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DNA and RNA methylation dynamics have been linked to a variety of cellular processes
such as development, differentiation, and the maintenance of genome integrity. The
correct deposition and removal of methylated cytosine and its oxidized analogues is
pivotal for cellular homeostasis, rapid responses to exogenous stimuli, and regulated gene
expression. Uncoordinated expression of DNA/RNA methyltransferases and demethylase
enzymes has been linked to genome instability and consequently to cancer progression.
Furthermore, accumulating evidence indicates that post-transcriptional DNA/RNA
modifications are important features in DNA/RNA function, regulating the timely
recruitment of modification-specific reader proteins. Understanding the biological
processes that lead to tumorigenesis or somatic reprogramming has attracted a lot of
attention from the scientific community. This work has revealed extensive crosstalk
between epigenetic and epitranscriptomic pathways, adding a new layer of complexity
to our understanding of cellular programming and responses to environmental cues. One
of the key modifications, m5C, has been identified as a contributor to regulation of the DNA
damage response (DDR). However, the various mechanisms of dynamic m5C deposition
and removal, and the role m5C plays within the cell, remains to be fully understood.
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INTRODUCTION

Gene expression regulation is not only affected by mutations in the genomic sequence, but also by
various other molecular mechanisms (Allis and Jenuwein, 2016), such as epigenetic regulation.
Epigenetic regulation can influence gene expression profiles regardless of the genomic sequence,
and can result in either the condensation or relaxation of the chromatin structure (Dai et al., 2020).
The main players in epigenetic control; m5C DNA methylation, histone modifications, and non-
coding RNAs (Kumar et al., 2018), have been linked to genome stability and are known to
contribute to the maintenance of genome integrity (Deem et al., 2012). Three distinct aspects
govern epigenetic status; inheritance, environmental factors, and stability over time (Bonasio et al.,
2010). Epigenetic modifications are stable enough to maintain cellular homeostasis, but are also
reversible to allow transitions among different states and responses to environmental cues (Zhang
et al., 2019). The dynamic nature of epigenetic features controls several aspects of transcription
regulation and consequently influences many physiological processes, such as development (John
and Rougeulle, 2018), transposon control (Misiak et al., 2019), and brain and memory formation
(Kim and Kaang, 2017). Furthermore, deregulation of epigenetic processes can lead to genomic
instability, promoting the onset and development of different diseases including cancer (Lu et al.,
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2020) (Liu et al., 2017). For example, during cancer
development, genome-wide DNA hypomethylation and gene-
specific hypermethylation occur as a consequence of mutated or
deregulated chromatin modifiers (Ibrahim et al., 2022). Thus,
epigenetic alterations or epimutations (McCarrey et al., 2016)
result in abnormal transcriptional repression or activation of
genes (Lee, 2019). Epimutations can be classified into two
groups: primary, which are epigenetic alterations in the
absence of a genetic change, and secondary epimutations,
which are acquired as a consequence of DNA mutations in
genes of cis or trans-acting chromatin factors (Oey and
Whitelaw, 2014). Interestingly, secondary epimutations are
the most reported in cancers (Ruiz de la Cruz et al., 2021).
At a molecular level, epigenetics involves a complex and
dynamically reversible set of structural modifications of
chromatin catalysed by enzymes often referred to as
“writers,” which add different chemical modifications such as
methyl group moieties to DNA (Biswas and Rao, 2018). These
molecular decorations are then able to recruit a plethora of
proteins called “readers” that specifically recognise these
moieties (Du et al., 2015). Finally, a set of “erasers” catalyses
the removal of the deposited modification. Writers, readers, and
erasers function dynamically to regulate the epigenetic
landscape. Concerted variations of epigenetic modifications
ensure an organism’s normal development and its
responsiveness to environmental stimuli (Norouzitallab et al.,
2019). Removal and restoration of methylation marks is also
important during embryonic development, with coordinated
waves of demethylation and de novo methylation establishing
specific cell fates (Wu and Zhang, 2014). With recent advances
in high-throughput sequencing techniques and transcriptome-
wide studies, more than 150 post-transcriptional modifications
have been also described on RNA, termed the epitranscriptome
(Ma et al., 2022). Similarly to DNA methylation, RNA bases can
be methylated and can function in the fine-tuning of gene
expression (Kumar and Mohapatra, 2021) (Seo and Kleiner,
2021) (Willbanks et al., 2021). Epitranscriptomic studies have
also revealed how post-transcriptional RNA modifications can
dynamically affect several aspects of RNAmetabolism including
processing, export, translation, and RNA stability (Flamand and
Meyer, 2019; Ranjan and Leidel, 2019; Trixl and Lusser, 2019;
Boo and Kim, 2020; Chen et al., 2021a; Kumar and Mohapatra,
2021; Schaefer, 2021). Furthermore, epitranscriptomic changes
have been demonstrated to play a crucial role in stress response
processes (such as the DNA damage response) (Jimeno et al.,
2021; Wilkinson et al., 2021) and aberrant epitranscriptomes are
associated with several human diseases, including cancer (Hsu
et al., 2017; Jiang et al., 2017; Lian et al., 2018; Esteve-Puig et al.,
2020). Unlike epigenetic DNA modifications, RNA methylation
cannot be transferred into offspring and can result in significant
changes in RNA secondary structure (Schaefer et al., 2017).
Changes in base-pairing potential and protein-RNA
interactions make epitranscriptomics a complex cellular
mechanism that impacts both RNA metabolism and gene
expression (Kan et al., 2022). Epigenetic and
epitranscriptomic marks have the ability to expand the
physicochemical features of the A-T-C-G nucleobases. The

