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The current immunotherapy strategy for breast cancer is limited. Tumor

neoantigens have been proven to be a promising biomarker and potential

target of immunotherapy in a variety of tumors. However, their effectiveness for

breast cancer remains unclear. Immunogenic cell death (ICD) is a regulated

form of cell death that can reshape the tumor immune microenvironment and

activate adaptive immune responses. To this end, we screened potential

antigens that could be used both for the development of immunotherapy

and differentiating the patient-specific immune responses based on ICD-

related risk signatures, in order to formulate an accurate scheme for breast

cancer immunotherapy. We retrieved the gene expression profiles of the breast

invasive cancer cohort and their corresponding clinical control data from The

Cancer Genome Atlas. The Gene Expression Profiling Interactive Analysis

(GEPIA) database was used to evaluate tumor antigen expression, the

cBioPortal program was used to identify genetic variations, and the TIMER

website was used to estimate the immune infiltration signatures. The risk score

predictive model based on the ICD-related genes was constructed using the

least absolute shrinkage and selection operator (LASSO) Cox regression

algorithm, and the cohort was divided into low- and high-risk score groups.

Two tumor antigens, namely, CCNE1 and PLK1, were associated with poor

prognosis and infiltration of antigen-presenting cells. Furthermore, the ICD-

related risk signature could significantly predict survival outcomes. The risk

groups based on the ICD-related signature predictive model showed diverse

immune infiltration andmolecular and clinical features. The high-risk groupwas

associated with low immune cell infiltration, immune score, expression of

immune checkpoints, and human leukocyte antigen genes but high levels of

CCNE1 and PLK1 and poor survival outcome. In conclusion, CCNE1 and PLK1

were identified as potential antigens in breast cancer. The ICD-related

prognostic model distinguished immune response heterogeneity and

predicted prognosis. Patients with high ICD-related risk scores were suitable

to receive combination treatments based on CCNE1 or PLK1 and immune

checkpoint inhibitors. In the future, these results will help us develop more

accurate treatment schemes for patients with breast cancer.
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1 Introduction

Breast cancer (BC) is a serious threat to women’s health

worldwide, with the highest incidence and high death rate

according to global cancer statistics 2020 (Sung et al., 2021). The

global incidence rate and mortality of BC are also consistent with the

epidemiological trends in Asian countries (Sung et al., 2021).

Comprehensive treatment includes surgery, chemotherapy,

radiotherapy, endocrine therapy, and targeted therapy. In recent

years, immunotherapeutic drugs, such as programmed cell death

protein 1 (PD-1) or programmed cell death ligand 1 (PD-L1)

inhibitors combined with chemotherapy, have made a

breakthrough in BC treatment. In 2019 and 2020, based on the

results of IMpassion130 (Schmid et al., 2020a) and KEYNOTE-355

(Cortes et al., 2020) clinical trials, the FDA accelerated the approval of

atezolizumab (PD-L1 inhibitor) and pembrolizumab (PD-1 inhibitor)

combined with chemotherapy for locally advanced and metastatic

triple-negative breast cancer (TNBC), respectively. After the

KEYNOTE-522 trial in 2021 (Schmid et al., 2020b; Schmid et al.,

2022), the FDA approved pembrolizumab in combination with

chemotherapy as a new adjuvant and postoperative intensive

treatment for high-risk early TNBC. However, these three

combinatorial immunotherapies have not dramatically improved

prognosis for patients with BC, potentially due to different

treatment responses between patients and treatment tolerance.

Therefore, there is an urgent need to develop an accurate

immunotherapy strategy for patients with BC.

Immunogenic cell death (ICD) is a regulated form of cell death

induced by stress that can activate cytotoxic T lymphocyte (CTL)-

driven adaptive immunity and produce adaptive memory (Galluzzi

et al., 2017). Viruses, bacteria, chemotherapy, radiotherapy,

epigenetic modifiers, and target agents can all be cellular stressors

associated with ICD (Galluzzi et al., 2020). ICD has three critical

influencing factors: antigenicity, adjuvanticity, and

microenvironmental factors (Galluzzi et al., 2020). Stress-related

chemotherapy drugs include anthracyclines, DNA-damaging

agents, poly (ADP-ribose) polymerase (PARP) inhibitors, and

antimitotic agents, which are frequently used in the treatment of

BC (Tesniere et al., 2010; Fucikova et al., 2011). Based on this

information, PD-1 or PD-L1 inhibitors and traditional

chemotherapy can be a powerful combination treatment for BC.

