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Being a new type of widespread protein post-translational modifications discovered in
recent years, succinylation plays a key role in protein conformational regulation and cellular
function regulation. Numerous studies have shown that succinylation modifications are
closely associated with the development of many diseases. In order to gain insight into the
mechanism of succinylation, it is vital to identify lysine succinylation sites. However,
experimental identification of succinylation sites is time-consuming and laborious, and
traditional identification tools are unable to meet the rapid growth of datasets. Therefore, to
solve this problem, we developed a new predictor named pSuc-FFSEA, which can predict
succinylation sites in protein sequences by feature fusion and stacking ensemble
algorithm. Specifically, the sequence information and physicochemical properties were
first extracted using EBGW, One-Hot, continuous bag-of-words, chaos game
representation, and AAF_DWT. Following that, feature selection was performed, which
applied LASSO to select the optimal subset of features for the classifier, and then, stacking
ensemble classifier was designed using two-layer stacking ensemble, selecting three
classifiers, SVM, broad learning system and LightGBM classifier, as the base classifiers of
the first layer, using logistic regression classifier as the meta classifier of the second layer. In
order to further improve the model prediction accuracy and reduce the computational
effort, bayesian optimization algorithm and grid search algorithm were utilized to optimize
the hyperparameters of the classifier. Finally, the results of rigorous 10-fold cross-validation
indicated our predictor showed excellent robustness and performed better than the
previous prediction tools, which achieved an average prediction accuracy of 0.7773 ±
0.0120. Besides, for the convenience of the most experimental scientists, a user-friendly
and comprehensive web-server for pSuc-FFSEA has been established at https://bio.
cangmang.xyz/pSuc-FFSEA, bywhich one can easily obtain the expected data and results
without going through the complicated mathematics.
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1 INTRODUCTION

Protein post-translational modifications (PTMs) is an important
mechanism for regulating the function of protein, which plays an
irreplaceable role in biological processes and signal pathways, and
reversibly determines cell dynamics and plasticity (Xue et al.,
2011). In recent years, lysine succinylation has been found to be a
novel type of PTMs defined as transfer of a succinyl group
(−CO − CH2 − CH2 − CO−) to a lysine residue of protein
molecule, which has attracted much attention from many
researchers in China and abroad (Peng et al., 2011).
Succinylation is a widely conserved post-translational
modification of proteins present in prokaryotic and eukaryotic
cells that orchestrate various biological processes such as gene
expression (Weinert et al., 2013). It will result in more substantial
changes in the chemical structure of lysine than the methylation
and acetylation that occur on lysine (Li et al., 2014). Meanwhile,
dysregulation of lysine succinylation is closely associated with
many human diseases, including inflammation, cancer,
tuberculosis, neurodegenerative diseases, allergic dermatitis, etc
(Ao et al., 2021). In 2013, Park et al. also revealed the potential
impacts of succinylation on mitochondrial metabolism-related
enzymes and demonstrated the important role of succinylation in
the regulation of metabolism (Park et al., 2013).

Many studies have also confirmed the prevalence of protein
succinylation modifications in prokaryotes and eukaryotes.
Succinylation was found to occur at the active site of high
serine transfer succinylases. Succinylation may have effect on
the central nervous system in E. coli (Kawai et al., 2006). In
mycobacterium tuberculosis, succinylated proteins are involved
in many processes, including transcription, translation, stress
response, protein interactions, etc (Xie et al., 2015). In 2015,
Yang et al. also indicated that lysine succinylation can
dynamically regulate enzymes in carbon metabolism in both
bacteria and human cells and play major roles in regulating
the process of the metabolism in mycobacterium tuberculosis
(Yang et al., 2015). Therefore, identification of succinylation sites
is helpful for further understanding the cellular functions of
proteins and the implementation of relevant pathological
reseach, and provides some valuable clues for biomedical
research and drug development.

Currently, some traditional experimental methods have been
proposed to identify lysine succinylation sites such as high
performance liquid chromatography assays, mass spectrometry
and liquid chromatography-mass spectrometry (Lind et al.,
2002). Although the traditional experimental methods have
high accuracy in identifying succinylation sites, it requires a
lot of manpower and time cost, and there are also some
problems such as high false positives. Therefore, it is urgent to
propose a new method to solve the shortcomings of traditional
experimental methods.

