosis of osteosarcoma patients. Seven hypoxia- and immune-related

genes (BNIP3, SLC38A5, SLC5A3, CKMT2, S100A3, CXCL11 and PGM1) were

identified to be involved in our prognostic signature. In the training cohort, the

prognostic signature discriminated high-risk patients with osteosarcoma. The

hypoxia-immune-based gene signature proved to be a stable and predictive

method as determined in different datasets and subgroups of patients.

Furthermore, a nomogram based on the prognostic signature was generated

to optimize the risk stratification and to quantify the risk assessment. Similar

results were validated in an independent GEO cohort, confirming the stability

and reliability of the prognostic signature.

Conclusion: The hypoxia-immune-based prognostic signature might

contribute to the optimization of risk stratification for survival and

personalized management of osteosarcoma patients.
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Introduction

Osteosarcoma is highly aggressive malignant bone tumor

predominately occurring in children and young adults (Rothzerg

et al., 2020). Due to rapid progression and high metastasis rate, it

often results in poor prognosis (Niu et al., 2020). The 5-year

survival rate of patients with local or metastatic osteosarcoma is

about 70% or 20%, respectively (Negri et al., 2019). Most

treatment strategies for osteosarcoma involve surgical

resection, chemotherapy, and radiotherapy (Jawad et al.,

2011). Although significant progress has been made in

available therapies, the overall survival of osteosarcoma

patients has unfortunately not obviously improved since the

last 3 decades (Anderson, 2016; Pierrevelcin et al., 2020).

Therefore, identification of new effective prognostic signatures

and therapeutic targets might improve osteosarcoma prognosis

and treatment.

Hypoxia is a major factor involved in the occurrence and

development of tumors, which is related to the imbalance

between rapid proliferation of tumor cells and insufficient

oxygen supply (Harris, 2002; Ruan et al., 2009). Evidence

indicates that hypoxia is associated with aggressive tumor

phenotypes and treatment resistance (Bertout et al., 2008;

Vooijs et al., 2008; Chang and Erler, 2014). Hypoxia-inducible

factor 1α (HIF-1α) is the main molecular transcriptional

mediator in response to hypoxia (Semenza, 2014). Studies

revealed that HIF-1α upregulation significantly correlated with

metastasis and poor prognosis of osteosarcoma patients (Ouyang

et al., 2016; Zhang et al., 2018; Pierrevelcin et al., 2020). Notably,

hypoxia can modulate the development and function of

infiltrating immune cells, thereby affecting the state of the

tumor immune microenvironment (Palazón et al., 2012).

Studies have shown that hypoxia can regulate the function of

myeloid-derived suppressor cells (MDSCs) and redirect their

differentiation toward tumor-associated macrophages (TAMs) in

the tumor microenvironment (Corzo et al., 2010). Hypoxia can

also reduce the activation level of cytotoxic T lymphocytes

(CTLs) in a HIF-1α-dependent manner, resulting in

immunosuppression and evasion of immune detection

(Barsoum et al., 2014). Importantly, infiltrating immune cells,

which account for the primary non-tumor components in the

tumor immune microenvironment, are closely related to the

prognosis and treatment of osteosarcoma (Buddingh et al.,

2011; Gomez-Brouchet et al., 2017).

The hypoxia-immune-related gene signature has been

already associated with the overall survival in multiple types

of tumors, as renal cell carcinoma (Gui et al., 2021),

hepatocellular carcinoma (Hu et al., 2020), gastric cancer (Liu

et al., 2020), and triple-negative breast cancer (Zheng et al., 2020).

These studies have demonstrated that the hypoxia-immune-

based signatures possess high prognostic potential and clinical

guidance values. However, there is a lack of investigation

regarding the interaction of hypoxia and immune cells and its

prognostic potential in osteosarcoma, which will be the main

research question of this manuscript.

Here, we have comprehensively analyzed the hypoxia and

immune status of osteosarcoma to explore the effect of hypoxia

and immune interaction on overall survival of osteosarcoma

patients. Moreover, we have established a novel prognostic

signature based on hypoxia-immune-related genes and

performed molecular experimental verification. Our present

research may provide new strategies for targeted therapy of

osteosarcoma and promote individual-based treatment of

patients.

Materials and methods

Data collection

All data about osteosarcoma in this study were obtained from

the Therapeutically Applicable Research To Generate Effective

Treatments (TARGET) (https://ocg.cancer.gov/programs/target/

) and Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.

nih.gov/geo/) (Barrett et al., 2005) databases. The datasets

involved in this study meet the following criteria: 1) samples

diagnosed as osteosarcoma; 2) samples with complete clinical

information including survival time, vital status, age and sex; 3)

sample size in the dataset with more than fifty individuals.

In our research, ninety five samples from the TARGET

database were defined as the training cohort, and fifty three

samples from the GSE21257 dataset were used as the validation

cohort. The flowchart of this study is shown in Supplementary

Figure S1.

Identification of hypoxia status and
hypoxia-related DEGs

First, Gene Set Enrichment Analysis (GSEA) was performed

on hypoxia pathway between metastatic and non-metastatic

osteosarcoma samples in the TARGET dataset. To determine

whether hypoxia is an essential characteristic of osteosarcoma

compared to healthy control, GSE99671 was used as an

additional independent enrichment dataset (Ho et al., 2017).

Then, Based on the single-sample gene set enrichment analysis

(ssGSEA) method and 200 hypoxia hallmark genes from the

Molecular Signatures database (MSigDB) (Liberzon et al., 2011),

we calculated the hypoxia enrichment score to predict the

hypoxia status. Maximally selected rank statistics were applied

by using R packages “survival” and “survminer” to identify the

best optimal cutoff value to divide patients. According to the best

cutoff value, patients with high hypoxia scores were assigned to

hypoxia-high group, while the other samples were ranged to

hypoxia-low group. Furthermore, expression changes analysis

with reference to HIF-1 signaling pathway-related genes were
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conducted to explore the difference between hypoxia-high and

hypoxia-low groups. These genes were retrieved from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database,

including 15 genes related to “increased oxygen delivery” and

13 genes involved in “reduced oxygen consumption”. The R

package “limma” was used to identify differentially expressed

genes (DEGs) between the two groups. Genes with p < 0.05 and

an absolute value of log2 (fold change) > 0.5 were considered as

hypoxia-related DEGs.