However, researchers have not obtained satisfactory prognostic

improvements for patients with BC using these treatments in

clinical trials. Therefore, we urgently need to explore and analyze

the ICD-related characteristics of breast cancer, further classify and

describe population characteristics, and develop accurate

immunotherapy strategies.

Malignant tumor cells show high antigenicity, largely due to the

increased mutation rate that accompanies malignant cells in

immune escape (Greaves, 2015; McGranahan and Swanton,

2017). Nonsynonymous mutations, genomic changes, and tumor

neoantigens are retained and in turn activate de novo immune

responses (Schumacher et al., 2019). Tumor neoantigens are

important factors that affect the antigenicity of ICD, and they

evolve spatially and temporally, resulting in antigen heterogeneity

(Greaves, 2015). The antigenicity of tumor cells is also affected by

post-translational modifications regulated by the tumor

microenvironment (TME) (Malaker et al., 2017). Tumor antigens

could be used as both a biomarker and target for tumor

immunotherapy such as the tumor vaccine that does not need to

enter the nucleus to change the genome (Grunwitz and Kranz,

2017). In recent years, research studies on the application of tumor

vaccines in gastrointestinal cancer (Cafri et al., 2020), prostate cancer

(Rausch et al., 2014), and melanoma (Wang et al., 2018) have

achieved satisfactory results. A recent study showed that EV-ligand-

dependent corepressor mRNA therapy in combination with PD-L1

inhibitor overcame resistance and metastasis in preclinical breast

cancer models (Pérez-Núñez et al., 2022).

Therefore, the purpose of this study was to identify novel

breast cancer antigens that could be used as biomarker and

targets and to classify breast cancer patients according to

ICD-associated characteristics to identify breast cancer

patients who could benefit from a combination of

immunotherapy and chemotherapy.

2 Materials and methods

2.1 Patients and datasets

The RNA sequencing (RNA-seq) gene expression data of breast

invasive cancer cohort (BRCA) tissue samples (n = 1101) with clinical

features and matched adjacent normal tissue samples (n = 113) were

downloaded fromTheCancer GenomeAtlas (TCGA) dataset1. RNA-

seq data were normalized and integrated using R software v4.0.3. The

overall survival (OS) and disease-free survival (DFS) of the BRCA

cohort were assessed using the Kaplan–Meier method with the log-

rank test using the survival package.

2.2 Gene Expression Profiling Interactive
Analysis database analysis

The website Gene Expression Profiling Interactive

Analysis (GEPIA2)2 (Tang et al., 2017) was used for gene

1 TCGA: https://portal.gdc.cancer.gov.

2 GEPIA2: http://gepia2.cancer-pku.cn.
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expression analysis. Differentially expressed genes (DEGs)

between breast cancer and normal tissues were explored by

ANOVA with |Log2FC|>1 and q < 0.01 and plotted on the

chromosome.

2.3 cBioPortal database analysis

The cBioPortal3 (Cerami et al., 2012) was used to explore

and visualize the genetic variation, including copy number

variation (CNV) and mutation in the breast invasive cancer

cohort (TCGA, PanCancer Atlas, n = 1084). Both

amplified and mutated genes with frequencies of > 0.1%

were selected.

2.4 TIMER database analysis

The TIMERwebsite4 (Li et al., 2017) was used to estimate and

visualize the correlation between screened breast cancer antigens

and infiltration abundance of six immune cells, namely, B cells,

CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and

dendritic cells (DCs).