In fact, during the last decade or so, a host of researchers have
continued to propose effective methods and developed many
rapid bioinformatics tools to identify succinylation sites in
proteins in order to compensate for the shortcomings of
traditional techniques (Chen et al., 2019; Li et al., 2020), such
as traditional maching learning, deep learning, broad learning

system (BLS) and so on. The traditional machine learning has also
become a common method for identifying succinylation sites. In
2015, Xu et al. developed a SVM-based predictor called iSuc-
PseAAC, but which did not take into account the distribution of
the dataset (Xu et al., 2015). In 2016, Jia et al. proposed two
prediction models: pSuc-Lys (Jia et al., 2016b) and iSuc-PseOpt
(Jia et al., 2016a), however, some important sequence information
is missing in these classifiers, in addition, iSuc-PseOpt merged
sequence coupling effects onto the pseudo-components and
optimized the imbalance dataset, but the performance of
classifier is highly data-dependant. With using the latest
datasets of a number of novel succinylation sites from the
latest high-throughput proteomic assays, Hasan et al.
constructed a predictor named SuccinSite in 2016, which
introduced amino acid pattern and properties into random
forest (RF) classifier to predict the lysine succinylation sites
(Hasan et al., 2016). In 2017, Dehzangi et al. developed a
predictor called PSSM-Suc which used a position-specific
scoring matrix (PSSM) introduced into the binary model for
feature extraction and used amino acid evolutionary information
to predict succinylation (Dehzangi et al., 2017). Thereafter,
Dehzangi et al. also proposed a predictor named SSEvol-Suc
(Dehzangi et al., 2018) in 2018, which primarily integrated
secondary structure and PSSM via atlas bipartite mapping into
an AdaBoost classifier for predicting succinylation sites, which
achieved significant improvements over the iSuc-PseAAC, iSuc-
PseOpt, SuccinSite, and pSuc-Lys predictors. In the same year,
Hasan et al. structured a predictor named GPSuc through using
an logistic regression (LR) to combine the outputs of distinct RF
scores. In 2020, IFS-LightGBM used a combination of the
LightGBM feature selection method and the incremental
feature felection (IFS) method to select the optimal subset of
features that extracted multiple types of feature information
(Zhang et al., 2020). In 2021, Ge et al. proposed a method
named SuccSPred to predict succinylation sites by fusing
feature, ranking method and parsimonious bayes to identify
succinylation sites (Ge et al., 2021). Clearly, considerable
progress has been made in the prediction of lysine
succinylation sites based on the traditional machine learning.

As time goes on and technology advances, deep learning and
broad learning system have been being applied to bioinformatics.
In 2020, Ning et al. created HybridSucc, which integrated ten
types of information features, introduced deep neural network
(DNN) and penalized logistic regression (PLR) algorithms into
the hybrid learning architecture to build the model (Ning et al.,
2020). In the same year, Thapa et al. developed DeepSuccinylSite
which used deep learning methods to identify succinylation sites
through embedding and a thermal encoding (Thapa et al., 2020).
In 2021, Huang et al. combined a long short-term memory
(LSTM) and convolutional neural network (CNN) into a deep
learning method for predicting lysine succinylation sites (Huang
et al., 2021). Although existing deep learning-based methods can
effectively predict the succinylation sites, most of them suffer
from the time-consuming training process because of a number
of hyperparameters and complicated structures. Therefore, after
consulting the relevant literature, it is found that the BLS aims to
offer an alternative way of learning in deep structure, and can lead
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to a promising performance in classification. The successful
application of the BLS in predicting IncRNA-protein
interactions (Fan and Zhang, 2019) makes it possible to use
the BLS in this study, so after studying and researching deeply the
BLS, the BLS has been applied to this study.