Identification of immune infiltration status
and immune-related DEGs

The newly developed Estimation of Stromal and Immune

cells in MAlignant Tumours using Expression data (ESTIMATE)

algorithm was applied to calculate scores reflecting the level of

infiltrating immune and stromal cells in the tumor

microenvironment (Yoshihara et al., 2013). The osteosarcoma

patients were attributed to immune-high group and immune-low

group based on the median of the immune score. Next, we used

ssGSEA method based on the 29 immune signatures, including

diverse immune cell types, immune-related functions, and

immune-related pathways to validate the effect of immune

grouping and to picture a clustering heat map. Besides, the

CIBERSORT deconvolution algorithm was applied to

accurately determine the composition of 22 immune cells of

all osteosarcoma samples (Chen et al., 2018), and the difference

of immune grouping was validated again. The DEGs between the

immune-high group and immune-low group were identified by R

package “limma”. Genes with p < 0.05 and an absolute value of

log2 (fold change) > 0.5 were considered as immune-

related DEGs.

Division of the groups based on hypoxia
and immune status

The identification of the hypoxia and immune status of each

patient has been described above. All samples were further

labeled with two-dimension contributions and divided into

four groups, including hypoxia-high/immune-low group,

hypoxia-low/immune-high group, hypoxia-high/immune-high

group and hypoxia-low/immune-low group. R packages

“survival” and “survminer” were used to carry out a survival

analysis for these four groups. The hypoxia-immune-related

DEGs were obtained through the overlap between hypoxia-

related DEGs and immune-related DEGs by Venn analysis.

To understand the biological functions and pathway

enrichment of the hypoxia-immune-related DEGs, Gene

Ontology (GO) functional analysis and KEGG pathway

enrichment analysis were conducted by applying R package

“clusterProfiler”.

Construction and verification of the
hypoxia-immune-based prognostic
signature in osteosarcoma

The Least Absolute Shrinkage and Selection Operator (Lasso)

analysis and the stepwise Cox proportional hazards regression

model were conducted using R package “survival” and “glmnet”

to construct a hypoxia-immune-based gene signature. The risk

score was established by including normalized gene expression

values weighted by their Cox coefficients as follows:

risk score � ∑
n

i�1 coef f icient i*expression of signature gene i( )

Based on the risk score, we computed the best optimal cutoff

value to stratify patients into high- and low-risk groups. The

Kaplan-Meier (K-M) method was used to draw survival curves,

and the log-rank test was carried out to evaluate differences in

overall survival between high- and low-risk groups. Univariate

and multivariate Cox regression analyses were performed to

explore the independent prognostic value of the gene

signature. Time-dependent receiver-operating characteristic

(ROC) curves were used to verify the performance of the risk

signature by comparing the prediction efficiency with the

clinical features. With the help of area under the curve

(AUC) values and Cox regression analysis, we compared

our prognostic signature with other published osteosarcoma

models generated by Fu Y et al. (Fu et al., 2021) andWu F et al.

(Wu et al., 2021). A webserver, GEOexplorer (Hunt et al.,

2022), was applied to integrate the TARGET and

GSE21257 datasets, and the integrated dataset was used as

an additional validation dataset.

Establishment and calibration of a
nomogram

A nomogram was built to quantitatively evaluate the survival

probabilities of osteosarcoma based on the result of the

multivariate Cox regression analysis. Some clinical parameters,

such as age, gender, primary tumor site, and metastasis, as well as

the risk score were employed to construct the nomogram

utilizing the R packages “rms” and “survival”. Calibration

curves were drawn to estimate the divergence between the

predicted and actual survival probabilities. Time-dependent

ROC analysis was used to determine whether our established

nomogram was suitable for clinical use.

Cell culture, hypoxia treatment and
transfection

Human osteoblast cell line hFOB1.19 was kindly provided by

Prof. Jutta Ries, Department of Oral and Maxillofacial Surgery,
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Friedrich-Alexander University Erlangen-Nürnberg (FAU) and

cultured in DMEM/F12, GlutaMAX Supplement

supplemented with 10% fetal bovine serum (Thermo

Scientific). Human osteosarcoma cells Saos-2 and 143B

were kindly provided by Prof. Thomas Brabletz,

Department of Experimental Medicine 1, Nikolaus-

Fiebiger-Center for Molecular Medicine, Friedrich-

Alexander-University Erlangen-Nürnberg and maintained

in Dulbecco’s Modified Eagle’s Medium (DMEM) with

10% fetal bovine serum. Saos-2 and 143B cells were

cultured under normoxic (21% O2) or hypoxic (1% O2)

conditions for 8 h. Specific shRNAs against BNIP3

(shBNIP3) and negative control (shNC) were obtained

from Origene. Saos-2 and 143B cells were transfected with

shBNIP3 or shNC using Lipofectamine 3,000 Transfection

Reagent (Thermo Scientific) according to the manufacturer’s

instructions. Saos-2 and 143B cells were collected for RNA

and protein extraction following 48 h of incubation with

specific shRNAs.

RNA isolation and quantitative real-time
polymerase chain reaction (RT-PCR)

RNA extraction was performed with Trizol reagent

(Invitrogen) and complementary DNA was synthesized by

using the High-Capacity cDNA Reverse Transcription Kit

(Thermo Scientific) according to the manufacturer’s

instructions. RT-PCR was performed using the SYBR Select

Master Mix (Thermo Scientific) on the QuantStudio 6 Flex

Real-Time PCR System (Thermo Scientific) with the primers

listed in Table 1. ACTB was used as an internal control and the

2−ΔΔCt method was used for data analysis.

Western blotting

Cultured hFOB1.19, Saos-2, and 143B cells were washed

twice with PBS and homogenized into extraction buffer (8 M

urea, 10% glycerol, 1% SDS, 10 mM Tris-HCl pH 6.8, protease

inhibitor complete (Roche), 1 mM Sodium-Vanadate). Protein

concentration was determined with a BCA Protein Assay Kit

(Thermo Scientific). An equal amount of protein samples were

separated by SDS-PAGE and transferred onto PVDF transfer

membranes (Thermo Scientific). Then, membranes were blocked

with 5% w/v skim milk, incubated with primary antibodies

against BNIP3 (1:1,000; 68091-1-Ig; Proteintech), SLC38A5 (1:

1,000; 28102-1-AP; Proteintech), SLC5A3 (1:1,000; 21628-1-AP;

Proteintech), CKMT2 (1:1,000; 13207-1-AP; Proteintech),

S100A3 (1:1,000; 12343-1-AP; Proteintech), PGM1 (1:1,000;

15161-1-AP; Proteintech), CXCL11 (1:1,000; MAB672-SP;

R&D Systems) and β-actin antibody (1:5,000; NB-600; Sigma)

overnight at 4 °C. Afterward, Anti-Mouse IgG (H + L), HRP

Conjugate (1:5000; W4021; Promega) or Anti-Rabbit IgG (H +

L), HRP Conjugate (1:5000; W4011; Promega) was applied for

hatching the membranes for 2 h. The membranes were exposed

to enhanced chemiluminescence (ECL) solution and the western

blot bands were quantified using ImageJ software.

