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Hepatocellular carcinoma (HCC) is a severe cancer endangering human health.

We constructed a novel glycometabolism-related risk score to predict

prognosis and immunotherapy strategies in HCC patients. The HCC data

sets were obtained from the Cancer Genome Atlas (TCGA) and the Gene

Expression Omnibus (GEO) database, and the glycometabolism-related gene

sets were obtained from the Molecular Signature Database. The least absolute

contraction and selection operator (LASSO) regression model was used to

construct a risk score based on glycometabolism-related genes. A simple visual

nomogrammodel with clinical indicators was constructed and its effectiveness

in calibration, accuracy, and clinical value was evaluated. We also explored the

correlation between glycometabolism-related risk scores and molecular

pathways, immune cells, and functions. Patients in the low-risk group

responded better to anti-CTLA-4 immune checkpoint treatment and

benefited from immune checkpoint inhibitor (ICI) therapy. The study found

that glycometabolism-related risk score can effectively distinguish the

prognosis, molecular and immune-related characteristics of HCC patients,

and may provide a new strategy for individualized treatment.
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Introduction

According to the latest global cancer report, hepatocellular carcinoma (HCC) is

the sixth most common cancer worldwide and has the third-highest mortality rate

(Sung et al., 2021). The World Health Organization (WHO) has projected that the

incidence rate of HCC will exceed one million by 2025 (International Agency for

Research on Cancer, 2020). China is one of the major countries with a high incidence

and mortality of HCC, accounting for approximately half of the total cases worldwide

(Feng et al., 2019; Wang et al., 2014). Currently, the effectiveness of various
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treatments for HCC is unsatisfactory (Forner et al., 2018).

Therefore, there is an urgent need to clarify the specific

molecular mechanisms related to HCC for targeted therapy,

which is expected to improve the survival rate of patients with

HCC, delay tumor progression, and improve the quality of life

of patients. Immunotherapy, particularly immune checkpoint

inhibitor (ICI) therapy, which has achieved significant clinical

breakthroughs, is still faced with challenges, such as low

response rate and poor efficacy in some patients (Darvin

et al., 2018; Li et al., 2019). The relationship between

metabolic restriction and immunity has gradually become a

topic of interest and has received considerable attention

(DePeaux and Delgoffe, 2021).

In the tumor microenvironment (TME), glycometabolism is

the main metabolic pathway of tumor cells and immune cells

(Bose and Le, 2018). Glycometabolism reprogramming is one of

the main features of the TME, and tumor cells upregulate

glycolytic pathways, undergo tumor escape, and inhibit

immune effector cell function until exhaustion occurs

(Shevchenko and Bazhin, 2018). In the tumor

microenvironment, the IL-10-fc fusion protein has been found

to enhance the expansion and effector function of depleted CD8+

T lymphocytes by promoting the oxidative phosphorylation

pathway in glycometabolism (Guo et al., 2021). The NF-E2-

related factor 2 (Nrf2) antioxidant pathway was found to restore

the metabolism and function of natural killer (NK) cells in

human ovarian cancer (Poznanski et al., 2021). Another study

found that programmed death-ligand 1 (PD-L1) signaling

activates the Akt/mTOR pathway to promote glycolysis in

tumor cells. Therapeutic blockade of PD-L1 inhibits tumor

FIGURE 1
Construction and characterization of glycometabolism-related risk scores.
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progression by triggering the internalization of PD-L1 and

reducing the rate of glycolysis (Chang et al., 2015). Based on

this, active efforts are being made to identify therapeutic targets

for glycometabolism to enhance the effector function of

exhausted immune cells and improve responsiveness to ICI

therapy. A few biomarkers of glycometabolism in liver cancer

can be used to predict patient prognosis. Identifying potential

prognostic markers associated with therapy can enable

personalized metabolic immunotherapy in patients with HCC.

This study comprehensively assessed the glycometabolism

patterns of patients with HCC and constructed a prognostic risk-

score model for glycometabolism. We focused on all

glycometabolism-related genes in HCC and constructed a

prognostic risk score for these genes. We then characterized

the molecular pathways and immune-related features of the

prognostic risk score for glycometabolism-related genes,

differentiated sorafenib-and 5-fluorouracil-resistant patients,

and examined their responsiveness to immunosuppressant

therapy. A technical roadmap of this study is shown in

Figure 1. This study provides a new perspective for exploring

the glycometabolism-immunity mechanism.

Materials and methods

Patients and datasets

A total of 421 liver hepatocellular carcinoma (LIHC) samples

were downloaded from The Cancer Genome Atlas (TCGA)

database, including 371 tumor samples and 50 normal

samples with clinical and pathological staging data (https://

portal.gdc.cancer.gov/). Among these, 369 tumor samples with

complete clinical survival information were used as the training

set for the model.

Microarray data for 242 HCC samples and their clinical

information (GSE14520) were obtained from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/), and the platform was GPL3921. The gene ID of

each sample was converted into the corresponding gene symbol

using an annotation platform. The average value was calculated if

the same gene ID was mapped by multiple probes. Ultimately,

221 HCC samples with complete clinical survival information

were included in the validation set. The clinical characteristics of

the two cohorts are presented in Supplementary Table S1.

Acquisition of glycometabolism genes

From the Molecular Signature Database (MSigDB; v7.5.1)

(Subramanian et al., 2005), 25 glycometabolism-related gene sets

were collected. After removing overlapping genes,

704 glycometabolism-related genes were obtained

(Supplementary Table S2).

Identification of glycometabolism-related
hub genes

The differentially expressed genes related to glycometabolism

between normal and tumor tissue samples were analyzed using

the R package “limma.” Differentially expressed genes related to

glycometabolism were obtained and analyzed using Metascape

(http://metascape.org). Differentially expressed genes with |

log2FC| > 2 and false discovery rate (FDR)< 0.05 were

considered statistically significant.

Using the R package “glmnet,” we sequentially performed

univariate Cox and least absolute shrinkage and selection

operator (LASSO) Cox regression analyses and identified four

glycometabolism-related genes associated with HCC survival.

Construction and validation of the
prognostic risk score

The prognostic risk score was obtained by multiplying the

expression values of four glycometabolism-related hub genes

by their weights in the LASSO Cox model and then adding

them to calculate the risk score of each sample. The Kaplan-

Meier (K-M) survival curve was used to evaluate the

prognostic ability of the risk score in the TCGA and GEO

databases. Univariate and multivariate Cox regression

analyses were performed to verify the independent

prognostic value of the risk score.

To reflect the clinical application and predictive value of the

risk score, a nomogram model was constructed with risk scores

and clinical indicators to predict patient prognosis at different

times. The model’s calibration, accuracy, and clinical value were

further evaluated using calibration, receiver operating

characteristic (ROC), and decision curve analysis (DCA) curves.