In order to improve the prediction performance of
succinylation sites, the present study was initiated in an
attempt to develop a new predictor based on feature fusion
and stacking ensemble algorithm, which was proposed to
identify lysine succinylation sites in protein sequences. The
predictor is called “pSuc-FFSEA”, where “p" stands for
“prediction”, “Suc” stands for “Succinylation sites”, “FF”
stands for “Feature Fusion”, and “SEA” stands for “Stacking
Ensemble Algorithm”. Since the use of flowcharts can show
the intrinsic mechanism of model construction more visually,
we drew diagrams to demonstrate the general framework of pSuc-
FFSEA (Figure 1) with the following flow: First, based on protein
sequences, features were extracted using multiple feature
extraction methods including an encoding based on grouping
weights (EBGW), one hot encoding (One-Hot), continuous bag-
of-words (CBOW), chaos game representation (CGR), and
amino acid factor features based on discrete wavelet transform
(AAF_DWT). Multiple features of each type were feature selected
using LASSO to eliminate the redundant information in the
original feature vector. Then, the hyperparameters of SVM, LR
and LightGBM classifier were optimized using Bayesian
optimization algorithm, while the hyperparameters of broad
learning system (BLS) were optimized using grid search
algorithm. Finally, the succinylation prediction model has been
constructed by comparing several other classifiers through

ten-fold cross-validation on the dbPTM dataset and selecting
the stacking ensemble classifier as the predictive classifier, which
was designed using two-layer stacking ensemble, selecting three
classifiers, SVM, BLS and LightGBM classifier, as the base
classifiers of the first layer, taking into account the variability
among the base classifiers of the first layer and reducing
overfitting, LR classifier was used as the meta classifier of the
second layer. This work not only provided a better understanding
of the sequence characteristics of protein succinylation
modifications, but also provided a more effective algorithmic
idea for directly predicting succinylation sites in proteins. Besides,
for the convenience of the most experimental scientists, a user-
friendly and comprehensive web-server for pSuc-FFSEA has been
established at https://bio.cangmang.xyz/pSuc-FFSEA, by which
one can easily obtain the expected data and results without going
through the complicated mathematics.

2 MATERIALS AND METHODS

This study described a new predictor called pSuc-FFSEA that
took into account five types of sequence feature extraction
methods including EBGW, One-Hot, CBOW, CGR, and
AAF_DWT to predict succinylated and non-succinylated
sites.The following subsections detail the benchmark dataset
used in this study and how features were extracted for each
segment of amino acids corresponding to lysine residues, in
addition to a discussion of the design of the stacking ensemble
algorithm for succinylation sites prediction and performance
evaluation metrics.

FIGURE 1 | The scheme diagram for establishing pSuc-FFSEA model.
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2.1 Benchmark Dataset
The benchmark dataset used in this study is derived from dbPTM
(Huang et al., 2016; Huang et al., 2019) (https://awi.cuhk.edu.cn/
dbPTM/) a protein lysine modification database that integrates
published literature, public resources and a total of 41 biological
databases related to PTMs. We obtained 2599 protein sequences
from the dbPTM as our final training set, including 5049
experimentally validated lysine succinylation and 5526 non-
succinylation sites. For convenience, we have placed the
dataset on github, which is available at https://github.com/
wugenqiang/pSuc-FFSEA/tree/main/dataset.

The protein sequence corresponding to lysine (K) was
extracted from the dataset with a window size of 2r + 1,
where one is the lysine (K) extracted as the central site of the
protein sequence; r is equal to 10, which means that each of the
upstream and downstream of the lysine is selected 10 amino acid
residues; finally, a protein sequence of length 21 was obtained. In
this case, the positive samples take the succinylation residues as
the central sites.

For facilitating the description later, Chou’s peptide
formulation was adopted (Chou, 2001). According to Chou’s
method, all the protein sequences containing succinylation sites
or not can be expressed as Eq. 1.

Pδ(K) � H−δH−(δ−1)/H−2H−1KH+1H+2/H+(δ−1)H+δ (1)
where the center K represents lysine, the subscript δ represents
an integer, the left half of K is the upstream amino acid
residue, and the right half is the downstream amino acid
residue, H−δ represents the δth upstream amino acid
residue counting from the center, and H+δ represents the
δth downstream amino acid residue counting from the
center, so that Pδ(K) can divide all samples into two
categories as defined in Eq. 2.