Cell proliferation and invasion assay
Transfected osteosarcoma cells were cultured in 96-well

plates with a cell density of 5000 cells per well. A total of

10 μL Cell Counting Kit-8 solution (CCK8; HY-K0301;

MedChemExpress) was added at 24 and 48 h, respectively.

The optical density (OD) of each well was measured using a

microplate reader at 450 nm.

After transfection, 500 cells were seeded in a 12-well dish and

cultured for 2 weeks. Colonies were fixed and stained using 0.5%

crystal violet. Colonies of more than 50 cells were counted under

a dissecting microscope.

Transfected cells were seeded in six-well plates and grew until

they reached full confluence. Scratches were made using a 10 μL

pipette tip. The changes of scratches at 6 h were observed under a

microscope. ImageJ software was used to calculate the area

change of the scratches.

Statistical analysis

All analyses were performed with R version 4.1.0 (https://

www.r-project.org) and its appropriate packages. Data were

analyzed with standard statistical tests as appropriated. p

values less than 0.05 were considered statistically significant.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

TABLE 1 List of primers.

Primer pair name Sequence (59- 39)

BNIP3 (For) TCAGCATGAGGAACACGAGCGT

BNIP3 (Rev) GAGGTTGTCAGACGCCTTCCAA

SLC38A5 (For) GCCATAGCTCTGATCCTGCTTG

SLC38A5 (Rev) ATGCGGAGGTAGAAGATGCTGG

SLC5A3 (For) GCCAGTACCATATTCACCCTCG

SLC5A3 (Rev) CATCTCCACGATGATTGGCACC

CKMT2 (For) CTGGTGACGAGGAGTCCTATGA

CKMT2 (Rev) TCCGTTGTGTGCTTCATCACCC

S100A3 (For) CAAATACAAGCTCTGCCAGGCG

S100A3 (Rev) TCGCAGTCCTTGTTGGTGTCCA

CXCL11 (For) AAGGACAACGATGCCTAAATCCC

CXCL11 (Rev) CAGATGCCCTTTTCCAGGACTTC

PGM1 (For) TGATGGACGCGAGCAAACTGTC

PGM1 (Rev) ATGTCCTCCACACTCTGCTTGC

ACTB (For) CACCATTGGCAATGAGCGGTTC

ACTB (Rev) AGGTCTTTGCGGATGTCCACGT
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Results

Hypoxia status and hypoxia-related DEGs
in osteosarcoma

The training cohort contained 23 metastatic and 72 non-

metastatic osteosarcoma samples from the TARGET database.

The clinical information of all patients is shown in Table 2. GSEA

analysis indicated that metastatic samples exhibited a significant

hypoxia enrichment signature compared to non-metastatic

samples (NES 1.67and NOM p-value 0.046) (Figure 1A). The

hypoxia pathway was enriched in osteosarcoma samples when

compared to healthy controls (NES 1.50 and NOM p-value

0.030) (Supplementary Figure S2). With the list of hypoxia

hallmark genes (n = 200), the hypoxia enrichment score of

each osteosarcoma patient was quantified by ssGSEA to

delineate the hypoxia status. The best cutoff value of “4.4”

was determined based on maximally selected rank statistics

(Figure 1B). By means of the cutoff value, the hypoxia-high

group and hypoxia-low group were divided, containing

respectively 17 and 78 patients. K-M survival analysis

demonstrated that the prognosis for patients with a high level

of hypoxia is significantly worse than for those with a low

hypoxia level (log rank test, p < 0.05) (Figure 1C). Moreover,

we explored the gene expression changes of the HIF-1 signaling

pathway, which contained 15 genes involved in “increased

oxygen delivery” and 13 genes related to “reduced oxygen

consumption”. As shown in Figure 1D, 16 genes (SLC2A1,

VEGFA, PGK1, PFKFB3, ENO1, ALDOA, GAPDH, LDHA,

HK1, PDK1, HMOX1, TIMP1, SERPINE1, TFRC, CDKN1A,

and PFKL) were significantly overexpressed in the hypoxia-high

group (p < 0.05). According to the above findings, we could

define two specific groups among osteosarcoma patients that are

associated with the hypoxia status.

Expression profiles were compared between the hypoxia-

high and hypoxia-low groups, and 688 DEGs related to hypoxia

were obtained (Figure 1E). Enrichment analysis showed

upregulated genes in the hypoxia-high group were enriched in

TABLE 2 The clinical information of osteosarcoma patients in the training cohort from TARGET database.

Characteristics Whole
cohort (n = 95)

Low risk (n = 73) High risk (n = 22)

Age (year)

≤16 56 (0.588) 42 (0.575) 14 (0.636)

>16 39 (0.411) 31 (0.425) 8 (0.364)

Gender

Female 40 (0.421) 28 (0.384) 12 (0.545)

Male 55 (0.579) 45 (0.616) 10 (0.455)

Metastasis

Yes 23 (0.242) 1 (0.014) 22 (1.000)

No 72 (0.758) 72 (0.986) 0

Vital status

Alive 57 (0.600) 50 (0.685) 7 (0.318)

Dead 38 (0.400) 23 (0.315) 15 (0.682)

Primary tumor sites

Leg/foot 83 (0.874) 68 (0.932) 15 (0.682)

Arm/hand 7 (0.073) 5 (0.068) 2 (0.091)

Pelvis 4 (0.042) 0 4 (0.182)

Other 1 (0.011) 0 1 (0.045)

Hypoxia status

High 17 (0.179) 10 (0.137) 7 (0.318)

Low 78 (0.821) 63 (0.863) 15 (0.682)

Immune status

High 47 (0.495) 43 (0.589) 4 (0.182)

Low 48 (0.505) 30 (0.418) 18 (0.818)

Risk group

High 22 (0.232) 0 22 (1.000)