Comprehensive analysis of molecular and
immune characteristics in different
prognostic risk score subgroups

The R package “clusterProfiler” was used to analyze the

enrichment of Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways in different prognostic

risk scores to determine the main biological characteristics and

the enrichment of cellular functional pathways. A p value (q

value) < 0.05 was defined as a statistically significant difference.

Gene set enrichment analysis (GSEA) was also used to compare

the differences in biological processes between the low-risk and

high-risk groups, with the “hallmark all. v7.5. symbols” gene set

as the internal parameter gene set. Statistical significance was set

at p < 0.05 and FDR <0.05.
According to immune cell composition, 369 patients with

HCC in the training set were divided into four immune subsets
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(Zhang et al., 2020a). To compare the immune characteristics of

the 369 HCC samples with different prognostic risk scores, x-Cell

(https://xcell.ucsf.edu/) and CIBERSORT (https://cibersort.

stanford.edu/) were used to evaluate the relative proportions

of 22 immune cells and the correlation between immune cells.

Subsequently, the immune functions of the different prognostic

risk scores were also compared. GSEA was also used to assess

changes in immune-related pathways (“c7. immunesigdb. v7.3.

symbols”) or biological processes with different prognostic risk

scores.

To explore the prognostic value of different prognostic risk

scores in patients after immunotherapy, the responsiveness to

immune checkpoint PD-1 and CTLA-4 treatment was assessed

using TCIA (https://tcia.at/home). The R package “pRRophetic”

was used to analyze the drug sensitivity of patients with different

prognostic risk scores.

Quantitative real-time PCR

RNA was extracted from HepG2 and Huh7 cell lines using

the RNeasy Plus Mini Kit (QIAGEN, Germany), and the RNA

was reverse transcribed into cDNA using cDNA.

Synthesis kit (Thermo Fisher Scientific, United States), and

then qRT-PCR was performed using Master Mix (SYBR Green;

Lithuania). β-Actin was used as an internal control, and 2−ΔΔCT

methodology was expressed as the relative expression of mRNA.

Do at least three independent experiments. All mRNAs were

purchased from the Synbio Technologies and the primers were

listed in Supplementary Table S3.

Immunohistochemistry

For immunohistochemical analysis, paraffin sections were

performed on tumor tissues and adjacent tissues from patients

with HCC. 4-µm-thick sections were soaked in xylene for 15 min,

then deaffinity and rehydrated with an ethanol gradient, followed

by incubation in 3% hydrogen peroxide for 15 min. Blocked with

10% goat serum for 30 min, incubated with primary antibodies to

G6PD, CENPA, STC2, and PFKFB4 (abcam, 1:200) overnight at

4°C, and then used secondary antibodies conjugated to

horseradish peroxidase (sigma, 1:200) and incubated for

30 min. Sections were scanned with panoramic scanning

electron microscope, and positive staining was analyzed by

ImageJ software (version 1.8.0).

Statistical analysis

All statistical analyses were performed using the R software

(version 4.1.3) and GraphPad Prism 7 software (version 7.0).

Continuous variables were compared between the two groups

using an independent t-test, and categorical data were compared

using the χ2 test. Survival analysis was performed using the K-M

survival analysis and log-rank test. Cox regression analysis was

used to identify independent prognostic indicators predicting

overall survival (OS) in HCC. Statistical significance was set at

p < 0.05.

Results

Acquired glycometabolism-related hub
genes in hepatocellular carcinoma
patients

In the differential expression analysis (371 tumors vs.

50 normal samples), all genes in the TCGA database

intersected with the glycometabolism-related genes obtained

from the MSigDB gene set, and 678 glycometabolism-related

genes were obtained. Subsequently, 65 differentially expressed

genes (|log2FC| > 2 and FDR < 0.05) were identified between the

normal and tumor groups (Figure 2A). The upregulated and

downregulated differential genes with |log2FC| > 2 were

displayed by volcano plot (Figure 2B). Furthermore,

metascape functional enrichment analysis showed that

65 differentially expressed genes were significantly associated

with “carbohydrate metabolic process,” “glucose homeostasis,”

and “HIF1 TFPATHWAY” pathways (Figure 2C).

In the training set of the TCGA database, 36 differentially

expressed genes related to glycometabolism were significantly

associated with the prognosis of patients with HCC as revealed by

Cox univariate analysis (p < 0.05; Figure 2D). LASSO regression

was used to select lambda min as the model with the highest

accuracy (Figure 2E). Four differentially expressed genes related

to glycometabolism were more closely related to the OS of

patients with HCC: glucose-6-phosphate dehydrogenase

(G6PD), centromere protein A (CENPA), stanniocalcin 2

(STC2), and 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase 4 (PFKFB4). The median values of the four

hub genes were divided into high and low expression groups.

K-M survival analysis revealed that the OS rate of patients with

HCC in the high expression group of hub genes was lower than

that in the low expression group (p < 0.001; Figure 2F).

Establishment and validation of the
prognostic risk score and nomogram
model

Subsequently, a prognostic risk score for all tumor samples

was calculated using the formula: prognostic risk score =

expression level of G6PD*(0.15) + expression level of

CENPA*(0.075) + expression level of STC2*(0.018) +

expression level of PFKFB4*(0.053). From the prognostic risk
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FIGURE 2
Establishment of glycometabolism-related hub genes in hepatocellular carcinoma. (A) Heatmap analysis of differentially expressed genes
related to glycometabolism in the TCGA-LIHC cohort. (B) Volcano plot of the differentially expressed genes related to glycometabolism between
tumor and normal tissues of HCC (|log2fc| > 2 and FDR <0.05). (C) Metascape analysis of pathway enrichment of differentially expressed genes
related to glycometabolism. (D)Univariate Cox analysis of 36 differentially expressed genes related to glycometabolism. (E) LASSO regression to
construct the hub gene of the prognostic risk scoringmodel. (F) Kaplan–Meier curve analysis of the effect of four hub genes on the overall survival of
patients with HCC.
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FIGURE 3
Establishment and validation of a prognostic risk score associated with glycometabolism. (A) Principal component analysis based on genes
related to glycometabolism in patients with HCC. (B,C) Forest plot of univariate and multivariate Cox regression, respectively, in the TCGA-LIHC
cohort. (D) Kaplan–Meier curve analysis comparing the overall survival between the low-risk and the high-risk groups of patients with HCC in the
training and validation cohorts, respectively. (E) Kaplan-Meier curve analysis comparing the progression-free survival between the low-risk and
high-risk groups of patients with HCC in the TCGA-LIHC cohort. (F) Comparison of the relationship between different glycometabolism-related risk
scores and clinical stages in the TCGA cohort. (G)Comparison of the relationship between different glycometabolism-related risk scores and clinical
stages in the GEO cohort.
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score, the cut-off value was calculated to be 2.12, and this value

was used to divide the risk scores into high-and low-risk groups

(Supplementary Figure S1).