2.5 Construction of immunogenic cell
death-related prognostic model

ICD-related genes were obtained by searching and

summarizing extensive literature (Garg et al., 2015). The least

absolute shrinkage and selection operator (LASSO) Cox

regression algorithm was used to construct a prognostic

model based on ICD-related genes with prognostic

significance, using the R software package glmnet (Bøvelstad

et al., 2007). The formula for calculating the ICD-related risk

score is as follows:

Risk score � (0.0162) × NT5E + (0.0675) × ATG5

+ (0.0221) × PIK3CA + (0.0352) × IL1R1

+ (−0.0118) × IL1B + (0.2049) × HSP90AA1

+ (0.0342) × EIF2AK3 + (−0.2703) × MYD88

+ (0.5396) × IL10 + (−0.0987) × CD8A

+ (−0.1254) × IFNG,

Risk score = sum of coefficients × gene expression

level. The coefficients were calculated using the LASSO-Cox

model.

2.6 Tumor microenvironment immune
component analysis

The signatures of immune components, including the types

and abundance of immune cells and immune and stromal scores,

were assessed using xCell algorithms in the R immunedeconv

package. Immune checkpoint-related gene expression levels were

also determined.

2.7 Tumor Immune Dysfunction and
Exclusion database analysis

Tumor Immune Dysfunction and Exclusion (TIDE)5

analysis, based on the mechanism that T-cell dysfunction and

T-cell infiltration inhibited in tumors with the low CTL level, was

performed to estimate the immunotherapy response in the BRCA

cohort.

2.8 Statistical analysis

The Wilcoxon rank sum test and Kruskal–Wallis one-way

analysis of variance were used to compare data between the two

groups and three groups, respectively. The Kaplan–Meier

method with log-rank test and univariate Cox regression

analysis was used for survival analysis. A two-sided p <
0.05 was considered statistically significant.

3 Results

3.1 Exploring potential tumor antigens of
breast cancer

GEPIA2 analysis revealed that 1418 genes among

3556 DEGs were overexpressed in breast cancer tissue

compared with normal tissue, which could potentially

encode tumor neoantigens (Figure 1A) (Supplementary

Table S1). Based on the results of cBioPortal analysis

(Supplementary Table S1), 20,099 amplified genes with

frequencies > 0.1% in breast cancer were identified. In the

fraction genome altered group, the genes with the highest

alteration frequency included TP53, PIK3CA, POU5F1B,

TRPS1, RYR2, CASC8, CCAT2, CSMD3, MYC, and

SLC30A8 (Figures 1B,D). According to the results,

13,407 mutated genes with frequencies > 0.1% of breast

cancer were identified (Supplementary Table S1). In the

mutation count group, 10 genes with the highest alteration

3 cBioPortal: http://www.cbioportal.org/.

4 TIMER: https://cistrome.shinyapps.io/timer/. 5 TIDE: http://tide.dfci.harvard.edu/.
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event frequency, TP53, PIK3CA, TTN, CSMD3, POU5F1B,

TRPS1, CASC8, MYC, CCAT2, and PVT1, were detected

(Figures 1C,E). We found that TP53, PIK3CA, CSMD3,

POU5F1B, TRPS1, CASC8, MYC, and CCAT2 were the

most frequently altered genes in both the fraction genome

alteration and tumor mutational count groups (Figures 1D,E).

Collectively, 701 overexpressed, amplified, and mutated genes

were identified for further analyses.

3.2 Correlation of tumor antigens with
breast cancer prognosis and immune
infiltration

Tumor antigens associated with DFS (p < 0.01)

(Supplementary Table S2) and OS (p < 0.01)

(Supplementary Table S2) were selected from the

701 genes. Three hub genes, namely, cyclin E1 (CCNE1),

polo-like kinase 1 (PLK1), and serpin family A member 1

(SERPINA1), were strongly associated with both DFS (p <
0.01) and OS (p < 0.01) in BC (Figure 2A). Both CCNE1 (p <
0.001) (Figure 2C) and PLK1 (p < 0.001) (Figure 2D) showed

higher expression in tumor tissue than in normal tissue,

while the expression of SERPINA1 in both tumor and normal

tissue was not significantly different (p = 0.541) (Figure 2B)

(Supplementary Table S3). High CCNE1 expression was

associated with worse DFS (hazard ratio [HR] = 1.88, 95%

confidence interval [CI]: 1.22–2.88, log-rank test, p = 0.005)