Low 73 (0.768) 73 (1.000) 0
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FIGURE 1
Identification of hypoxia status and hypoxia-related differentially expressed genes (DEGs) in osteosarcoma. (A) Gene Set Enrichment Analysis
(GSEA) of hypoxia between metastatic and non-metastatic osteosarcoma in the TARGET dataset. (B) Histogram of the density distribution of the
hypoxia score for hypoxia-high and hypoxia-low groups divided by the optimal cutoff. Scatter plot of the standardized log-rank statistic value for
each corresponding hypoxia score cutoff. (C) Kaplan-Meier (K-M) plot of overall survival for patients in hypoxia-high and hypoxia-low groups in
the TARGET dataset. (D) Expression changes (hypoxia-high versus hypoxia-low) of target genes involved in HIF-1 KEGG pathway in the TARGET
dataset. (E) Volcano plot showing the DEGs between hypoxia-high and hypoxia-low groups in the TARGET dataset. (F) Gene Ontology (GO) analysis
of DEGs between hypoxia-high and hypoxia-low groups in the TARGET dataset.
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FIGURE 2
Analysis of immune status and immune-associated DEGs in osteosarcoma. (A) Enrichment levels of 29 immune signatures in the immune-high
and immune-low groups in the TARGET dataset. (B) K-M plot of overall survival for patients in immune-high and immune-low groups in the TARGET
dataset. (C) Comparison of 22 infiltrating immune cells between immune-low and immune-high groups in the TARGET dataset. (D) Volcano plot
showing the DEGs between immune-high and immune-low groups in the TARGET dataset. (E)GO analysis of DEGs between immune-high and
immune-low groups in the TARGET dataset. Asterisks mark statistically significant difference. *p < 0.05, **p < 0.01, ***p < 0.001.
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the pathways “response to hypoxia”, “response to oxygen levels”,

and in several biological processes that are associated with

immunological functions, such as “leukocyte migration” and

“myeloid cell differentiation” (Figure 1F). Interestingly, the

DEGs between hypoxia-high and hypoxia-low groups were

also enriched in different immune-related responses, implying

an interconnection between the immune state and hypoxia state.

Immune infiltration status and immune-
related DEGs in osteosarcoma

The immune score of each patient in the TARGET dataset

was calculated by ESTIMATE to identity the overall level of

infiltrating immune cells. According to the median value of the

immune score, 95 osteosarcoma patients were divided into

immune-high (n = 47) and immune-low groups (n = 48)

(Figure 2A). To verify the practicability of immune grouping,

29 immune signatures representing different types of immune

cells and corresponding pathways were analyzed. Figure 2A

represents the heat map of different activities and abundances

of immune cells, pathways and functions in the immune-high

group and immune-low group. K-M curves showed that the high

immune score was significantly associated with improved

survival (log rank test, p < 0.05) (Figure 2B). Next,

CIBERSORT algorithm was further employed to evaluate

infiltration of different immune cells. As showed in Figure 2C,

immune-high group showed higher infiltration degrees of CD8+

T cell, T follicular helper cells, activated NK cells, M1-like

macrophages and M2-like macrophages, while the immune-

low group showed higher infiltration degrees of naive CD4+

T cells, resting NK cells and M0 (non-activated) macrophages.

The immune-related DEGs were obtained by comparing the

gene expression between immune-high and immune-low groups.

Altogether, 2,847 DEGs were identified (Figure 2D). The GO

enrichment analysis showed that “positive regulation of

leukocyte activation”, “positive regulation of cell activation”,

and “positive regulation of lymphocyte activation” represent

the main biological processes that are associated with the

immune status (Figure 2E). It is worth noting that the

immune-related DEGs were also enriched in “response to

hypoxia”.

Taken together, the immune grouping could properly reflect

the different immune status of osteosarcoma patients,

highlighting the infiltration patterns of immune cells, which

are associated with the survival rate.

Hypoxia-immune-related DEGs in
osteosarcoma

Although hypoxia as well as the immune status within the

osteosarcoma microenvironment was individually correlated to

patients’ overall survival, the effects of hypoxia and immune

interaction on the prognosis of osteosarcoma patients remain to

be identified. We further considered hypoxia and the immune

status together by combining them into a two-dimensional index.

To do so, patients were divided into four groups: hypoxia-high/

immune-low, hypoxia-low/immune-high, hypoxia-high/

immune-high and hypoxia-low/immune-low group. The

survival analysis showed significant differences among these

four groups, wherein patients in the hypoxia-low/immune-

high group had the best prognosis, while those in the

hypoxia-high/immune-low group yield the worst survival (log

rank test, p < 0.01) (Figure 3A). As hypothesized, a more severe

hypoxia status and a lower level of immune cell infiltration may

lead to a worse prognosis. This provides a hint on an inverse

association between the effects of hypoxia and immune cell

infiltration in the context of osteosarcoma prognosis.

To determine the DEGs related to hypoxia and immune

status, the hypoxia-related DEGs were intersected with the

immune-related DEGs. Altogether, 152 overlapping genes

were obtained for subsequent analyses (Figure 3B). We further

conducted GO enrichment analysis and KEGG pathway analysis

to ascertain potential functions of these hypoxia-immune-related

DEGs. As depicted in Figure 3C, these DEGs were mainly

enriched in pathways that are related to metabolic alteration

in response hypoxia, such as “cellular response to hypoxia”,

“cellular response to oxygen levels”, “monosaccharide

metabolic process”, and “hexose metabolic process”. The

KEGG pathway analysis showed that the hypoxia-immune-

related DEGs may also be involved in certain cancer or

metabolism-related pathways, including “HIF-1 signaling

pathway”, “proteoglycans in cancer”, and “starch and sucrose

metabolism” (Figure 3D).

Establishment and evaluation of the
hypoxia-immune-based prognositic
signature in osteosarcoma

To obtain the hypoxia-immune-related prognostic DEGs,

Lasso regression analysis was employed to narrow the range of

genes. As shown in Figure 4A, the number of independent

variable coefficients gradually increased to zero with the

gradual increase of lambda. Ten-fold cross validation was

used to build the model, and the confidence interval was

under each lambda. Thus, we selected 12 DEGs at lambda =

0.0980 as candidate genes. The 12 DEGs were BCL2 Interacting

Protein 3 (BNIP3), Solute Carrier Family 38 Member 5

(SLC38A5), Stanniocalcin 2 (STC2), Phosphoglucomutase 1

(PGM1), CFAP20 Domain Containing (CFAP20DC), Galectin

1 (LGALS1), Creatine Kinase, Mitochondrial 2 (CKMT2), C-X-C

Motif Chemokine Ligand 11 (CXCL11), Solute Carrier Family

5 Member 3 (SLC5A3), Formin Like 1 (FMNL1), S100 Calcium

Binding Protein A3 (S100A3) and T Cell Receptor Alpha
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Constant (TRAC). To optimize the gene signature and identify