Principal component analysis (PCA) was performed to

identify significant differences between the low- and high-risk

groups. The results showed that the prognostic risk score could

distinguish between the high-and low-risk groups (Figure 3A).

Clinically relevant indicators, including age, sex, grade, stage, and

risk score, were included in the Cox univariate and multivariate

analyses; only risk score and stage were independent predictors of

OS in patients with HCC (p < 0.001; Figures 3B,C). Patients with

different prognostic risk scores were divided into high- and low-

risk groups according to the cutoff value (2.12). The OS of the

patients in the high-risk group was lower than that of the patients

in the low-risk group (p < 0.001; Figure 3D). The

GSE14520 dataset (n = 221) was used to verify the effects of

the different risk scores on patient survival. Patients in the high-

risk group had lower survival rates than those in the low-risk

group, which is consistent with the results from the TCGA

dataset (p = 0.006). The effect of different risk scores on the

progression-free survival (PFS) time of patients was also

compared, and patients in the high-risk group were found to

have shorter PFS times (p < 0.001; Figure 3E). Exploring the

correlation between prognostic risk scores and clinical indicators

furtherly, the training cohort revealed a gradual increase in the

prognostic risk score with an increase in different grades, stages,

and T (Primary Tumor) stages (Figure 3F). The results of the

validation cohort were found to be similar to those of the

validation cohort in other staging systems, such as Barcelona

Clinic Liver Cancer (BCLC) staging, Cancer of the Liver Italian

Program (CLIP) staging, and TNM (Tumor Node Metastasis)

staging (Figure 3G). Subsequently, the area under the ROC curve

of the prognostic risk score in the training cohort and the

validation cohort was observed and compared. In the TCGA

database training cohort, the area under curve (AUC) of the

prognostic risk score at 1, 3, and 5 years was 0.790, 0.689, and

0.668; in the validation cohort, the AUC of the prognostic risk

score at 1, 3, and 5 years was 0.722, 0.635, and 0.587

(Supplementary Figures S2A,B). We also compared the AUC

values of the prognostic risk score with other biomarker

signatures and found that the prognostic risk score was higher

than the other signatures (Supplementary Figures S2C,D) (Zhang

et al., 2020a; Zhang et al., 2020b; Pan et al., 2020; Dai et al., 2021).

The results showed that compared with other signatures, the

prognostic risk score had good predictive performance and the

indicators were more concise.

A nomogram model integrating gender, age, stage, grade, T

stage, and risk score was constructed and intuitively predicted the

1-, 3-, and 5-years survival rates of patients with HCC

(Supplementary Figure S3A). Univariate and multivariate Cox

regression analyses showed that the nomogram model was an

independent prognostic factor for predicting the outcomes of

patients with HCC (Supplementary Figures S3B,C). In addition,

the 1-, 3-, and 5-years calibration curves showed that the

nomogram model accurately predicted the prognosis of

patients with HCC (Supplementary Figure S3D). The areas

under the ROC curve were 0.789, 0.697, and 0.674 for 1, 3,

and 5 years, respectively (Supplementary Figure S3E). The DCA

curve showed that the nomogram model had a higher rate of

clinical benefit than risk score and grade (Supplementary

Figure S3F).

Molecular and pathway characterization
of different prognostic risk scores

Molecular and pathway characteristics were further

compared between the high- and low-risk groups. GO analysis

revealed that nuclear division, mitotic nuclear division, and T cell

activation pathways were significantly enriched in the high-risk

group compared with the low-risk group. And related molecules

enriched in high-risk groups include GCNT1, IL-27, and ATP7A,

etc. (Figures 4A,B). Meanwhile, KEGG analysis showed that cell

cycle, glycolysis and chemokine signaling pathways were

significantly enriched in the high-risk group compared with

the low-risk group and the related molecules included VGF,

CDK2, and IL-27, etc. (Figures 4C,D). GSEA enrichment analysis

also revealed that glycolysis (NES = 1.81, Nom p = 0.0, FDR q =

0.033) and PI3K AKT MTOR (NES = 1.73, Nom p = 0.002, FDR

q = 0.046) pathways were mainly enriched in the high-risk group

(Figures 4E,F; Supplementary Table S4).

Immune cell characteristics and functions
in different prognostic risk scores

To observe the relationship between the prognostic risk score

and immune subtype, HCC samples were divided into four

immune subtypes: C1 (wound healing), C2 (IFN-γ dominant),

C3 (inflammatory), and C4 (lymphocyte depleted). The C3

(inflammatory) immune subtype had the lowest risk score and

best prognosis, consistent with the results of the original study

(Figure 5A) (Vésteinn et al., 2018).

The composition and correlation of immune cells in different

risk scores were analyzed, and it was found that CD4+ memory

T-cells, Th1 cells, Th2 cells, basophils, and B cells were more

abundant in the high-risk group, whereas macrophages were

more abundant in the low-risk group (Figure 5B). Furthermore,

the infiltrating immune cells in the low-risk group were mainly

correlated with CD4+ memory T-cells and NK cells, while those

in the high-risk group were mainly correlated with macrophages,

B cells, and mast cells (Figures 5C,D).

The immune functions between the different risk scores were

further explored. More immunosuppressive functions were

observed in the high-risk group, such as APC coinhibition,

checkpoint, MHC class I, and T-cell coinhibition (Figure 5E).
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FIGURE 4
Pathway enrichment analysis comparing different risk scores associated with glycometabolism. (A–D)GO and KEGG enrichment analysis of the
top 30 pathways and genes of different glycometabolism-related risk scores. (E,F) Comparison of the enrichment of the “hallmark all. v7.5. symbols”
pathway in GSEA of different glycometabolism-related risk scores.
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Subsequently, the “c7.immunesigdb.v7.3. symbols” gene set

downloaded from MSigDB was used to enrich gene set

variation analysis and compare immune-related biological

functions between the two groups. Interestingly, most

immune-related genes were enriched in the high-risk group

(Figure 5F).