m5C DNA modification, known as the fifth base, has been
extensively described as a CpG-specific modification able to
modulate chromatin architecture with the assistance of
repressive histone mark deposition. More recently, significant
technical progress for RNA m5C detection approaches has been
made (Yuan et al., 2019). Novel techniques, including m5C RNA
immunoprecipitation sequencing (m5C-RIP-seq), 5-AZA-
cytidine-mediated RNA immunoprecipitation sequencing
(Aza-IP-seq) (Guo et al., 2021), methylation-individual
nucleotide resolution crosslinking immunoprecipitation
sequencing (miCLIP-seq) (Chen et al., 2021a) and TET-
assisted peroxotungstate oxidation sequencing (TAWO-seq)
(Yuan et al., 2019), were successfully developed and applied.
The presence of m5C has been detected in diverse RNA
molecules including tRNAs, rRNAs, mRNAs, viral RNAs,
and ncRNAs (George et al., 2017; Genenncher et al., 2018;
Zeng et al., 2018; García-Vílchez et al., 2019; Trixl and
Lusser, 2019; Zhao et al., 2020). Although the m5C
modification on RNA has been demonstrated to play a role
in the pathogenesis of several diseases, the mechanism of action
remains largely unexplored. Furthermore, evidence of changes
in the transcriptional landscape driven by m5C during several
physiopathological processes, ranging from pluripotency,
development, differentiation, genome instability, and
oncogenesis have been reported (Frye et al., 2018; Bohnsack
et al., 2019; He et al., 2020; Song et al., 2022). A large amount of
scientific literature describes cancer as a genetic, epigenetic, and
epitranscriptomic disease (Esteller and Pandolfi, 2017; Lobo
et al., 2018; Porcellini et al., 2018; Xue et al., 2020a; Esteve-
Puig et al., 2020; Xie et al., 2020; Miano et al., 2021; Lopez et al.,
2022). Oncogenesis driven by genome instability and
consequently accumulation of mutations is a complex
pathological process that involves changes in gene expression.
Both hypermethylation and hypomethylation at
different genetic loci and of RNAs is strongly correlated to
tumour initiation, progression, and metastasis (Pérez et al.,
2018; Locke et al., 2019; Nishiyama and Nakanishi, 2021).
Furthermore, deregulated deposition and removal of
methylation marks as a result of deregulated writer and
eraser enzymes has also been described as a hallmark of
cancer chemotherapy resistance (Ginno et al., 2020; Romero-
Garcia et al., 2020; Feng et al., 2021a; Sun et al., 2021a; Zhao
et al., 2021). In this review, we summarise the current
insights surrounding the dynamics of m5C and its oxidized
derivatives (hm5C, f5C, and ca5C) and their relevance in patho-
physiological contexts such as pluripotency,
development, differentiation, the DNA damage response, and
cancer.