only the most predictive DEGs, a stepwise Cox proportional

hazards regressionmodel was used, which resulted in a final set of

7 DEGs (BNIP3, SLC38A5, SLC5A3, CKMT2, S100A3,

CXCL11 and PGM1) (Figure 4B). Using the expression levels

of 7 DEGs and the corresponding coefficients derived from the

stepwise Cox proportional hazards regression model, we

estimated the risk score for each patient: risk score = (0.6371

* BNIP3 expression) + (0.3938 * SLC38A5 expression) + (-0.5630

* SLC5A3 expression) + (0.3709 * CKMT2 expression) + (-0.6061

*S100A3 expression) + (-0.4593 * CXCL11 expression) +

(-0.7056 * PGM1 expression). The distribution of the risk

score in the TARGET dataset is shown in Figure 4C. As based

on the best optimal cutoff value of the risk score, patients were

assigned to high-risk (n = 22) and low-risk (n = 73) groups

(Table 2). Results from the K-M survival analysis indicated that

the overall survival of patients in the high-risk group was

significantly lower than the one of patients in the low-risk

group (log-rank test, p < 0.0001) (Figure 4D).

To evaluate the extensive applicability of our gene signature,

we analyzed the prognostic value of the gene signature in

osteosarcoma patients with different clinical features (age, sex

and metastatic status). As summarized in Supplementary Figures

S3A–F, this gene signature effectively discriminated high-risk

patients with poor prognosis in different subgroups (log-rank

test, p < 0.01), demonstrating a high prognostic value of this

genes signature in osteosarcoma.

Besides, univariate and multivariate Cox regressions were

conducted to analyze the relationships among gene signature, the

clinical features and the overall survival of patients with

osteosarcoma. Results from the Cox analysis demonstrated

that the risk score was significantly correlated with the overall

FIGURE 3
Identification of hypoxia-immune-related DEGs in osteosarcoma. (A) K-M plot of overall survival for patients in hypoxia-high/immune-low,
hypoxia-low/immune-high, hypoxia-high/immune-high and hypoxia-low/immune-low group in the TARGET dataset. (B) Venn diagrams showing
overlaps of hypoxia-related DEGs and immune-related DEGs in the TARGET dataset. (C) GO analysis for hypoxia-immune-related DEGs in the
TARGET dataset. (D) KEGG analysis for hypoxia-immune-related DEGs in the TARGET dataset.
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FIGURE 4
Construction of a hypoxia-immune-related prognostic signature. (A) Lasso coefficient profiles of the most relevant prognostic genes (upper
panel) and ten-fold cross validation for tuning parameter selection in the Lasso model (lower panel) in the TARGET dataset. (B) Forest plots of seven
DEGs with p < 0.5 by stepwise Cox proportional hazards regression model from the TARGET dataset. (C) Risk score, survival status and expression of
the seven signature genes in the training cohort from TARGET database. (D) K-M curve of overall survival for patients in the high-risk and low-
risk groups in the training cohort from TARGET database. (E) Receiver operating characteristic (ROC) curve for 1-, 2-, and 3-year overall survival in
patients from TARGET dataset. (F) Comparisons of AUC values among different clinical characteristics of patients in the TARGET dataset.
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TABLE 3 Comparisons between the risk score and other four variables, including age, metastasis, gender, and primary tumor site in the TARGET
dataset using univariate and multivariate Cox regression analyses.

Variable Univariate cox regression Multivariate cox regression

HR Lower 95% CI Upper 95% CI p-Value HR Lower 95% CI Upper 95% CI p-Value

Risk score 2.72 2.08 3.55 <0.001 2.56 1.93 3.39 <0.001
Age 0.98 0.92 1.05 0.55 1.02 0.96 1.08 0.49

Metastasis 3.81 1.99 7.29 <0.001 2.91 1.40 6.02 <0.01
Gender 1.03 0.54 1.98 0.93 1.06 0.52 2.13 0.88

Primary tumor site 2.57 1.63 4.04 <0.001 1.42 0.84 2.39 0.19

TABLE 4 Comparisons between the risks core and other prognostic models using univariate and multivariate Cox regression analyses.

Variable Univariate cox regression Multivariate cox regression

HR Lower 95% CI Upper 95% CI p-Value HR Lower 95% CI Upper 95% CI p-Value

Risk score 2.72 2.08 3.55 <0.001 2.61 1.92 3.50 <0.001
Fu et al 1.10 1.05 1.14 <0.001 1.04 0.98 1.00 0.19

Wu et al 1.97 1.40 2.77 <0.001 0.91 0.64 1.20 0.59

TABLE 5 The clinical information of osteosarcoma patients in the verification cohort from GSE21257.

Characteristics Whole
cohort (n = 53)

Low risk (n = 47) High risk (n = 6)

Age (year)

≤16 25 (0.472) 21 (0.567) 4 (0.667)

>16 28 (0.528) 26 (0.433) 2 (0.333)

Gender

Female 19 (0.358) 16 (0.340) 3 (0.500)

Male 34 (0.642) 31 (0.660) 3 (0.500)

Metastasis

Yes 34 (0.642) 28 (0.596) 6 (1.000)

No 19 (0.358) 19 (0.404) 0

Vital status

Alive 30 (0.566) 29 (0.617) 1 (0.167)

Dead 23 (0.434) 18 (0.383) 5 (0.833)

Tumor locations

Leg/foot 44 (0.830) 41 (0.872) 3 (0.500)

Arm/hand 8 (0.151) 6 (0.128) 2 (0.333)

Unknown 1 (0.190) 0 1 (0.167)

Risk group

High 6 (0.295) 0 6 (1.000)

Low 47 (0.705) 47 (1.000) 0
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survival of patients in the training cohort (Table 3). This

suggested that the calculated risk score might serve as an

independent risk factor for the overall survival in osteosarcoma.

In addition, we conducted ROC curve analysis to evaluate the

sensitivity and specificity of the prognostic signature. The AUC

values for the 1-, 2-, and 3-year survival rates were 0.873,

0.961 and 0.859, respectively (Figure 4E), suggesting a good

predictive value for the prognosis of osteosarcoma patients.

Compared with other clinical features, including metastasis

and primary tumor site, the ROC curve analysis indicated that

the risk score was more accurate than the other tested clinical

features for the 1, 2- and 3-year survival prediction (Figure 4F).