FIGURE 5
Characteristics, functions, and pathways of immune infiltrating cells in patients with liver cancer in different glycometabolism-related risk
scores. (A) Analysis of the immune subtype of different risk scores. (B) The proportion of immune cells in the tumor microenvironment with different
risk scores. (C,D) Correlations between immune-infiltrating cells in low-risk and high-risk scores, respectively. (E) Comparison of immune cell
function between low-risk and high-risk scores. (F)Heatmap comparison of immune-related pathway enrichment between low-risk and high-
risk scores. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6
The value of different glycometabolism-related risk scores for ICI treatment and drug sensitivity. (A–D) Comparison of the responsiveness to
anti-PD-1 and anti-CTLA-4 immunotherapy between samples in high-risk and low-risk groups. (E–H) Comparison of the sensitivities and
associations to sorafenib and 5-fluorouracil drugs between high-risk and low-risk groups.
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Immune checkpoint inhibitor treatment
benefit and drug sensitivity in different
prognostic risk scores

Major breakthroughs have been made in immune checkpoint

therapies, particularly in PD-1 and CTLA-4 treatment. We

investigated the ability of the prognostic risk score to predict

response to immune checkpoint therapy. The results showed that

although there was no difference in the clinical response to anti-

PD-1 immunotherapy between the two groups, the response to

anti-CTLA-4 immunotherapy in the low-risk group was higher

than that in the high-risk group. Patients in the low-risk group

were considered to be more suitable for CTLA-4 immune

checkpoint therapy (Figures 6A–D). Because of the correlation

between drug sensitivity and poor prognosis, we focused on the

relationship between risk score and drug sensitivity. Sorafenib

and 5-fluorouracil, the most widely used targeted drugs for HCC

treatment, were selected to compare the drug sensitivity of the

different risk groups. Interestingly, the high-risk group was found

to be more sensitive to the targeted drugs sorafenib and 5-

fluorouracil (p < 0.001), which were significantly negatively

correlated with the risk score (R = −0.41, p < 0.001 and

R = −0.33; p < 0.001, respectively; Figures 6E–H). This

indicates that the glycometabolism-related risk score is a novel

biomarker for assessing immunotherapy responsiveness and

sensitivity to targeted drugs.

FIGURE 7
Characterization of G6PD as a hub gene related to glycometabolism-related risk score. (A) G6PD mRNA expression in tumor and normal
tissues. (B) Correlation between G6PD expression level and its methylation level. (C) Differences in copy number variation of G6PD in different
immune cells. (D) Comparison of immune infiltrating cells between high and low G6PD expression groups. (E,F) Multi-GSEA of KEGG pathway
enrichment in high and low G6PD expression groups.
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Molecular pathways and immune
characteristics of glycometabolism-
related hub genes

The hub genes related to glycometabolism in the risk score

are also important. The levels of glycometabolism-related hub

genes (G6PD, CENPA, STC2, and PFKFB4) in tumor samples

were higher than those in normal samples (p < 0.001; Figure 7A;

Supplementary Figure S4A). The relationships of the four

glycometabolism-related hub genes with gender, clinical grade,

stage, and T stage were investigated. The expression levels of the

four glycometabolism-related hub genes significantly increased

with an increase in tumor grade, stage, and T stage

(Supplementary Figures S4B–E). Subsequently, we also

focused on the methylation expression level of hub genes and

found that the expression levels of G6PD (p = 1.083−02), CENPA

(p = 7.08−04), STC2 (p = 3.507−02) and PFKFB4 (p = 3.541−03)

genes were negatively correlated with their methylation levels

(Figure 7B; Supplementary Figures S5A–C). The G6PD gene has

copy number variations in B cells, CD8+ T-cells, macrophages,

neutrophils, and dendritic cells (Figure 7C, Supplementary

Figures S5D–F). At the same time, the high G6PD expression

group was mainly composed of regulatory T-cells and

macrophage M0 cells, which was significantly different from

the composition in the low expression group (p < 0.001;

Figure 7D; Supplementary Figures S5G–I). Multiple GSEA

analysis of G6PD showed that mTOR signaling, Notch

signaling, and cancer pathways were mainly enriched in the

high expression group, whereas other metabolic pathways, such

as drug metabolism, fatty acid metabolism, and tryptophan

metabolism were enriched in the low expression group

(Figures 7E,F).

Clinical samples and basic experimental
verification of hub genes

Further, we verified the results in the database through

clinical samples and cell line experiments. We selected

patients who had undergone hepatectomy for HCC to take

tumor tissues and adjacent tissues for immunohistochemical

analysis. It was found that the details of four

glycometabolism-related genes in tumor tissues were

significantly higher than those in adjacent tissues (p < 0.01;

Figures 8A,B). Subsequently, the expression of four

glycometabolism-related genes was detected in HepG2 and

Huh7 cell lines after incubation for 48 h and blocking with

glycolysis blocker 2-DG. After blocking the glycolytic

pathway, only the expression of PFKFB4 decreased in both

HepG2 and Huh7 cell lines (p < 0.05; Figures 8C,D), while

STC2 increased in both HepG2 and Huh7 cell lines (p < 0.05).

The expression of G6PD and CENPA increased only in

HepG2 cell line (p < 0.05).

Discussion

Glucose metabolism is important for all cells to maintain their

activity (Bose and Le, 2018). Reprogramming of glucose metabolism

can lead to tumor cell progression, metastasis, and recurrence (Peng

et al., 2021). However, changes in glucose metabolism in immune

cells have attracted increasing attention in immune metabolism.

Targeted glucose metabolism may become a promising method for

regulating immunity and improving the efficacy of immunotherapy,

and may play an important role in the field of tumors and viruses

(Hay, 2016; O’Neill et al., 2016). Increasing evidence has revealed the

relationship between glucose metabolism reprogramming of

immune effector cells, such as T-cells and NK cells, and tumor

occurrence and development (Cong et al., 2018; Kang and Tang,

2020). In the past, glycometabolism-related genes have been used to

evaluate the prognosis of patients with prostate cancer, gastric

cancer, ovarian cancer, and lung adenocarcinoma (Huang et al.,

2019; Liu et al., 2020; Zhang et al., 2021a; He et al., 2021). However,

there is no prognostic model based on glycometabolism-related

genes that evaluates the survival and immune-related characteristics

of patients with HCC. Although there are some studies on

metabolism-associated molecular classification in HCC (Yang

et al., 2020), it is necessary to further focus on the target of

glycometabolism, which is beneficial for improving clinical efficacy.

With the rapid development of transcriptomics and

bioinformatics, an increasing number of gene markers have

become available. The prognostic risk scoring system and

nomogram model of glycometabolism-related genes in HCC

tumor and normal samples from TCGA and GEO cohorts were

established through LASSO Cox regression analysis. The prognostic

risk score of glycometabolism-related genes can clarify the roles of

hub genes in HCC. The nomogram model intuitively predicted the

survival rates of patients at different follow-up times (Balachandran

et al., 2015). The OS rate of the patients with HCC in the high-risk

group was lower than low-risk group. Both the training and

validation groups showed consistent results. The prognostic risk

score of glycometabolism-related genes can effectively distinguish

high-risk groups and has a particular guiding role in the survival and

prognosis of patients with HCC.