(Figure 2E) and OS (HR = 1.62, 95% CI: 1.18–2.22, log-rank

test, p = 0.003) (Figure 2F) in BC. High PLK1 expression was

correlated with both worse DFS (HR = 1.81, 95% CI:

1.18–2.78, log-rank test, p = 0.007) (Figure 2G) and OS

(HR = 1.53, 95% CI:1.11–2.10, log-rank test, p = 0.009)

(Figure 2H). In contrast, high SERPINA1 expression was

related to both longer DFS (HR = 0.53, 95% CI: 0.35–0.81,

log-rank test, p = 0.005) (Figure 2I) and OS (HR = 0.59, 95%

CI: 0.43–0.81, log-rank test, p = 0.001) (Figure 2J). We also

estimated the correlation between the immune cell

infiltration and the three hub genes, namely, CCNE1,

PLK1, and SERPINA1. Based on the TIMER algorithm,

expression levels of both CCNE1 and PLK1 were positively

related to the abundance of B cells (CCNE1: r = 0.209, p <
0.001; PLK1: r = 0.195, p < 0.001) and DCs (CCNE1: r = 0.17,

p < 0.001; PLK1: r = 0.18, p < 0.001) (Figures 3A,B), while the

expression level of SERPINA1 was positively correlated with

B cells (r = 0.134, p < 0.001), macrophages (r = 0.163, p <
0.001), and DCs (r = 0.187, p < 0.001) (Figure 3C).

Additionally, we found that these hub genes were

FIGURE 1
Identification of potential tumor-associated antigens of breast cancer (BC). (A) Chromosomal distribution of upregulated and downregulated
genes in BC. (B) Overlapping samples in the altered genome fraction group. (C) Overlapping samples in the mutation count group. (D) Highest
average frequency genes in the fraction genome altered genome. (E) Highest average frequency genes in the mutation count group.
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positively related to neutrophil abundance (CCNE1: r =

0.148, p < 0.001; PLK1: r = 0.161, p < 0.001; SERPINA1:

r = 0.187, p < 0.001).

3.3 Characteristics of immunogenic cell
death-related genes in a breast cancer
cohort

The 34 ICD-related genes have been previously identified

and summarized based on an extensive literature search

(Garg et al., 2015). The connections between these ICD-

related genes were explored by the protein–protein

interaction (PPI) network analysis using the STRING

database (Figure 4A) (Supplementary Table S4). The

network analysis showed that the local clustering

coefficient was 0.796 and the interactions among these

genes were both significantly and biologically connected

(p < 1.0e-16). Furthermore, we compared the expression

patterns of ICD-related genes between tumor and normal

tissues in the TCGA BRCA cohort. As IL17A and IFNA1 were

not expressed in most BC samples, they were not included in

further analysis. The expression levels of 21 of the 32 genes

were notably different between tumor and normal tissues

(Figure 4B) (Supplementary Table S5). Eleven genes NT5E,

IL6, CASP1, IL1R1, IL1B, NLRP3, P2RX7, LY96, TLR4,

IL17RA, and PRF1 were expressed at low levels in the

tumor tissues, while 10 genes CALR, HSP90AA1, BAX,

PDIA3, EIF2AK3, CXCR3, IFNB1, IFNG, MYD88, and

FOXP3 were overexpressed in the tumor tissues.

3.4 Construction of the immunogenic cell
death-related prognostic model in the
breast cancer cohort

Correlations between 32 ICD-related genes and OS were

analyzed by univariate Cox regression analysis with a

significance threshold of p < 0.05 (Supplementary Table

S6). High expression of IFNG (HR = 0.590, 95% CI:

0.427–0.816, p = 0.001), CD8B (HR = 0.635, 95% CI:

0.460–0.878, p = 0.006), PRF1 (HR = 0.643, 95% CI:

0.462–0.894, p = 0.009), CASP1 (HR = 0.673, 95% CI:

0.488–0.929, p = 0.016), and CXCR3 (HR = 0.688, 95% CI:

0.497–0.952, p = 0.024) was associated with longer OS, while

HSP90AA1 (HR = 1.503, 95% CI: 1.093–2.067, p = 0.012) was

FIGURE 2
Identification of tumor antigens related to the prognosis of patients with breast cancer (BC). (A) Venn diagram showing the potential tumor
antigens (total 701) with mutation, amplification and overexpression, and significant association with both disease-free survival (DFS) and overall
survival (OS) (p < 0.01) (total three hub genes). Differential expression levels of three hub genes including (B) SERPINA1, (C) CCNE1, and (D) PLK1
between breast cancer tissue and normal tissue. The prognostic value of three potential antigens. The Kaplan–Meier curves showing the DFS of
patients with breast cancer stratified based on the expression level of (E)CCNE1, (G) PLK1, and (I) SERPINA1 and the OS on the basis of (F) CCNE1, (H)
PLK1, and (J) SERPINA1. The cohort was divided into low- and high-risk groups with median expression as the cutoff. P< 0.05 was considered
statistically significant.
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associated with lower OS (Figure 5A). We then constructed a

prognostic model based on the expression values of the

32 ICD-related genes using LASSO regression analysis.

Eleven hub genes were identified with the lowest partial

likelihood deviance (PLD) (Figures 5B,C). The patients

were divided into high- and low-risk groups based on the

median score (Supplementary Table S7). We then explored

the relationship between the risk score and OS time. We

found a significantly higher survival rate in the low-risk

group than that in the high-risk group (Figure 5D), and

the OS of the high-risk group was significantly shorter than

that of the low-risk group (HR = 2.20, 95% CI: 1.60–3.02, log-

rank test, p < 0.001) (Figure 5E).

3.5 Correlation of immunogenic cell death
risk signature with breast cancer tumor
microenvironments

There were significant differences in TME between the

low- and high-risk score groups. The low-risk group had

much higher infiltrating levels of B cells, T-cell CD4+ naive,

T-cell CD8+ naive, T-cell CD8+, T-cell CD8+ central

memory, myeloid dendritic cells, endothelial cells,

macrophage M1 (p < 0.001), T-cell CD4+ memory and

T-cell CD4+ Th1 (p < 0.01), and neutrophils and γδ
T cells (p < 0.05) than the high-risk group (Figure 6A)

(Supplementary Table S8). The low-risk group had

significantly higher immune, stromal, and

microenvironment scores (p < 0.001) than those of the

high-risk group (Figure 6A). The expression levels of

VISTA, PD-1, PD-L1, PD-L2, CTLA4, LAG3, and TIGIT in

the low-risk group were significantly higher than those in the

high-risk group (p < 0.0001) (Figure 6B) (Supplementary

Table S8). In addition, most human leukocyte antigen (HLA)

genes (p < 0.0001) (Figure 6C) (Supplementary Table S8)

were upregulated in the low-risk group. The tumor

mutational burden (TMB) score in the low-risk group was

lower than that in the high-risk group (p = 0.006) (Figure 7A)

(Supplementary Table S9), whereas the microsatellite

instability (MSI) score was not significantly different

between the low- and high-risk groups (p = 0.7)

(Figure 7B) (Supplementary Table S9). Further analysis

based on TIDE to estimate the predictive effect of the ICD

risk signature on the potential efficacy of immunotherapy

showed that the ICD risk score was significantly higher in the

no benefit group than that in the benefit group (p < 0.001)

(Figure 7C), while there was no difference between the

response and no response groups (p = 0.893) (Figure 7D)

(Supplementary Table S9). These results indicate that

FIGURE 3
Identification of tumor antigens associated with immune cell infiltration. Correlation between the expression levels of (A) CCNE1, (B) PLK1, and
(C) SERPINA1 and infiltration level of immune cells (B cells, CD8+ T-cell, CD4+ T-cells, macrophages, neutrophils, and dendritic cells).
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patients with low ICD risk scores may benefit from

immunotherapy.

3.6 Association of immunogenic cell death
risk signature with breast cancer clinical
characteristics

We further compared ICD risk scores among different

clinical stages in the TCGA BRCA cohort. The ICD risk score

was significantly higher in stage III than that in both stage I (p =

0.002) and stage II (p = 0.005), whereas there was no difference

between stages I and II (p = 0.815) (Figure 7E) (Supplementary

Table S10). Univariate and multivariate Cox analyses were

performed to estimate the prognostic value of the ICD risk

signature. The univariate analysis indicated that the high-risk

score group was significantly associated with shorter OS (HR =

1.554, 95% CI: 1.258–1.921, p < 0.001) (Figure 7F)

(Supplementary Table S10). Multivariate analysis showed that

the ICD risk score could serve as an independent prognostic

factor for patients with BC (HR = 2.331, 95% CI: 1.510–3.598, p <
0.001) (Figure 7G).