Pδ(K) ∈ {P+
δ(K), if the center is a succinylation site

P−
δ(K), otherwise

(2)

Among them, P+
δ(K) is expressed as a protein sequence with

a lysine succinylated center; P−
δ(K) is expressed as a protein

sequence centered on a lysine unmodified succinylation.
As described in a review (Chou and Shen, 2007), if the

predictor to be developed is a Jackknife test or a subsampling
(or K-fold cross-validation) test, the benchmark dataset for the
current study does not need to be split into separate testsets for
further testing since the results obtained in this way are actually a
combination of many different independent testsets. During the
data preprocessing, it is not difficult to find that some peptide
chain samples have some residues in the first or last part of the
chain that are non-standard amino acids, such as “X", and the
method introduced in Jia’s study (Jia et al., 2016b) can fill this part
of residues by the mirroring image, as shown in formula 3 and 4.

(a) Mirror image for C terminus

H+δH+(δ−1)/H+2H+1 5
K

H+1H+2/H+(δ−1)H+δ (3)

(b) Mirror image for N terminus

H−δH−(δ−1)/H−2H−1 5
K

H−1H−2/H−(δ−1)H−δ (4)

According to Eqs 3 and 4, (a) and (b) are the mirror images
of the carbon-terminus and nitrogen-terminus δ residues,
respectively, on the left side of the symbol “5” in Eq. 3
and on the right side of the symbol “5” in Eq. 4; while the
original protein sequence is on the other side, with the symbol
}5} in the middle indicating the mirror image and K
indicating the modification site.

2.2 Feature Extraction Methods
To build an effective prediction model, we encoded each
protein sequence fragment as a numerical vector and
inputed it as a feature into the model, which was the most
critical step in proposing a classifier and integrating the
architecture. Five feature extraction methods were used in
this study including EBGW, One-Hot, CBOW, CGR, and
AAF_DWT.

2.2.1 EBGW
According to the idea of coarse-grained, if completely different
things with the same characteristics, we can consider them as a
whole. It is well known that it is the random combination of
20 amino acids with different properties that causes the
diversity and specificity of protein structure and function
(Zhang et al., 2006). Therefore, we decided to apply the
physical and chemical properties of amino acids to capture
the specific information between succinylated and non-
succinylated sites.

Taking into account the hydrophobic, charged character and
the coarse-grained idea, we divided the 20 amino acids into four
groups as shown in Table 1.

These four groups of amino acids were further divided into
three disjoint groups when the amino acid residues
Pi(i � 1, 2,/, n) appeared in protein sequence
P � (P1, P2,/, Pn). Through this process, a protein sequence
was converted into three binary sequences S1, S2 and S3 as defined
in Eqs. 5-7, respectively.

S1(Pi) � { 1 if Pi ∈ G1 ∪ G2

0 if Pi ∈ G3 ∪ G4
(i � 1, 2,/, n) (5)

S2(Pi) � { 1 if Pi ∈ G1 ∪ G3

0 if Pi ∈ G2 ∪ G4
(i � 1, 2,/, n) (6)

S3(Pi) � { 1 if Pi ∈ G1 ∪ G4

0 if Pi ∈ G2 ∪ G3
(i � 1, 2,/, n) (7)

TABLE 1 | Classification of Amino acid residues.

Group Amino Acid Residue Characteristic

G1 A,F,G,I,L,M,P,V,W neutral and non-polarity group
G2 C,N,Q,S,T,Y neutral and polarity group
G3 D,E acidic group
G4 H,K,R basic group
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For convenience, we denoted S(n) � s1, s2,/, sn as any one of
the three feature sequences defined above. The specific process is
as follows.

Step 1: Define weights for feature sequences.

Suppose S(n) � s1, s2,/, sn be a sequence of features, and the
weight of S(n) be defined as the number of times the number one
appeares in S(n).

Step 2: Standardized weights.

The standardized weight f(n) is defined as the frequency of
occurrence of the number one in S(n), that is f(n) � w(n)

n , where
w(n) is the weight of S(n).

Step 3: Select the appropriate frequency value.

Assume K be a positive integer and L be the length of
sequence, we can select K values in f(n) according to the
following rules. Equal steps size is defined as Q � (�LK�), �·�
refers to a number down to the nearest integer. Then we can
get P � [f(1 × Q), (2 × Q), /, f(K × Q)] which we call as the
EBGW string of feature sequence S(n).

Thus, given a protein sequence, we can transform it into
three feature sequences S1, S2 and S3, which were performed
from step 1 to step 3 in sequence in order. Finally, the protein
sequences were encoded as 3 ×K-dim feature vectors.
Preliminary tests on the training dataset showed that K = 5
is the most appropriate number of points to be fetched.
Therefore, a protein sequence of length 21 was converted
into a 15-dim (5 × 3) feature vector.