DNA/RNA CYTOSINE METHYLATION

The addition of a methyl group at the carbon-5 position of
cytosine in DNA in the CpG dinucleotide context is catalysed
by the S-adenosyl-methionine-dependent DNMT
methyltransferase family. DNMT1 primarily maintains DNA
methylation patterns during replication, while DNMT3A,
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DNMT3B, and DNMT3L are predominantly involved in the
establishment of de novo DNA methylation (Figure 1) (Lyko,
2018). Proper maintenance of DNA methylation patterns defines
the structural and functional identities of cells throughout cell
division (Moore et al., 2013). Although DNA methylation
patterns are stable, active and passive demethylation
modulates a dynamic methylation process (Sadakierska-Chudy
et al., 2015). Passive demethylation or replication-dependent
dilution occurs after the synthesis of newly replicated DNA
strands. Without functional DNA m5C methylation
maintenance of newly synthesized DNA strands, the symmetry
of methylation is not re-established and methylation is lost
through replication cycles. On the other hand, DNA
methylation can be actively reversed by family of α-
ketoglutarate-dependent dioxygenases, known as Ten-Eleven
Translocation (TET) proteins, which exist as 3 isoforms:
TET1, TET2, TET3 (Lan et al., 2020). Hydroxylation of m5C
analogue to 5-Hydroxymethylcytosine (hm5C), alters the affinity
of DNMT1 for the methylated site, and results in loss of the
epigenetic mark over several rounds of DNA replication. RNA
m5C modification has been found in mRNAs, rRNAs, tRNAs,
and ncRNAs. The RNA specific subset of S-adenosyl-methionine-
dependent methyltransferases includes TRDMT1 (tRNA aspartic
acid methyltransferase 1) (Li et al., 2021a), also known as
DNMT2, and the NSUN1-7 (NOP2/Sun RNA
methyltransferases) family, which are responsible for the
deposition of m5C on RNA (Bohnsack et al., 2019; Sun et al.,
2019; Liu and Santi, 2000). The m5C mark is reported to be
involved in the regulation of RNA metabolism and is principally
associated with structural and functional RNA stability, and its
dynamic deposition and removal also permits rapid cellular

responses to environmental cues (Gkatza et al., 2019). For
example, several lines of evidence identified the m5C
modification as a modulator of the maturation, stability, and
translation of mRNAmolecules, and is also important for nuclear
export (Schumann et al., 2020; Huang et al., 2019). Changes in the
m5C deposition pattern in mRNA is also associated with several
hallmarks of cancer including cell survival, proliferation,
invasion, and resistance to therapy (Zhang et al., 2020a;
Nombela et al., 2021; Zhang et al., 2021; Xue et al., 2020b).
Furthermore, the majority of m5C patterns on RNA are lineage-
and tissue-specific (Amort et al., 2017). The presence of the m5C
modification has been described on both the small and large
rRNA subunits. M5C controls ribosome synthesis and
processing, and can alter the conformation of the rRNA,
effecting translation fidelity (Schosserer et al., 2015; Popis
et al., 2016). In tRNA, m5C is mostly present at the junction
of the variable loop and the T-stem spanning positions (47–50)
(Van Haute et al., 2019). The presence of m5C on tRNA has been
linked to proper folding of the tRNA molecule into an L-shaped
structure. However, m5C has been also shown to be present at
the C38 position in the anticodon loop of tRNA and can
modulate the translation fidelity of a specific subset of genes
(Huang et al., 2021a). In mRNA, the m5C modification is
enriched in 5′/3′-UTRs, next to Argonaute-binding regions,
but is depleted in coding regions (Figure 2). m5C has been also
detected in many ncRNAs such as lncRNAs, lincRNAs,
pseudogene transcripts, antisense transcripts, and vault RNAs
(Amort et al., 2013; Khoddami and Cairns, 2013; Sajini et al.,
2019; Sun et al., 2020), and its presence is likely to be linked
to processing, stability, and interaction with m5C reader
proteins.

FIGURE 1 | DNA methylation and demethylation machinery. DNA methyltransferase 3A (DNMT3A) and DNA methyltransferase 3B (DNMT3B) are responsible for
the creation of DNA methylation patterns. DNA methyltransferase 3L (DNMT3L) interacts and stimulates DNMT3A and DNMT3B methylation activity. DNA
methyltransferase 1 (DNMT1) is actively involved in the maintenance of DNA methylation patterns. Passive demethylation occurs in the absence of functional DNMT1,
which methylates DNA after each cellular division. Active demethylation is mediated by Ten-eleven Translocation (TET) dioxygenases. TET enzymes oxidize 5-
methylcytosine (m5C) to produce 5-hydroxymethylcytosine (hm5C), 5-formylcytosine (f5C) and 5-carboxylcytosine (ca5C). The glycosylase activity of TDG allows the
excision of Tet-produced f5C or ca5C nucleobases. Created with BioRender.com.
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5-METHYLCYTOSINE MODIFICATION IN
CANCER ONSET