The glycometabolism-related prognostic risk scores included

G6PD, CENPA, STC2, and PFKFB4. G6PD is the core enzyme of

the pentose phosphate pathway (PPP) in glucose metabolism and is

involved in tumor cell growth, invasion, and metastasis (Yang et al.,

2021). Previous studies have reported that high Nrf2 expression can

enhance the expression of G6PD and HIF-1 in breast cancer cells.

Nrf-2 activates antioxidant enzymes and upregulates Notch-1

through the G6PD/HIF-1 pathway, thereby affecting the

proliferation of breast cancer cells (Zhang et al., 2019a). At the

same time, G6PD overexpression was found to be associated with an

increase inmTORC1 activity in blood tumors such as acute myeloid

leukemia, and also predicts a poor prognosis (Poulain et al., 2017). In

this study, we found that the expression of G6PD in tumor tissues

was significantly higher than that in normal tissues, which was also
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confirmed by immunohistochemical analysis. Meanwhile, it was

found that the Notch and mTOR signaling pathways were

significantly enriched in the high G6PD expression group, which

was consistent with previous reports. CENPAwas found to be highly

expressed in a variety of tumors and is associated with poor

prognosis (Saha et al., 2020; Han et al., 2021). CENPA acts as an

upstream transcriptional activator of the karyopherin α2 subunit

gene (KPNA2), indirectly promoting tumor cell growth and

glycolysis in patients with colon cancer (Liang et al., 2021). In

vitro studies have also shown that CENPA can activate the Wnt/β-
catenin signaling pathway and promote the proliferation and

metastasis of renal cell carcinoma (Wang et al., 2021a).

Glycolysis was the main factor that drives tumor development.

STC2 participates in glycolysis-related pathways and phosphorus

metabolism (Li et al., 2021). It was highly expressed in pancreatic,

lung, colon, and breast cancer and other malignant tumors and is

associated with poor prognosis (Na et al., 2015; Zhang et al., 2019b;

Jiang et al., 2019; Lin et al., 2019). However, PFKFB4 was a key

regulatory enzyme of glycolytic synthesis. In breast, bladder, and

pancreatic cancer and other malignant tumors, targeting the

glycolysis pathway mediated by PFKFB4 can inhibit the growth

and invasion of tumor cells (Zhang et al., 2016; Dasgupta et al., 2018;

FIGURE 8
Experimental verification of glycometabolism-related genes. (A,B) Immunohistochemistry showed the G6PD, CENPA, STC2, and PFKFB4 genes
expression and positive rate in tumor tissues (n = 13) and adjacent tissues (n = 13). (C,D) In HepG2 and Huh7 cell lines, G6PD, CENPA, STC2, and
PFKFB4 mRNA expression levels were observed in the glycolysis inhibitor treated group (2-DG) and the control group.*p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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Zhang et al., 2021b). Our basic experiments found that glycolysis

inhibitors significantly inhibited the level of PFKFB4 mRNA, while

other hub genes are not directly controlled by glycolysis pathway,

and there may be other metabolic pathways. It was found in the

tumor tissue of HCC patients that compared with the adjacent

tissue, the tumor tissue significantly overexpressed

4 glycometabolism-related genes. Therefore, glycometabolism-

related risk score was a biomarker of tumor promotion and is

significantly correlated with poor prognosis.

Understanding the immune cell composition, molecular

pathways, and immune functions of different

glycometabolism-related risk scores in TME can improve

immunotherapy. The relative proportions of 31 immune cells

were further assessed using x-Cell, and the correlation between

infiltrating immune cells was assessed using CIBERSORT, which

were compared in different glycometabolism-related risk scores.

The results showed that the main enriched immune cells in the

high-risk group were inflammatory cells such as Th1, Th2,

basophils, M2 macrophages, and B cells. Through GO and

KEGG pathway enrichment analysis, the IL-27 pathway was

found to be enriched in the high-risk group. It has been

reported that IL-27 can affect multiple effector cells in innate

and adaptive immunity (Villarino et al., 2005; Li et al., 2020;

Dong et al., 2021). Therefore, enrichment of the IL-27 pathway

may be associated with higher scores of CD8+T and NKT cells in

the high-risk group. It was suggested that glycometabolism-

related risk scores and immune inflammatory function may be

mediated by IL-27 signaling. The traditional understanding of

IL-27 is that its main response cells are immune cells. A recent

study in the journal Nature found that IL-27 promotes the

browning of adipose tissue by up-regulating the expression of

Uncoupling Protein 1 (UCP1) to promote heat production and

energy consumption, thereby reducing obesity (Wang et al.,

2021b). This was also the latest understanding of the

corresponding non-immune cells of IL-27. The results of this

study also showed that the high-risk group was mainly involved

in immunosuppressive function, including APC coinhibition,

checkpoint, and T-cell coinhibition. The data suggested that

the high-risk group has characteristics of immune

inflammatory cells and immunosuppressive function, and the

immune cell infiltration and inflammatory characteristics lead to

a poor prognosis in the high-risk group.

Since glycometabolism-related risk scores were associated

with poor prognosis in HCC, we explored the relationship

between risk scores and resistance to ICI (PD-1 and CTLA-4)

and targeted drugs (sorafenib and 5-fluorouracil). PD-1 and

CTLA-4 were gradually used for immune checkpoint

inhibitors to treat liver cancer (Finkelmeier et al., 2018;

Fessas et al., 2020). Sorafenib was a first-line targeted drug

used for the treatment of liver cancer. Therefore, it was

necessary to analyze their clinical reactivity and drug

resistance to better guide clinical medication. We analyzed

the relationship between different glycometabolism-related

risk scores and immunophenoscore in patients with HCC.

The low-risk group had a higher response to anti-CTLA-

4 treatment, indicating that the response to ICI was better

in the low-risk group. Subsequently, analysis of sorafenib and

5-Fluorouracil drug resistance revealed that the half maximal

inhibitory concentration (IC50) of the high-risk group was

lower than that of the low-risk group, indicating that drug

resistance was less likely to occur in the high-risk

group. Glycometabolism-related risk scores provided a

possible basis for clinical treatment, and further

experimental and clinical verification is needed.

The current study has certain limitations. First, the

established prognostic risk score for glycometabolism needs to

be validated in a larger multicenter cohort. Second, the

downloading of relevant data from public databases is very

limited, and it is unknown whether the patient has other

metabolic problems. Third, it is necessary to further explore

the mechanism of glycometabolism and immunity on the

progression and prognosis of HCC. In the future research

work, we will pay attention to the clinical application value of

this prognostic risk score, and explore the application prospects

of glucose metabolism in the field of tumor immunity, which is

very instructive and valuable work.