3.7 Relationship between tumor antigens
and immunogenic cell death risk signature
in breast cancer

We then explored the relationship between tumor antigens

(CCNE1, PLK1, and SERPINA1) and ICD risk score using

Pearson correlation analysis. CCNE1 expression was positively

correlated to PLK1 (r = 0.712, p < 0.001) (Figure 8A) but

negatively correlated to SERPINA1 (r = −0.172, p < 0.001)

(Figure 8B). There was a negative correlation between PLK1

and SERPINA1 expressions (r = −0.178, p < 0.001) (Figure 8C).

The ICD risk score was positively and weakly related to PLK1 (r =

0.127, p < 0.001) (Figure 8E), while it was negatively and weakly

related to SERPINA1 (r = −0.079, p = 0.009) (Figure 8F). There

was no significant correlation with CCNE1 (r = 0.027, p = 0.369)

(Figure 8D). CCNE1 (p = 0.006) (Figure 8G) and PLK1

FIGURE 4
Identification of immunogenic cell death (ICD)-related gene expression pattern in The Cancer Genome Atlas (TCGA) breast invasive cancer
(BRCA) cohort. (A) Protein–protein interactions among the 34 ICD-associated genes (number of nodes: 34, number of edges: 332, average node
degree: 19.5, average local clustering coefficient: 0.8, expected number of edges: 62, and PPI enrichment p-value: <1.0e-16). (B) Heatmap of
32 ICD-related gene expression between tumor and normal tissue in the TCGA BRCA cohort. (C) In total, 21 genes with different expression
patterns between tumor and normal tissues in the TCGA BRCA cohort. *p < 0.05, **p < 0.01, ***p < 0.001.
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expressions (p < 0.001) (Figure 8H) were significantly higher in

the high-risk group, while SERPINA1 (p < 0.001) (Figure 8I) was

lower in the high-risk group compared to the low-risk group.

4 Discussion

Breast cancer is a threat to women’s health worldwide. In

recent years, combining immunotherapies, such as PD-1 and

PD-L1 inhibitors, with chemotherapy has been a breakthrough in

TNBC treatment. However, limited immunotherapy tolerance

and heterogenous immune compositions have led to limited

therapeutic effects. In this study, we explored and analyzed

potential tumor antigens in patients with breast cancer and

classified them according to ICD-related risk characteristics.

These antigens can be combined to identify immunotherapy

targets and cluster patients that have a higher likelihood of

positive response to immunotherapy.

Tumor neoantigens are externally expressed peptides

encoded by non-synonymous polymorphic genes introduced

by somatic mutations that accumulate during tumor

progression (Yarchoan et al., 2017). Tumor neoantigens are

recognized by new antigen-specific T-cell receptors (TCRs) of

the major histocompatibility complexes (MHCs) and activate the

de novo immune response (Schumacher et al., 2019). Future

directions may involve investigating candidates for

immunotherapy development through further analyses and

screening.

FIGURE 5
Construction of the immunogenic cell death (ICD)-related prognostic signatures in The Cancer Genome Atlas (TCGA) breast invasive cancer
(BRCA) cohort. (A)Univariate Cox analysis examined the prognostic ability of the ICD-related genes in overall survival (OS) of the TCGA BRCA cohort.
The coefficient of the 11 selected genes was displayed by the lambda parameter in which the abscissa represented the lambda value of independent
variable and the ordinate represented the coefficient of the independent variable (B). Eleven selected genes were with the lowest partial
likelihood deviance plotted using the LASSO-Cox regressionmodel (C). (D)Distribution of risk score, survival time, and status and heatmap of 11 ICD-
related prognostic genes in the cohort. The top scatterplot with different colors represent the risk score from low to high in different groups. The
scatterplot distribution represents the risk score of different samples corresponding to the survival time and survival status. The heatmap showed the
signature of the gene expression. (E) Kaplan–Meier curves by log-rank test and univariate Cox regression analysis showed that the low-risk score
group had a significantly higher OS compared to the high-risk score group (HR = 2.20, 95% CI: 1.60–3.02, p < 0.001).
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In this study, we found that the hub genes CCNE1, PLK1, and