m5C-driven epigenetic and epitranscriptomic events are
entwined in cellular homeostasis. Deregulated m5C deposition
can promote cancer development as a consequence of
deregulation of both DNA and RNA molecules (Sun et al.,
2021b). The m5C-mediated upregulation of proto-oncogenes
or silencing of tumour suppressor genes, together with an
enhanced translation rate and stability of mRNA oncogenes,
are common molecular events in many types of cancers
including leukaemia, breast, bladder, gastric, ovarian,
colorectal, and lung (Atala, 2020; Zhang et al., 2020a; Sun
et al., 2020; Hu et al., 2021a; Awah et al., 2021; Huang et al.,
2021b; Li et al., 2021b). Furthermore, alterations in DNMTs
expression levels or activity have been linked to both
hypermethylation of tumour-suppressor genes and
hypomethylation of proto-oncogene genes (Nishiyama and
Nakanishi, 2021). In addition, overexpression of the RNA m5C
writer NSUN2 (Okamoto et al., 2012; Yi et al., 2017; Cheng et al.,
2018; Chellamuthu and Gray, 2020; Xiang et al., 2020; Hu et al.,
2021a; Su et al., 2021; Wang et al., 2022) and RNA m5C reader
YBX1, has been associated with mRNA hypermethylation and
oncogene activation (Chen et al., 2019). Furthermore, the
NSUN2-YBX1-oncogene axis is a commonly deregulated
pathway during the cancer onset and progression (Wang et al.,
2022).

5-METHYLCYTOSINE MODIFICATION IN
DNA DAMAGE RESPONSE

Since several RNA species (DNA damage response RNAs,
damage-induced lncRNAs, de novo transcripts and DNA:
RNA hybrids) have been described to be essential during

DNA damage repair (Ketley and Gullerova, 2020), a
pioneering study has investigated the possibility of RNA
post-transcriptional modification relevance in DNA double
strand break (DSB) repair. DNMT2/TRDMT1 protein was
shown to be recruited to damage sites, where it is able to
catalyse the deposition of m5C residues onto DNA:RNA
hybrids (Chen et al., 2020a). m5C-modified DNA:RNA
hybrids promoted the recruitment of specific readers
including Rad52, which drives the later stages of DNA repair.
In addition, loss of DNMT2 proved to be detrimental during the
DNA damage response, suggesting the importance of m5C
presence during HR-mediated DNA damage repair (Zhu
et al., 2021).

TEN-ELEVEN TRANSLOCATION-DRIVEN
ITERATIVE 5-METHYLCYTOSINE
OXIDATION
(5-HYDROXYMETHYLCYTOSINE >
5-FORMYLCYTOSINE >
5-CARBOXYLCYTOSINE) IN DNA AND RNA

The presence of m5C in the genome is dynamically controlled
by the antagonising action of specific writers and erasers.
DNMT family members are mainly responsible for the
deposition of m5C at both the DNA and RNA level, while
Ten-eleven translocation (TET) proteins are considered m5C
erasers. Active demethylation of m5C is achieved by TET-
mediated sequential oxidation with the production of hm5C
(5-Hydroxymethylcytosine), f5C (5-formylcytosine), ca5C (5-
carboxylcytosine) analogues (Figure 1) (Ito et al., 2011). Then,
the N-glycosidic bond of f5C and ca5C is processed by the
Thymine DNA Glycosylase (TDG) to form abasic sites,

FIGURE 2 | Distribution of m5C and hm5C post-transcriptional modifications on mRNA molecules. 5-methylcytosine (m5C) is predominantly found in 5′
untranslated regions (5′ UTRs), while 5-hydroxymethylcytosine (hm5C) is present within the coding sequence (CDS). Created with BioRender.com.
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followed by Base Excision Repair (BER) to restore the
unmodified cytosine (He et al., 2011; Bordin et al., 2021).
Alternative pathways include; 1) direct deformylation (f5C)
and decarboxylation (ca5C) mediated by DNMT3A/B (Feng
et al., 2021b), 2) AID/APOBEC-dependent deamination and
production of 5hmU followed by TDG cleavage (Cervantes-
Gracia et al., 2021), and 3) passive DNA replication-dependent
loss (Vincenzetti et al., 2019). However, TET enzymes
appeared to be involved in the oxidation of both DNA and
RNA m5C (Wu and Zhang, 2011; Fu et al., 2014; He et al.,
2021a). In vitro studies confirmed that double stranded DNA is
the preferred TET substrate, followed by DNA:RNA hybrids,
single stranded DNA and single stranded RNA. Double strand
RNA molecules were shown not to be TET substrates, likely
due to TET discrimination against the RNA A-form
conformation (DeNizio et al., 2019).