In conclusion, we constructed a prognosis risk score based

on glycometabolism-related genes that can predict OS and

PFS in patients with HCC and reflect the responsiveness to

immune infiltrating cells and immunotherapy in patients. In

addition, the prognostic risk score may be a potential

biomarker in the field of immunometabolism. Further

clinical and experimental studies are required to confirm

these findings.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

ZY and JD designed the study. LY and JD wrote the

manuscript, collected, and analyzed the data. XL, XW, HY,

QP, and YX collected data. ZY approved for final revision and

approval.

Funding

This study was supported by the National Natural Science

Foundation of China (Nos. 81874435 and 81902895),

Frontiers in Cell and Developmental Biology frontiersin.org14

Yu et al. 10.3389/fcell.2022.940551

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.940551


Dengfeng Talent Support Program of Beijing Municipal

Administration of Hospitals (No. DFL20191803), the

Special Fund of Capital Health Research and Development

(No. 2020-2-2173), Beijing Hospitals Authority Clinical

Medicine Development of Special Funding Support (No.

ZYLX202127), Beijing Natural Science Foundation (No.

M21007).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.

940551/full#supplementary-material

References

Balachandran, V. P., Gonen, M., Smith, J. J., and DeMatteo, R. P. (2015).
Nomograms in oncology: More than meets the eye. Lancet Oncol. 16 (4),
e173–e180. doi:10.1016/S1470-2045(14)71116-7

Bose, S., and Le, A. (2018). Glucose metabolism in cancer. Adv. Exp. Med. Biol.
1063, 3–12. doi:10.1007/978-3-319-77736-8_1

Chang, C. H., Qiu, J., O’Sullivan, D., Buck, M. D., Noguchi, T., Curtis, J. D., et al.
(2015). Metabolic competition in the tumor microenvironment is a driver of cancer
progression. Cell 162 (6), 1229–1241. doi:10.1016/j.cell.2015.08.016

Cong, J., Wang, X., Zheng, X., Wang, D., Fu, B., Sun, R., et al. (2018).
Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis
during lung cancer progression. Cell Metab. 28 (2), 243–255. e5. doi:10.1016/j.
cmet.2018.06.021

Dai, Y., Qiang, W., Lin, K., Gui, Y., Lan, X., and Wang, D. (2021). An immune-
related gene signature for predicting survival and immunotherapy efficacy in
hepatocellular carcinoma. Cancer Immunol. Immunother. 70 (4), 967–979.
doi:10.1007/s00262-020-02743-0

Darvin, P., Toor, S. M., Sasidharan Nair, V., and Elkord, E. (2018). Immune
checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 50
(12), 1–11. doi:10.1038/s12276-018-0191-1

Dasgupta, S., Rajapakshe, K., Zhu, B., Nikolai, B. C., Yi, P., Putluri, N., et al.
(2018). Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to
drive breast cancer. Nature 556 (7700), 249–254. doi:10.1038/s41586-018-0018-1

DePeaux, K., and Delgoffe, G. M. (2021). Metabolic barriers to cancer
immunotherapy. Nat. Rev. Immunol. 21 (12), 785–797. doi:10.1038/s41577-021-
00541-y

Dong, C., Dang, D., Zhao, X., Wang, Y., Wang, Z., and Zhang, C. (2021).
Integrative characterization of the role of IL27 in melanoma using bioinformatics
analysis. Front. Immunol. 12, 713001. doi:10.3389/fimmu.2021.713001

Feng, R. M., Zong, Y. N., Cao, S. M., and Xu, R. H. (2019). Current cancer
situation in China: Good or bad news from the 2018 global cancer statistics? Cancer
Commun. 39 (1), 22. doi:10.1186/s40880-019-0368-6

Fessas, P., Kaseb, A., Wang, Y., Saeed, A., Szafron, D., Jun, T., et al. (2020). Post-
registration experience of nivolumab in advanced hepatocellular carcinoma: An
international study. J. Immunother. Cancer 8 (2), e001033. doi:10.1136/jitc-2020-
001033

Finkelmeier, F., Waidmann, O., and Trojan, J. (2018). Nivolumab for the
treatment of hepatocellular carcinoma. Expert Rev. Anticancer Ther. 18 (12),
1169–1175. doi:10.1080/14737140.2018.1535315

Forner, A., Reig, M., and Bruix, J. (2018). Hepatocellular carcinoma. Lancet 391
(10127), 1301–1314. doi:10.1016/S0140-6736(18)30010-2

Guo, Y., Xie, Y. Q., Gao, M., Zhao, Y., Franco, F., Wenes, M., et al. (2021).
Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances
anti-tumor immunity. Nat. Immunol. 22 (6), 746–756. doi:10.1038/s41590-021-
00940-2

Han, J., Xie, R., Yang, Y., Chen, D., Liu, L., Wu, J., et al. (2021). CENPA is one of
the potential key genes associated with the proliferation and prognosis of ovarian

cancer based on integrated bioinformatics analysis and regulated by MYBL2.
Transl. Cancer Res. TCR 10 (9), 4076–4086. doi:10.21037/tcr-21-175

Hay, N. (2016). Reprogramming glucose metabolism in cancer: Can it be
exploited for cancer therapy? Nat. Rev. Cancer 16 (10), 635–649. doi:10.1038/
nrc.2016.77

He, Z., Chen, D., Wu, J., Sui, C., Deng, X., Zhang, P., et al. (2021). Yes associated
protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating
GLUT3-dependent glycometabolism reprogramming of tumor-associated
macrophages. Archives Biochem. Biophysics 702, 108838. doi:10.1016/j.abb.2021.
108838

Huang, Y., Yang, X., Sun, F., Lu, T., Bi, G., Liang, J., et al. (2019). Prognostic effects
of glycometabolism changes in lung adenocarcinoma: A prospective observational
study. Transl. Lung Cancer Res. 8 (6), 808–819. doi:10.21037/tlcr.2019.10.18

International Agency for Research on Cancer (2020). Globocan 2018. IARC.Available
at: https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_
population=continents&population=900&populations=900&key=asr&sex=0&cancer=
11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&
map_scale=quantile&map_nb_colors=5&continent=0&rotate=%255B10%252C0%
255D

Jiang, S. T., Wang, H. Q., Yang, T. C., Wang, D. W., Yang, L. J., Xi, Y. Q., et al.
(2019). Expression of stanniocalcin 2 in breast cancer and its clinical significance.
Curr. Med. Sci. 39 (6), 978–983. doi:10.1007/s11596-019-2131-2