2.2.2 One-Hot
The most direct and basic features of protein sequences are the
types and positions of amino acid residues, and One-Hot is the
most intuitive way to express these two features; therefore, the
One-Hot method has been maturely applied to the process of
protein feature extraction. In order to extract features in the
collected protein sequences for further complementation, the
binary encoding method for extracting features is also applied
to the tools in this paper. The 20 amino acid letters were listed
in alphabetical sequence as: ACDEFGHIKLMNPQRSTVWY.
The ith amino acid was expressed as one in the ith position and
0 in the other positions. For example, the binary representation
of the amino acid A was written as 10000000000000000000,
amino acid letter C was written as 01000000000000000000. In
this regard, the protein sequence of length 21 was represented
by 420-dim (21 × 20) vector.

2.2.3 CBOW
The context of a word often has many words, and what we
need is to predict the probability of occurrence of the
missing word given multiple words. We want the bag-of-
words model to handle this problem. Therefore, a new
solution idea was proposed, which used the product of the
average of the input context word vectors and the weights

from the input layer to the hidden layer as input and
the average of the context word vectors as output, and used
the context in this way to predict the current word, which
was the continuous bag-of-words model, or CBOW for
short (Mikolov et al., 2013). Based on CBOW model, we
constructed two different words embedded in wordbooks
for training model and the corresponding feature vectors
were generated using them (Qiu et al., 2021). The training
process is as follows.

Step 1: Divide protein sequences into segments and create
wordbooks.

Two fragments are designed with length l of 2 and 3,
respectively, and denoted as Ql�2 and Ql�3, respectively,
taking Ql�2 as an example for illustration in this study. As
shown in Figure 2, the original protein sequence is divided
into words of length 2, i.e., setting the window size to two and
moving the window in steps of 1. After all this work is done,
the words split from each sequence will be collected, the
duplicate items removed, and then a wordbook with word
count v is generated.

Step 2: Train the CBOW model.

The CBOWmodel is applied to generate word vectors, and the
target words are predicted according to the continuous words
before and after the target words, and two word vector matrices
are obtained by training the CBOW model.The structure of the
CBOW model is shown in Figure 3.

Step 3: Feature extraction using CBOW model.

In this step, protein sequences are converted into feature
vectors.

After performing the above steps, a protein sequence of length
21 was converted into a 200-dim (100 × 2) feature vector.

2.2.4 CGR
In this study, we used CGR proposed by Jeffrey et al. to extract
features (Joel, 1990). To achieve this, first, we transformed the
protein sequences into nucleotide sequences according to
Table 2, which was proposed by Deschavanne
(Deschavanne and Tuffery, 2008). The advantage of using
this code-switching method is the ability to maintain a
balanced base composition for maximizing the differences
between amino acids. Since the universal code that
translates deoxyribose into amino acids is not unique, a
wobble in the third base can lead to ambiguity in
expression. Here, we assigned a unique codon to each
amino acid as follows in Table 2.

After the protein sequence was encoded using the unique
codon as shown in Table 2, the corresponding nucleotide
sequence was generated. Then the CGR generation
operation was executed as follows: in the [0,1]×[0,1] square,
the four vertices of the defined square corresponded to the
four letters: A, C, G and T, as also detailed in Jia’s article

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8948745

Jia et al. Predicting Lysine Succinylation Sites

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


(Jia et al., 2019). The CGR graph is obtained by the following
steps.

Step 1: Place the starting point on the center in the square.
Step 2: Place the second point at the midpoint between the

starting point and the vertex corresponding to the first
nucleotide.

Step 3: Place the ith point between the (i − 1)th point and the
vertex corresponding to the ith nucleotide.

Step 4: Go to step 3 until the end of the nucleotide sequence is
reached.

The above steps can be expressed using the formula as follows
in Eq. 8.

CGRi � θ p(CGRi−1 + gi) i � 1, 2,/, nG (8)
where gi denotes nucleotide coefficient, and when the nucleotides
are A, C, G and T, the corresponding nucleotide coefficients are
defined as (0, 0), (0, 1), (1, 0) and (1, 1). Considering the previous
study, the parameter θ is set to 0.5. Also, we define CGR0 �
(0.5, 0.5) and i � 1, 2, /, nG, nG is the length of a nucleotide
sequence.