5-HYDROXYMETHYLCYTOSINE

The hm5Cmark has been annotated at promoters, enhancers, and
in gene bodies (Cui et al., 2020). While hm5C is mainly associated
with active gene transcription and an open chromatin structure,
its role depends on the genomic context (active vs. poised genes)
(Choi et al., 2014). Furthermore, hm5C modification has a locus
and tissue specific signature and serves as a feature of cellular state
and identity. Genome-wide mapping at a single-nucleotide
resolution level using modification specific antibodies, has
estimated that around the 5% of cytosine residues in
mammalian genome are modified as m5C and less than the
1% are hm5C (He et al., 2021b). The presence hm5C has been
described not only at promoters, enhancers and gene body
regions, but also on several RNA molecules (Delatte et al.,
2016). m5C and hm5C modifications have been identified as
stable epigenetic marks, and different chromatin-binding
proteins have been shown to specifically bind to either m5C or
hm5C, suggesting these modifications have distinct functions in
epigenetic regulation. Recent studies have identified several
proteins which preferentially “read” m5C or its oxidized forms.
For example, the Methyl-CpG binding domain (MBD) protein
family plays a pivotal role in determining the transcriptional state
of the epigenome and shows a strong preference for hm5C over
the m5C modification (Buchmuller et al., 2020). MBD proteins
mainly belong to chromatin-bound repressor complexes, which
coordinate crosstalk between m5C methylation, histone
modifications, and chromatin organization. TET-mediated
hm5C biogenesis blocks the reader function of the MBDs and
alleviates their transcriptional repression, producing a
new platform for hm5C specific readers and transcriptional
activation.

5-FORMYLCYTOSINE AND
5-CARBOXYLCYTOSINE

Despite the fact that f5C and ca5C oxidized forms of m5C are
considered short-lived intermediates in the demethylation

process, and their steady-state levels are many orders of
magnitude lower than hm5C, emerging evidence indicates
that f5C and ca5C might have independent epigenetic
signalling roles in recruiting modification-specific “reader”
proteins (Song and He, 2013). f5C and ca5C can be
recognized by transcriptional regulators, DNA repair factors,
and chromatin regulators, predominantly stimulating gene
activation. Beside these regulatory roles, some studies have
proposed the TET-mediated oxidative products f5C and ca5C
are mutagenic bases that can threaten the genomic integrity if
not properly eliminated. Moreover, deregulation of TET-TDG-
BER pathway and inefficient f5C and ca5C clearance has been
linked to DNA damage and the production of DSBs (Weber
et al., 2016).

5-HYDROXYMETHYLCYTOSINE
MODIFICATION IN PLURIPOTENCY,
DEVELOPMENT, AND DIFFERENTIATION
Transcriptome flexibility is required for embryonic stem cell
(ESC) differentiation (Dawlaty et al., 2014; Lan et al., 2020).
Cell fate commitment requires efficient and timely control of the
expression of pluripotency-associated factors. hm5C can promote
a rapid response during differentiation processes (Cimmino et al.,
2011; Kuehner et al., 2021). The RNA hm5C modification has
been described as a guardian of the transcriptional landscape, able
to regulate the balance between pluripotency and lineage-priming
mRNAs and ensures ESC differentiation in a timely and orderly
manner (Wu et al., 2018; Yang et al., 2020). TET-dependent
hydroxymethylation of mRNA molecules can regulate RNA half-
life and splicing. In mouse embryonic stem cells (mESCs) hm5C
has been linked to the downregulation of certain mRNAs linked
to pluripotency allowing ESC-to-EB (embryo body)
differentiation (Lan et al., 2020). During somatic
reprogramming to pluripotency, hm5C deposition drives site-
specific demethylation of reprogramming enhancers and
promoters resulting in the formation of iPSC (induced
pluripotent stem cells) (Caldwell et al., 2021). TET triple
knockout cells failed to undergo iPSC reprogramming,
highlighting the importance of m5C hydroxylation during state
transitions. Furthermore, a report on somatic reprogramming
determined the contribution of hm5C deposition decoupled from
the production of the oxidative derivatives f5C and ca5C using a
hm5C-stalled TET enzyme. Interestingly, hm5C deposition alone
is not sufficient for iPSC reprogramming, and f5C, ca5C and the
TDG protein appeared to be crucial in this process, suggesting a
different role of hm5C and the f5C and ca5C epigenetic signatures
(Caldwell et al., 2021).