Kang, S., and Tang, H. (2020). HIV-1 infection and glucose metabolism
reprogramming of T cells: Another approach toward functional cure and
reservoir eradication. Front. Immunol. 11, 572677. doi:10.3389/fimmu.2020.572677

Li, B., Chan, H. L., and Chen, P. (2019). Immune checkpoint inhibitors: Basics
and challenges. Cmc 26 (17), 3009–3025. doi:10.2174/
0929867324666170804143706

Li, S., Huang, Q., Li, D., Lv, L., Li, Y., and Wu, Z. (2021). The significance of
Stanniocalcin 2 in malignancies and mechanisms. Bioengineered 12 (1), 7276–7285.
doi:10.1080/21655979.2021.1977551

Li, W., Xu, M., Li, Y., Huang, Z., Zhou, J., Zhao, Q., et al. (2020). Comprehensive
analysis of the association between tumor glycolysis and immune/inflammation
function in breast cancer. J. Transl. Med. 18 (1), 92. doi:10.1186/s12967-020-
02267-2

Liang, Y. C., Su, Q., Liu, Y. J., Xiao, H., and Yin, H. Z. (2021). Centromere protein
A (CENPA) regulates metabolic reprogramming in the colon cancer cells by
transcriptionally activating karyopherin subunit alpha 2 (KPNA2). Am.
J. Pathology 191 (12), 2117–2132. doi:10.1016/j.ajpath.2021.08.010

Lin, C., Sun, L., Huang, S., Weng, X., and Wu, Z. (2019). STC2 is a potential
prognostic biomarker for pancreatic cancer and promotes migration and invasion
by inducing epithelial-mesenchymal transition. BioMed Res. Int. 2019, 1–9. doi:10.
1155/2019/8042489

Liu, L., Cai, L., Liu, C., Yu, S., Li, B., Pan, L., et al. (2020). Construction and
validation of a novel glycometabolism-related gene signature predicting survival in
patients with ovarian cancer. Front. Genet. 11, 585259. doi:10.3389/fgene.2020.
585259

Frontiers in Cell and Developmental Biology frontiersin.org15

Yu et al. 10.3389/fcell.2022.940551

https://www.frontiersin.org/articles/10.3389/fcell.2022.940551/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2022.940551/full#supplementary-material
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1007/978-3-319-77736-8_1
https://doi.org/10.1016/j.cell.2015.08.016
https://doi.org/10.1016/j.cmet.2018.06.021
https://doi.org/10.1016/j.cmet.2018.06.021
https://doi.org/10.1007/s00262-020-02743-0
https://doi.org/10.1038/s12276-018-0191-1
https://doi.org/10.1038/s41586-018-0018-1
https://doi.org/10.1038/s41577-021-00541-y
https://doi.org/10.1038/s41577-021-00541-y
https://doi.org/10.3389/fimmu.2021.713001
https://doi.org/10.1186/s40880-019-0368-6
https://doi.org/10.1136/jitc-2020-001033
https://doi.org/10.1136/jitc-2020-001033
https://doi.org/10.1080/14737140.2018.1535315
https://doi.org/10.1016/S0140-6736(18)30010-2
https://doi.org/10.1038/s41590-021-00940-2
https://doi.org/10.1038/s41590-021-00940-2
https://doi.org/10.21037/tcr-21-175
https://doi.org/10.1038/nrc.2016.77
https://doi.org/10.1038/nrc.2016.77
https://doi.org/10.1016/j.abb.2021.108838
https://doi.org/10.1016/j.abb.2021.108838
https://doi.org/10.21037/tlcr.2019.10.18
https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=
https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=
https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=
https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=
https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=
https://doi.org/10.1007/s11596-019-2131-2
https://doi.org/10.3389/fimmu.2020.572677
https://doi.org/10.2174/0929867324666170804143706
https://doi.org/10.2174/0929867324666170804143706
https://doi.org/10.1080/21655979.2021.1977551
https://doi.org/10.1186/s12967-020-02267-2
https://doi.org/10.1186/s12967-020-02267-2
https://doi.org/10.1016/j.ajpath.2021.08.010
https://doi.org/10.1155/2019/8042489
https://doi.org/10.1155/2019/8042489
https://doi.org/10.3389/fgene.2020.585259
https://doi.org/10.3389/fgene.2020.585259
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.940551


Na, S. S., Aldonza, M. B., Sung, H. J., Kim, Y. I., Son, Y. S., Cho, S., et al. (2015).
Stanniocalcin-2 (STC2): A potential lung cancer biomarker promotes lung cancer
metastasis and progression. Biochimica Biophysica Acta (BBA) - Proteins Proteomics
1854 (6), 668–676. doi:10.1016/j.bbapap.2014.11.002

O’Neill, L. A., Kishton, R. J., and Rathmell, J. (2016). A guide to
immunometabolism for immunologists. Nat. Rev. Immunol. 16 (9), 553–565.
doi:10.1038/nri.2016.70

Pan, L., Fang, J., Chen, M. Y., Zhai, S. T., Zhang, B., Jiang, Z. Y., et al. (2020).
Promising key genes associated with tumor microenvironments and
prognosis of hepatocellular carcinoma. Wjg 26 (8), 789–803. doi:10.3748/
wjg.v26.i8.789

Peng, Y., Yang, H., and Li, S. (2021). The role of glycometabolic plasticity in
cancer. Pathology - Res. Pract. 226, 153595. doi:10.1016/j.prp.2021.153595

Poulain, L., Sujobert, P., Zylbersztejn, F., Barreau, S., Stuani, L., Lambert, M., et al.
(2017). High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD
inhibition in acute myeloid leukemia cells. Leukemia 31 (11), 2326–2335. doi:10.
1038/leu.2017.81

Poznanski, S. M., Singh, K., Ritchie, T. M., Aguiar, J. A., Fan, I. Y., Portillo, A. L.,
et al. (2021). Metabolic flexibility determines human NK cell functional fate in the
tumor microenvironment. Cell Metab. 33 (6), 1205–1220. e5. doi:10.1016/j.cmet.
2021.03.023

Saha, A. K., Contreras-Galindo, R., Niknafs, Y. S., Iyer, M., Qin, T.,
Padmanabhan, K., et al. (2020). The role of the histone H3 variant CENPA in
prostate cancer. J. Biol. Chem. 295 (25), 8537–8549. doi:10.1074/jbc.RA119.010080

Shevchenko, I., and Bazhin, A. V. (2018). Metabolic checkpoints: Novel avenues
for immunotherapy of cancer. Front. Immunol. 9, 1816. doi:10.3389/fimmu.2018.
01816

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102 (43),
15545–15550. doi:10.1073/pnas.0506580102