SERPINA1 were significantly overexpressed, amplified, and

mutated in breast cancer tissues compared with normal

tissues. Both CCNE1 and PLK1 were highly expressed and

were related to worse survival outcomes in breast cancer,

indicating that they are suitable candidate targets for cancer

treatment.

CCNE1 is a gene on 19q12 that is amplified in a variety of

malignant tumors, associated with genomic instability and

resistance to cytotoxic therapy (Zack et al., 2013; Yuan et al.,

2018; Watkins et al., 2020). Previous studies have shown that

CCNE1 amplification is associated with poor survival in TNBC

(Zhao et al., 2019; Yuan et al., 2021). miR-195-5p or miR-497-5p

may promote TNBC progression by regulating CCNE1

expression (Yang et al., 2019; Liu et al., 2021). The PALOMA-

3 trial showed that in hormone-receptor-positive breast cancer,

palbociclib efficacy was lower in the group with high levels of

CCNE1 mRNA, especially in patients with metastasis, compared

with low CCNE1 expression (Turner et al., 2019). However,

CCNE1 amplification has little relationship with human

epidermal growth factor receptor 2 (HER2)-positive breast

cancer prognosis and anti-HER2 targeted therapy efficacy

(Luhtala et al., 2016). This may indicate that CCNE1 may not

be relevant in all subtypes of BC.

Polo-like kinases (PLKs) are a class of serine/threonine

protein kinases containing five family members (Golsteyn

et al., 1996). PLK1, a regulatory mitotic protein kinase, plays

important roles in cell division and genome stability, and

overexpression causes dysfunctional cell growth and

oncogenesis (Shakeel et al., 2021). Previous research has also

shown that patients with breast cancer having high PLK1

expression had significantly worse survival outcomes,

especially with TP53 mutations, than those with low PLK1

expression (King et al., 2012). Further research also showed

FIGURE 6
Characteristics of the immune microenvironment between low- and high-immunogenic cell death (ICD)-related risk groups in The Cancer
Genome Atlas (TCGA) breast invasive cancer (BRCA) cohort. The expression difference of (A) immune cell infiltration levels, (B) immune checkpoint
genes, and (C) human leukocyte antigen (HLA) genes between ICD-related risk groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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that high PLK1 expression was related to shorter metastasis-free

survival and poor response to endocrine therapy in hormone-

receptor-positive breast cancer, whereas PLK1 inhibition resulted

in tumor shrinkage and acquired palbociclib resistance

(Montaudon et al., 2020). PLK1 inhibition also sensitizes

breast cancer cells to radiation by suppressing autophagy

(Wang et al., 2021).

Further immune infiltration analyses showed that CCNE1 and

PLK1 were both positively correlated with the abundance of APCs,

such as B cells and DCs. Based on our results and the characteristics

of CCNE1 and PLK1, they can be appropriate candidates for mRNA

vaccines. Although SERPINA1 was overexpressed, amplified, and

mutated, the difference in its expression between breast cancer and

normal tissues was not significant.

ICD is a type of regulated cell death that activates an

antigen-specific adaptive immune response. Chemotherapy

and radiotherapy are stressors that lead to the release and

relocation of damage-associated molecular patterns

(DAMPs), promote the recruitment of APCs, induce

phagocytosis by DCs, and produce inflammatory

chemokines, thereby activating ICD and enhancing the

antitumor immune response (Fucikova et al., 2020). The

most important ICD-related DAMPs are surface-exposed

calreticulin (CALR), secreted ATP (Di Virgilio et al., 2018;