FIGURE 5
External verification for the hypoxia-immune-based prognostic signature. (A) Risk score, survival status and expression of the seven signature
genes in the validation cohort from GSE21257 dataset. (B) K-M curve of overall survival for patients in the high-risk and low-risk groups in the
validation cohort fromGSE21257 dataset. (C) ROC curve for 1-, 2-, and 3-year overall survival in patients from the GSE21257 dataset. (D) K-M curve of
overall survival for patients in the high-risk and low-risk groups in the combined dataset for aggregated analysis. (E) ROC curve for 1-, 2-, and 3-
year overall survival in the combined dataset.
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In comparison with other prognostic models, our risk signature

had the highest AUC values (Supplementary Figure S4). As

shown in Table 4, only our risk signature had the prognosis

capabilities in both univariate and multivariable Cox regressions.

External verification of the hypoxia-
immune-based prognostic signature

To verify the stability and reliability of the prognostic

signature, we employed an independent cohort

GSE21257 from GEO database for external verification. A

total of 53 patients with complete survival information were

enrolled in this validation cohort. The clinical information of all

patients is shown in Table 5. Figure 5A showed the distribution of

the risk score in GSE21257. K-M curves revealed that the overall

survival of osteosarcoma patients in the high-risk group was

significantly lower than the one in the low-risk group (log-rank

test, p < 0.01) (Figure 5B). ROC curve analysis showed that AUC

values for the 1-, 2- and 3-year survival rates were 0.964,

0.761 and 0.653, respectively (Figure 5C). Moreover, Cox

regressions demonstrated that the risk score was significantly

correlated with the overall survival of patients with osteosarcoma

(Table 6).

Next, a newly developed online tool, GEOexplorer, was

applied to merge the training and validation cohorts for

aggregate analysis. After combination, the new risk score of

each patient was calculated. Patients were assigned to high-

risk (n = 53) and low-risk (n = 95) groups based on the best

optimal cutoff value of the risk score. K-M curves

demonstrated that the overall survival of osteosarcoma

patients in the high-risk group was remarkably lower than

the one in the low-risk group (log-rank test, p < 0.0001)

(Figure 5D). ROC curve analysis revealed that AUC values

for the 1-, 2- and 3-year survival rates were 0.748, 0.791 and

0.776, respectively (Figure 5E).

Altogether, these results confirmed that our prognosis

signature base on the seven genes BNIP3, SLC38A5,

SLC5A3, CKMT2, S100A3, CXCL11, and PGM1 is valid

and reproducible.

Construction and calibration of an
integrated nomogram

Nomogram provides a quantitative method for predicting the

probability of patients’ overall survival, which could then be used

in clinical practice. Based on the results of the multivariate Cox

regression analysis, a nomogram was integrated with the

hypoxia-immune-related risk signature together with other

clinical features (Figure 6A). Every patient was assigned with

a total points value by adding the points for each prognostic

specific parameter. Higher total points corresponded to a worse

clinical outcome of patients. The c-index value of the nomogram

was 0.82, indicating a satisfactory overlap with actual

observations. In addition, we also portrayed the corresponding

calibration curves in 1, 2, and 3 years for internal and external

verification. As shown in Figures 6B,C, the prediction lines of the

nomogram for 1-, 2- and 3-year survival probability in the

TARGET dataset and the GSE21257 dataset were quite close

to the ideal performance (45° dotted line), indicating a high

accuracy of the nomogram. Furthermore, ROC curves also

supported the good predictive ability and accuracy of the

nomogram for survival probability (Supplementary Figures

S5A,B). Therefore, this nomogram, based on hypoxia-

immune-related gene signature, might be used to predict the

prognosis of osteosarcoma patients in clinical practice.

Immune landscape between high- and
low-risk groups of osteosarcoma patients

The tumor microenvironment regulates the antitumor

immune responses by suppressing immune surveillance and

promoting immune escape (Noman et al., 2015; Vaupel and

Multhoff, 2017). However, the hypoxia-immune-related

prognostic signature in the immune landscape was explored

until now. CIBERSORT was used to identify the difference of

22 immune cells between high-risk and low-risk patients with

osteosarcoma. In both TARGET and GSE21257 datasets,

osteosarcoma patients with high risk had prominently higher

proportions in immunosuppressive cells (such as naive CD4+

TABLE 6 Comparisons between the risk score and other four variables, including age, metastasis, gender, and primary tumor site in the
GSE21257 dataset using univariate and multivariate Cox regression analyses.

Variable Univariate cox regression Multivariate cox regression

HR Lower 95% CI Upper 95% CI p-Value HR Lower 95% CI Upper 95% CI p-Value

Risk score 1.44 1.00 2.08 <0.05 1.46 1.01 2.12 <0.05
Age 1.01 0.98 1.04 0.60 1.02 0.98 1.05 0.38

Gender 0.71 0.30 1.70 0.45 0.70 0.28 1.75 0.45

Tumor location 0.94 0.65 1.36 0.76 0.90 0.62 1.30 0.59
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FIGURE 6
Construction and validation of the nomogram. (A) Nomogram to predict the 1-, 2-, and 3-year overall survival in patients from the TARGET
dataset. (B) Calibration curves of the nomogram in patients from the TARGET dataset. (C) Calibration curves of the nomogram in patients from the
GSE21257 dataset.
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FIGURE 7
Immune landscape and immunosuppressive microenvironment between high-risk and low-risk groups of osteosarcoma patients. (A) Relative
proportion of immune infiltration of 22 immune cells in the high-risk and low-risk groups in the TARGET and GSE21257 datasets. (B) Violin plots
showing the significantly differences of immune cells between high-risk and low-risk groups in the TARGET and GSE21257 datasets. (C,D)Heatmaps
of the immunosuppressive genes in the high-risk and low-risk groups in the TARGET (C) and GSE21257 datasets (D). (E,F) Expressions of three
immune checkpoint genes (CD274), PDCD1LG2, and LAG-3) in high-risk and low-risk groups in the TARGET (E) and GSE21257 datasets (F). (G,H)
Correlation between expressions of immune checkpoint genes and risk score in the TARGET (G) and GSE21257 datasets (H). *p < 0.05, **p < 0.01,
***p < 0.001.
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FIGURE 8
Validation of seven signature genes atmRNA and protein levels and functional analysis of BNIP3 in vitro. (A) RT-PCR for detecting the expression
of seven genes in Saos-2 and 143B osteosarcoma cells and hFOB1.19 cells. (B,D) Western blot and quantification for the expression of the seven
genes in Saos-2 cells (under hypoxic or normoxic conditions) and hFOB1.19 cells. (C,E) Western blot and quantification for the expression of the
seven genes in 143B cells (under hypoxic or normoxic conditions) and hFOB1.19 cells. (F)RT-PCR for verifying the expression of BNIP3 in Saos-2
and 143B cells following transfection with its specific shRNAs. (G) Western blot for verifying the expression of BNIP3 in Saos-2 and 143B cells
following transfection with its specific shRNAs. (H)CCK8 assay of detecting the proliferation ability of Saos-2 and 143B cells after BNIP3 knockdown.
(I,J) Colony formation for measuring the proliferation capacity of Saos-2 and 143B cells after BNIP3 knockdown. (K,L) Wound healing assay for
detecting the migration ability of Saos-2 and 143B cells after BNIP3 knockdown. *p < 0.05, **p < 0.01, ***p < 0.001.
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T cells, resting NK cells, M0 macrophages, and neutrophils)

(Figures 7A,B). Thus, our prognostic signature might be highly

associated with an immunosuppressive microenvironment.