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Vésteinn, T., David, L. G., Scott, D. B., Denise, W., and Armaz, M. (2018). The
immune landscape of cancer. Immunity 48 (4). doi:10.1016/j.immuni.2018.03.023

Villarino, A. V., Larkin, J., 3rd, Saris, C. J., Caton, A. J., Lucas, S., Wong, T., et al.
(2005). Positive and negative regulation of the IL-27 receptor during lymphoid cell
activation. J. Immunol. 174 (12), 7684–7691. doi:10.4049/jimmunol.174.12.7684

Wang, F. S., Fan, J. G., Zhang, Z., Gao, B., and Wang, H. Y. (2014). The global
burden of liver disease: The major impact of China. Hepatology 60 (6), 2099–2108.
doi:10.1002/hep.27406

Wang, Q., Li, D., Cao, G., Shi, Q., Zhu, J., Zhang, M., et al. (2021). IL-27 signalling
promotes adipocyte thermogenesis and energy expenditure. Nature 600 (7888),
314–318. doi:10.1038/s41586-021-04127-5

Wang, Q., Xu, J., Xiong, Z., Xu, T., Liu, J., Liu, Y., et al. (2021). CENPA promotes
clear cell renal cell carcinoma progression and metastasis via Wnt/β-catenin
signaling pathway. J. Transl. Med. 19 (1), 417. doi:10.1186/s12967-021-03087-8

Yang, C., Huang, X., Liu, Z., Qin, W., and Wang, C. (2020). Metabolism-
associated molecular classification of hepatocellular carcinoma. Mol. Oncol. 14
(4), 896–913. doi:10.1002/1878-0261.12639

Yang, H. C., Stern, A., and Chiu, D. T. (2021). G6PD: A hub for metabolic
reprogramming and redox signaling in cancer. Biomed. J. 44 (3), 285–292. doi:10.
1016/j.bj.2020.08.001

Zhang, B. H., Yang, J., Jiang, L., Lyu, T., Kong, L. X., Tan, Y. F., et al. (2020).
Development and validation of a 14-gene signature for prognosis prediction in
hepatocellular carcinoma. Genomics 112 (4), 2763–2771. doi:10.1016/j.ygeno.2020.
03.013

Zhang, C., Chen, S., Ma, X., Yang, Q., Su, F., Shu, X., et al. (2019). Upregulation of
STC2 in colorectal cancer and its clinicopathological significance. Ott Vol. 12,
1249–1258. doi:10.2147/OTT.S191609

Zhang, F. P., Huang, Y. P., Luo, W. X., Deng, W. Y., Liu, C. Q., Xu, L. B., et al.
(2020). Construction of a risk score prognosis model based on hepatocellular
carcinoma microenvironment. Wjg 26 (2), 134–153. doi:10.3748/wjg.v26.i2.134

Zhang, H., Lu, C., Fang, M., Yan, W., Chen, M., Ji, Y., et al. (2016). HIF-1α activates
hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem.
Biophysical Res. Commun. 476 (3), 146–152. doi:10.1016/j.bbrc.2016.05.026

Zhang, H. S., Zhang, Z. G., Du, G. Y., Sun, H. L., Liu, H. Y., Zhou, Z., et al.
(2019). Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/
HIF-1α/Notch1 axis. J. Cell Mol. Med. 23 (5), 3451–3463. doi:10.1111/jcmm.
14241

Zhang, P., Tao, W., Lu, C., Fan, L., Jiang, Q., Yang, C., et al. (2021). Bruceine
A induces cell growth inhibition and apoptosis through PFKFB4/GSK3β
signaling in pancreatic cancer. Pharmacol. Res. 169, 105658. doi:10.1016/j.
phrs.2021.105658

Zhang, Y., Mou, Y., Liang, C., Zhu, S., Liu, S., Shao, P., et al. (2021). Promoting cell
proliferation, cell cycle progression, and glycolysis: Glycometabolism-related genes
act as prognostic signatures for prostate cancer. Prostate 81 (3), 157–169. doi:10.
1002/pros.24092

Frontiers in Cell and Developmental Biology frontiersin.org16

Yu et al. 10.3389/fcell.2022.940551

https://doi.org/10.1016/j.bbapap.2014.11.002
https://doi.org/10.1038/nri.2016.70
https://doi.org/10.3748/wjg.v26.i8.789
https://doi.org/10.3748/wjg.v26.i8.789
https://doi.org/10.1016/j.prp.2021.153595
https://doi.org/10.1038/leu.2017.81
https://doi.org/10.1038/leu.2017.81
https://doi.org/10.1016/j.cmet.2021.03.023
https://doi.org/10.1016/j.cmet.2021.03.023
https://doi.org/10.1074/jbc.RA119.010080
https://doi.org/10.3389/fimmu.2018.01816
https://doi.org/10.3389/fimmu.2018.01816
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.4049/jimmunol.174.12.7684
https://doi.org/10.1002/hep.27406
https://doi.org/10.1038/s41586-021-04127-5
https://doi.org/10.1186/s12967-021-03087-8
https://doi.org/10.1002/1878-0261.12639
https://doi.org/10.1016/j.bj.2020.08.001
https://doi.org/10.1016/j.bj.2020.08.001
https://doi.org/10.1016/j.ygeno.2020.03.013
https://doi.org/10.1016/j.ygeno.2020.03.013
https://doi.org/10.2147/OTT.S191609
https://doi.org/10.3748/wjg.v26.i2.134
https://doi.org/10.1016/j.bbrc.2016.05.026
https://doi.org/10.1111/jcmm.14241
https://doi.org/10.1111/jcmm.14241
https://doi.org/10.1016/j.phrs.2021.105658
https://doi.org/10.1016/j.phrs.2021.105658
https://doi.org/10.1002/pros.24092
https://doi.org/10.1002/pros.24092
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.940551

	Glycometabolism-related gene signature of hepatocellular carcinoma predicts prognosis and guides immunotherapy
	Introduction
	Materials and methods
	Patients and datasets
	Acquisition of glycometabolism genes
	Identification of glycometabolism-related hub genes
	Construction and validation of the prognostic risk score
	Comprehensive analysis of molecular and immune characteristics in different prognostic risk score subgroups
	Quantitative real-time PCR
	Immunohistochemistry
	Statistical analysis

	Results
	Acquired glycometabolism-related hub genes in hepatocellular carcinoma patients
	Establishment and validation of the prognostic risk score and nomogram model
	Molecular and pathway characterization of different prognostic risk scores
	Immune cell characteristics and functions in different prognostic risk scores
	Immune checkpoint inhibitor treatment benefit and drug sensitivity in different prognostic risk scores
	Molecular pathways and immune characteristics of glycometabolism-related hub genes
	Clinical samples and basic experimental verification of hub genes

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