5-HYDROXYMETHYLCYTOSINE
MODIFICATION IN CANCER ONSET

hm5C has been proposed to act as a novel diagnostic and
prognostic marker in several human malignancies (Scourzic
et al., 2015; An et al., 2017). Loss or inactivation of TET
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enzymes and deregulation of m5C demethylation are emerging
as crucial determinants for cancer phenotypes. Modulation of
the expression and activity of TET proteins can occur as a
result of different mechanisms, such as m5C-mediated
silencing of the TET loci or changes in the intracellular
concentration of TET co-factors (i.e., α-Ketoglutarate,
oxygen, iron, vitamin C) (Scourzic et al., 2015; Yue and
Rao, 2020; Matuleviciute et al., 2021). Several studies have
outlined a negative correlation between the loss of TET activity
with increased levels of m5C and decreased levels of hm5C, and
poor prognosis in cancers including lung, cervical, breast,
glioblastoma, and hematopoietic (López-Moyado et al.,
2019; Gao et al., 2021; Xu et al., 2021; Lopez-Bertoni et al.,
2022; Xu et al., 2022). The deregulation of m5C and hm5C
affects cell transcriptional programs and leads to cancer stem-
like phenotypes. Moreover, aberrant deposition of hm5C has
been also proposed as a contributing factor to chemotherapy
resistance (Kharat and Sharan, 2020).

5-HYDROXYMETHYLCYTOSINE
MODIFICATION IN THE DNA DAMAGE
RESPONSE
Of note, TET-mediated hm5C accumulation has also been
described at DNA damage, suggesting a crucial role for hm5C
in promoting DNA damage repair (Kafer et al., 2016). Possible
mechanisms of action could be linked to the ability of hm5C to
promote or maintain an open chromatin configuration. hm5C
modification is able to control DNA accessibility through a
DNA-end breathing motion that can decrease nucleosome
affinities, facilitate RNA polymerase II elongation, and lower
the thermodynamic stability of the DNA duplex (Mendonca
et al., 2014; Li et al., 2022). Local accessibility of hm5C
chromatin driven by hm5C, could serve as a platform for the
recruitment of late-acting DNA damage repair factors. The
hm5C modification has also been found to promote the
formation of DNA:RNA hybrids (R-loops) in vitro and in
vivo (Sabino et al., 2022; Shukla et al., 2022; Yang et al.,
2022). Given that DNA:RNA hybrids are well-established
triggers of DNA damage, hm5C modification has been
proposed as novel player in genome instability. Several
studies have documented a direct association between TET
deficiency and increased level of DNA double strand breaks
caused by the accumulation of R-loop structures. Ineffective
m5C demethylation can further impair DNA damage repair
through the retention of m5C readers on the R-loops and
delayed R-loop resolution. Even if hm5C deposition in DNA
damage responses is not fully understood, a direct correlation
between the level of hm5C and fork stability has recently been
described (Kharat et al., 2020). Upon DNA damage, ATM and
ATR kinases can phosphorylate TET proteins and stimulate
hm5C deposition close to the replication fork. The excessive
presence of hm5C at replication forks triggers BER-mediated
repair of hm5C, leading to the production of abasic sites which
could sources of genome instability.