Immunosuppressive microenvironment
between high- and low-risk groups of
osteosarcoma patients

With the help of the Tracking Tumor Immunophenotype

database (TIP; http://biocc.hrbmu.edu.cn/TIP/index.jsp) (Xu

et al., 2018), we explored the expression of

immunosuppressive genes in high- and low-risk groups of

osteosarcoma patients. As shown in Figures 7C,D, most of

these immunosuppressive genes were highly expressed in the

high-risk group in both TARGET and GSE21257 datasets.

Next we analyzed three immune checkpoint genes, including

PDL1 (CD274), PDL2 (PDCD1LG2), and LAG3, which were

significantly upregulated in high-risk group and positively

associated with risk score in both TARGET and

GSE21257 datasets (Figures 7E–H).

Experimental verification of the hypoxia-
immune-based prognostic signature

The expression of BNIP3, SLC38A5, CKMT2, CXCL11,

SLC5A3, S100A3, and PGM1 genes was verified in

osteosarcoma cells (Saos-2 and 143B) and normal osteoblasts

(hFOB1.19). Our results confirmed that BNIP3, SLC38A5,

CKMT2, CXCL11, SLC5A3, and S100A3 displayed higher

expression, while PGM1 showed lower expression in Saos-2

and 143B cells compared with hFOB1.19 cells (Figures 8A–E),

indicating that the above signature genes might participate in the

progression of osteosarcoma. Additionally, BNIP3, CKMT2,

SLC5A3, and S100A3 were significantly upregulated, while

SLC38A5, CXCL11, and PGM1was prominently

downregulated in Saos-2 and 143B cells under hypoxic

condition, compared with normoxic condition (Supplementary

Figure S6). These results confirmed that those genes are regulated

under an hypoxic environment.

Silencing BNIP3 attenuates proliferation
and migration of osteosarcoma cells

The biological functions of BNIP3 in tumor development

were further investigated through knockdown experiments

in vitro. BNIP3 knockdown efficacy was confirmed by RT-

PCR and western blot in Saos-2 and 143B osteosarcoma cells

(Figures 8F,G). Thereafter, experiments were performed with

shBNIP3 loci4 in both Saos-2 and 143B cells. Cell proliferation

assay showed that BNIP3 knockdown prominently attenuate the

proliferation of osteosarcoma cells (Figures 8H–J). Cell migration

analysis further demonstrated that BNIP3 knockdown

significantly decreased the migration of osteosarcoma cells

(Figures 8K,L).

Discussion

Osteosarcoma is a highly aggressive bone tumor with an

elevated tendency of metastasis. Although there are multiple

advances in comprehensive therapies, the prognosis of

osteosarcoma patients is still poor. Therefore, exploiting

reliable prognostic signatures for osteosarcoma are sorely

needed. With the development of bioinformatics and next-

generation sequencing technology, numerous aberrantly

expressed oncogenes have been detected and could be united

as prognostic signatures in osteosarcoma (Xiao et al., 2020;

Zhang et al., 2020; Fu et al., 2021; Jiang H et al., 2021).

However, these prognostic signatures based on a single tumor

characteristic were unable to reflect the disease characteristics of

osteosarcoma adequately. To our knowledge, our research is the

first to establish a prognostic signature based on twomajor tumor

characteristics: hypoxia and immune response, which can reflect

the hypoxia and immune status in osteosarcoma simultaneously.

In the present study, a total of 95 patients with osteosarcoma

from the TARGET database were included in the training cohort

to explore the potential value of a combined hypoxia and

immune gene signature for the prognosis of osteosarcoma. By

using the ssGSEA method and the ESTIMATE algorithm, we

evaluated the hypoxia and immune infiltration status within the

osteosarcoma microenvironment to obtain genes that are

individually related to hypoxia and the immune state. Beside,

another osteosarcoma dataset consisting of 36 freshly frozen

paired samples (18 tumor and 18 non-tumor) further confirmed

that hypoxia is a hallmark of osteosarcoma. We divided

osteosarcoma patients into different groups according to an

overlapping hypoxia and immune infiltration status and

thereby successfully assigned several hypoxia-immune-related

genes. Lasso regression model and stepwise Cox proportional

hazards regression model were used to screen for the most robust

genes to establish a prognostic signature. In addition, a formula

for the calculation of the hypoxia-immune-based prognostic risk

score. Then patients were divided into high- and low-risk groups

according to the risk scores. Survival analysis demonstrated that

high-risk patients had worse outcomes and the ROC curve

analysis showed that the prognostic signature is robust and

reliable. Subsequently, the capacity of this signature was

validated in an independent cohort from the GEO database

(GSE21257) and again after merging the TARGET and

GSE21257 datasets. Importantly, we demonstrated that the

risk score was an independent prognostic factor for

osteosarcoma in both training and validation cohorts. The

K-M plots of patients in different subgroups also showed that
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the high-risk patients lived for a shorter amount of time,

suggesting the extensive applicability of the hypoxia-immune-

based gene signature. Moreover, the nomogram including our

prognostic signature (risk score) and certain other clinical

parameters (age, gender, metastasis, and primary tumor site)

was constructed to quantify the survival probability of

osteosarcoma patients. Both calibration plots and ROC curves

indicated the stable performance of the nomogram, which further

supported the reliability of our prognostic signature. As a

conclusion, the hypoxia-immune-based gene signature turned

out to be a convincible biomarker for prognosis and might be

used in the future for survival risk stratification and personalized

management in osteosarcoma.