Fucikova et al., 2021), annexin A1 (ANXA1) (Baracco et al.,

2019), type I interferon, and high mobility group box 1

(HMGB1) (Zhu et al., 2021). We could evaluate the basic

ICD level of patients diagnosed with breast cancer by

detecting the mRNA and protein levels of the

aforementioned markers and provide a basis for further

immunotherapy strategies. Recently, metal-based

complexes that use Pt, Ru, Ir, Cu, and Au have been

studied as ICD inducers (Sen et al., 2022). Research based

on a large-scale meta-analysis summarized 34 key genes

associated with ICD as follows: ENTPD1, NT5E, HMGB1,

ATG5, PIK3CA, IFNA1, IL6, CASP1, IL1R1, IL1B, NLRP3,

P2RX7, LY96, TLR4, IFNGR1, IL17RA, PRF1, CALR,

HSP90AA1, BAX, PDIA3, EIF2AK3, CXCR3, IFNB1,

MYD88, FOXP3, IL10, CASP8, TNF, CD4, CD8A, CD8B,

IFNG, and IL17A (Garg et al., 2015). Also, we used these

34 key genes in this research.

In this study, we constructed a prognostic risk signature

using 11 ICD-related genes and stratified the breast cancer

cohort into low- and high-risk score groups. A high-ICD-

related risk score was significantly associated with worse DFS

and OS and could be an independent predictive index for

patients with breast cancer. The high-risk score group was also

related to low levels of immune infiltration, low immune,

FIGURE 7
Association of the immunogenic cell death (ICD) risk signature with clinical characteristics in The Cancer Genome Atlas (TCGA) breast invasive
cancer (BRCA) cohort. The (A) tumor mutational burden (TMB) score and (B) microsatellite instability (MSI) score in low- and high-ICD-related risk
groups. The ICD risk score between (C) benefit and no benefit groups, (D) response and no response groups based on Tumor Immune Dysfunction
and Exclusion (TIDE) analysis. (E)Difference of ICD risk score in different cancer stages. (F)Univariate and (G)multivariate Cox analyses evaluate
the independent prognostic value of the ICD risk signature in patients with breast cancer.
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stromal, and TME scores and related to low immune

checkpoint and HLA gene expression, all of which are

consistent with a tumor that is unlikely to trigger an

immune response. In contrast, the low-risk group had a

higher TME score, abundant immune cell infiltration, high

immune checkpoint and HLA gene expression and are more

likely to benefit from immunotherapy, all of which are

consistent with tumors that can trigger immune responses.

Based on the high immune score in the low-ICD-risk score

group, chemotherapy or radiotherapy alone can induce a

strong ICD to activate adaptive anti-tumor immunity.

Combining immunotherapy, such as PD-1/PD-

L1 inhibitors, and cytotoxic therapy can achieve a stronger

effect. Therefore, the patients in the low-ICD risk score group

are suitable candidates for combination of chemotherapy and

immunotherapy. In contrast, the high-ICD-related risk score

group bearing a low immune score may not be able to respond

to immunotherapy as a treatment. Both CCNE1 and PLK1

were highly expressed in the high-risk group compared with

the low-risk group, which indicated that targeting therapy

based on these two genes may activate the immune system,

increase the immune infiltration level, and establish an

immune microenvironment for an improved

immunotherapy response. Ongoing clinical trials have

confirmed that tumor vaccines combined with immune

checkpoint inhibitors can improve the immune response in

FIGURE 8
Relationship between tumor antigens and immunogenic cell death (ICD) risk signature. Pearson analyses between expression of (A)CCNE1 and
PLK1, (B) CCNE1 and SERPINA1, and (C) PLK1 and SERPINA1. Correlation between the ICD risk score and (D) CCNE1, (E) PLK1, and (F) SERPINA1.
Expression levels of (G) CCNE1, (H) PLK1, and (I) SERPINA1 in low- and high-ICD-related risk groups.
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patients with melanoma (Sahin et al., 2020), which is similar

to an assumption made in our breast cancer study.

5 Conclusion

CCNE1 and PLK1 were identified as potential antigens in

breast cancer. The ICD-related prognostic model could

distinguish the immune heterogeneity of patients with breast

cancer and predict prognosis. Patients with high-ICD-related

risk scores were suitable to receive combination treatments based

on CCNE1 or PLK1 and immune checkpoint inhibitors. In the

future, these findings will help us develop more accurate

treatment schemes for patients with breast cancer.
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