BEYOND 5-METHYLCYTOSINE: THE ROLE
OF N6-METHYLADENOSINE
MODIFICATION
Dynamic and reversible chemical control of DNA and RNA also
encompasses other methylated nucleobases. So far, several
enzymatically methylated residues including N6-
methyladenosine (m6A) (Zhu et al., 2020), N1-methyladenosine
(m1A) (Xiong et al., 2018), N7-methylguanosine (m7G) (Enroth
et al., 2019) and N4-methylcytosine (m4C) (Chen et al., 2020b)
have been described in all major RNA types, while their presence in
DNA is mainly restricted to m6A (Xu and Bochtler, 2020). For
example, the existence of m6A in DNA has been suggested to be
dependent on RNA catabolism rather than a specific m6A writer,
arguing against the proposed role of m6A as a heritable epigenetic
mark (Musheev et al., 2020). This evidence is also corroborated by
the homogeneous distribution of m6A throughout the genome,
implying an incorporation of m6A form the RNA nucleoside pool
rather than from the direct action of a DNA methyltransferase.
Although some reports have proposed a role for m6A in the
epigenetic control of the heterochromatin formation, m6A-
mediated regulation of chromatin dynamics appears to depend
more on m6A methylated RNAs such as chromosome-associated
regulatory RNAs (carRNAs) (Zhang et al., 2020b; Liu et al., 2020;
Selmi and Lanzuolo, 2022) rather than a direct effect of m6A
deposition in the genome. Nevertheless, m6A is a well-established
RNA epitranscriptomic mark and its dynamical and reversible
write and erase processes aremainly regulated by somemembers of
the methyltransferase-like gene family (METTL3, METTL13 and
METTL14) and FTO and ALKBH5 enzymes, respectively (Meyer
and Jaffrey, 2014). The m6A writing process predominantly occurs
in the nucleus, while reading and erasing events are reported in
both the nucleus and cytoplasm. Distinctive subcellular localization
of m6A erasers and readers confers the specific roles of the m6A
residue, and thereby influences different pathways. m6A functions
have been linked to several biological processes such asmodulation
of splicing by altering the structure of pre-mRNAs (Zhou et al.,
2019), increased miRNA biogenesis by enhancing the recognition
and processing of the microRNA microprocessor complex protein
DGCR8 (Han et al., 2021), transcription termination by facilitating
the co-transcriptional R-loops formation (Yang et al., 2019),
regulation of DNA damage repair by the accumulation of DNA:
RNA hybrids at DSB sites (Zhang et al., 2020c; Qu et al., 2021)
development and pluripotency (Zhang et al., 2020b; Jin et al.,
2021). Furthermore, it has been reported that m6A modification
can influence mRNA export from the nucleus, determine
transcripts turnover and stimulate translation initiation (Jiang
et al., 2021). Perturbation of m6A deposition and elimination
dynamics, due to upregulated or mutated enzymes, has been
associated with tumor initiation and progression, metastasis, cell
proliferation and self-renewal (He et al., 2019; Zhou et al., 2020).
Moreover, opposite effects of m6A modification levels reported in
some cancer settings (e.g., ovarian cancers), can be explained by the
involvement of specific m6A readers in the stability of either
oncogene or tumor-suppressor m6A-modified mRNAs (Chen
et al., 2021b; Huang et al., 2022).
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CONCLUDING REMARKS

A growing body of evidence suggest that epigenetic and
epitranscriptomic dynamics are profoundly interconnected.
Methyltransferases (“writers”) and demethylases (“erasers”)
functionally cooperate and compete to maintain the
appropriate amount of m5C and its oxidized derivatives across
both the genome and the transcriptome.Maintenance of effective,
time regulated, and lineage-specific methylation-demethylation
dynamics is needed for cellular homeostasis and responses to
diverse stimuli. Mutations in epigenetic and epitranscriptomic
modifiers can deregulate normal cellular differentiation and
programmed growth control. As a consequence of altered
patterns of hm5C and m5C, mainly characterised by global
hypomethylation and focal hypermethylation, multiple stages
of tumorigenesis including initiation, progression and
metastasis, are promoted. Moreover, numerous reports
correlate the loss of hm5C with poor prognosis. Restoration of
proper methylation-demethylation dynamics in cells could be
achieve with several approaches. Identification of druggable
targets of both main players (DNMTs, TETs) and pivotal
intermediates (miRNAs or lncRNAs) is crucial for the
development of classical inhibitors or RNA-based drugs. A
combination of epigenetic therapy and classical chemotherapy
is a promising approach aiming at reducing tumour growth and
self-renewal characteristics, while reducing chemoresistance (Hu
et al., 2021b).

In addition, the intriguing possibility of precise and
synchronized crosstalks between diverse epigenetic and
epitranscriptomic marks (e.g., m5C and m6A) (Rengaraj et al.,

2021) as versatile checkpoints in the maintenance of cellular
homeostasis, may underpin a complex and comprehensive
landscape of the cellular methylation game.
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