Immune cells are the main components of the tumor

microenvironment, and their differentiation and function are

often affected by the hypoxic microenvironment. In this study,

we identified 688 DEGs related to hypoxia in the TARGET

database. Enrichment analysis of these DEGs indicated that

hypoxia is involved in several immune-associated biological

processes, such as leukocyte migration and myeloid cell

differentiation. Accumulating evidence strongly suggests that

HIF-1α plays a major role in the regulation of immune cell

function within the tumormicroenvironment (Filippi et al., 2014;

Liu et al., 2014). Filippi et al. reported an enhanced migratory

capability of human monocyte-derived dendritic cells under

hypoxic conditions (Filippi et al., 2014). Specifically, HIF-1α
and PI3K/Akt signaling are responsible for hypoxia-induced

activation of dendritic cells, sustaining their functions.

Furthermore, HIF-1α induced by hypoxia has been implicated

in the rapid differentiation of MDSCs into TAMs in the tumor

microenvironment (Corzo et al., 2010). Sirtuin 1 (Sirt1) was

found to be the main driver in the regulation of MDSCs

differentiation through HIF-1-mediated glycolytic metabolic

reprogramming and has an impact on MDSC functions in

both immune suppression and promotion of tumor

progression (Liu et al., 2014). These results highlight the tight

link between hypoxia and immune cell infiltration in the

osteosarcoma microenvironment.

Our results found significantly higher proportions of naive

CD4+ T cells, resting NK cells, M0 macrophages, and neutrophils

in high-risk patients with osteosarcoma, suggesting a signature of

an immunosuppressive microenvironment. NK cells played an

essential role in anticancer immunity, however, the activity of NK

cells in the tumor microenvironment is often repressed

(Stojanovic et al., 2013). TAMs and neutrophils have been

reported to enhance tumor cell invasion, metastasis and

angiogenesis, while suppressing tumor immune surveillance

(Kim and Bae, 2016). Moreover, immune checkpoints are

crucial in carcinogenesis for enhancing the antitumor effects

of immune cells. PDL1/2 and LAG3 are highly effective against

advanced malignancies with fewer side effects than conventional

therapies (Ren et al., 2019; Jiang F et al., 2021; Luke et al., 2022).

Here, the above three immune checkpoints were meaningfully

upregulated in the high-risk group and positively related to risk

scores, confirming an immunosuppressive microenvironment in

high-risk patients with osteosarcoma.

The prognostic signature we constructed contains the

following seven genes: BNIP3, SLC38A5, SLC5A3, CKMT2,

S100A3, CXCL11 and PGM1. Our experimental work revealed

that BNIP3, SLC38A5, CKMT2, CXCL11, SLC5A3, and

S100A3 were expressed at higher levels, whereas PGM1 was

expressed at lower levels in osteosarcoma cells compared with

normal osteoblasts, highlighting the significance of the above

genes in the occurrence and development of osteosarcoma.

Important roles of these signature genes have been reported

previously in multiple types of cancers. BNIP3, which functions

downstream of HIF-1α, plays a crucial role in carcinogenesis

(Vijayalingam et al., 2010). Similar to our findings in

osteosarcoma, increased BNIP3 level has been reported to be

correlated with an aggressive tumor phenotype and a poor

prognosis in a number of cancers, including breast cancer,

non-small cell lung cancer, and uveal melanoma

(Giatromanolaki et al., 2004; Chourasia et al., 2015; Jiang

et al., 2018). Our in vitro models confirmed that

BNIP3 knockdown significantly inhibited the proliferation and

migration ability of osteosarcoma cells. Vianello et al. indicated

that BNIP3 could be a potential target to overcome the treatment

resistance in osteosarcoma. By inhibiting BNIP3-mediated

mitophagy, the resistance to cisplatin observed in

osteosarcoma could be reduced (Vianello et al., 2022).

SLC38A5, an amino acid transporter, is upregulated in a

variety of cancers to mediate the influx of glutamine, serine,

glycine, and methionine into cancer cells (Girardi et al., 2020). It

plays a critical role in promoting the survival and proliferation of

cancer cells and represents a novel target for cancer therapy

(Sniegowski et al., 2021). In theory, small molecules with high

affinity and selectivity to inhibit its transport function could

potentially have efficacy as anticancer drugs. Published reports

have demonstrated the therapeutic utility of α-methyl-

L-tryptophan as a fairly selective inhibitor of SLC6A14 in the

treatment of breast cancer (Karunakaran et al., 2011), pancreatic

cancer (Coothankandaswamy et al., 2016), and colon cancer

(Sikder et al., 2020). However, SLC38A5 as a drug target for

osteosarcoma would require further investigations.

CKMT2, also known as s-MtCK, belongs to the creatine kinase

isoenzyme family. The overexpression of CKMT2 has been reported

in malignant tumors (Pratt et al., 1987). This isoenzyme may

represent a tumor marker (Fusae et al., 1984). Wang H et al.

have shown that CKMT2 might serve as a key regulating factor

participating in osteosarcomagenesis (Wang et al., 2017).

Regarding CXCL11, its expression was positively correlated

with prolonged overall survival in lung cancer (Cao et al., 2021)

and colon adenocarcinoma patients (Gao et al., 2019). CXCL11 is

a major chemoattractant for effector T cells, thus CXCL11-

dependent therapy may be a potential approach for cancer

treatment (Colvin et al., 2004). For instance, Liu et al. was
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able to attract T cells and NK cells into the tumor

microenvironment and enhance their therapeutic efficacy by

overexpressing CXCL11 with an oncolytic vaccinia viru (Liu

et al., 2016).

Since the role of SLC5A3 and S100A3 has been scarcely

studied in osteosorcoma, the last gene from our signature pattern

that is worth mentioning is PGM1. It belongs to the

phosphohexose mutase family and acts as an important

regulator in the glucose metabolism (Jin et al., 2018).

PGM1 depletion reduces the glycogen content and the rates of

glycogenolysis and glycogenesis, subsequently suppressing tumor

cells proliferation (Bae et al., 2014). Collectively, the novel gene

signature identified in this study could provide hitherto

unexplored therapeutic targets and directions for the

elucidation of molecular mechanisms in osteosarcoma,

however, further investigations would be required to

experimentally confirmed our in silico findings.

Some limitations should be noted in this study. Firstly, the

number of osteosarcoma samples is relatively small, because of

the low incidence and lack of studies in this field. Further studies

with a higher sample number would be needed to better evaluate

the performance of our signature. Secondly, the datasets used in

this study were based on retrospective investigation. More

prospective studies are needed to further confirm the

prognostic value of hypoxia-immune-based gene signature in

osteosarcoma.

Conclusion

In summary, we constructed a new hypoxia/immune cell

infiltration axis that correlated with the prognosis of

osteosarcoma patients. Thereafter, a novel prognostic signature

based on hypoxia- and immune-related genes was developed and

validated, which has favorable prognostic prediction performance

and promising clinical application in osteosarcoma.
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