Pφ � 1
1 + e−Pφ

(φ � 1, 2, /, 16 ) (9)

FIGURE 2 | The process of splitting sequences and forming wordbook of Ql�2.

FIGURE 3 | The structure of CBOW.

TABLE 2 | Reverse encoding for the amino acids used in this study.

A=GCT C=TGC D=GAC E=GAG F=TTC G=GGT H=CAC

I=ATT K=AAG L=CTA M=ATG N=AAC P=CCA Q=CAG
R=CGA S=TCA T=ACT V=GTG W=TGG Y=TAC
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After generating the CGR graph, the CGR square was divided
into 4 × 4 = 16 sub-squares, each of which was of the same size.
The number of points in each of the 16 sub-squares was
calculated as a set of feature vectors P � [P1, P2, /, P16]. On
this basis, the results were normalized using Eq. 9 to obtain a 16-
dim feature vector.

2.2.5 AAF_DWT
In this study, we considered to use the same ten physicochemical
properties of amino acids as in the article (Jia et al., 2021) and the
values of all physicochemical properties were extracted from
AAindex (Kawashima et al., 2008), which can be obtained
from https://github.com/wugenqiang/pSuc-FFSEA/blob/main/
PP_Values.xlsx. The ten physicochemical properties of amino
acids listed below: 1) consensus normalized hydrophobicity; 2)
positive charge; 3) partition energy; 4) net charge; 5)
conformational preference for all beta-strands; 6)
conformational preference for antiparallel beta-strands; 7)
mean polarity; 8) principal property value z3; 9) apparent
partition energies calculated from Wertz-Scheraga index (10)
weights from the IFH scale.

Suppose a protein sequence containing L amino acid residues
is given and defined as Eq. 10.

P � R1R2/RL (10)
R1 denotes the first amino acid residue in the protein sequence.

R2 denotes the second, . . . . . . , RL denotes the last amino acid
residue in protein sequence P. Protein sequence P under the ξth

physicochemical property can be expressed as Eq. 11.

P(ξ) � φ(ξ)
1 φ(ξ)

2 /φ(ξ)
L (ξ � 1, 2,/, 10) (11)

where " ξ" denotes the ξth physicochemical property and φ(ξ)
i

denotes the value of the ξth physicochemical property of the ith

amino acid. Then the normalized transformation is performed as
defined in Eq. 12.

φ(ξ)
i � φ(ξ)

i −M(φ(ξ)
i )

STD(φ(ξ)
i ) (ξ � 1, 2,/, 10; i � 1, 2,/, L) (12)

The symbol “M" indicates the average of the 20 amino acid
values and “STD” indicates the corresponding standard
deviation. After standardization, the average value of the 20
amino acids is 0, which will remain unchanged if the same
standard conversion procedure is performed again.

Wavelet transform is a new transform analysis method
inherited and developes on the basis of fourier analysis
(Mallat, 1989), which overcomes the previous shortcoming.
As an ideal tool for signal time-frequency analysis and
processing, its main feature is that it can highlight some
important features. Discrete wavelet transform (DWT) is to
discretize the scale and translation of the fundamental wavelet,
which can convert the discrete time signal into discrete wavelet
representation (Shensa, 1992). When applying the discrete
wavelet transform to feature extraction, P(ξ) can be
considered as a discrete time series, with the first amino
acid residue corresponding to t=1, the second to t=2, and so

on. The time series is then used as input to a high-pass filter
and a low-pass filter, and the resulting coefficients can be
approximated for both the high-frequency and low-frequency
components of the signal. The digital implementation of DWT
is shown in Figure 4.

In this study, the Harr wavelet was selected as wavelet basis
function in the specific implementation process and λ � 3 was
chosen as the decomposition level of DWT to represent a
protein sequence. After standardization, the protein sequence
P applied DWT to obtain (3+1)=4 subbands, and each subband
contained four coefficients, which are: 1) αi: the maximum
value of wavelet coefficients of the ith subband; 2) βi: the
minimum value of wavelet coefficients of the ith subband; 3)
γi: the mean value of wavelet coefficients of the ith subband; 4)
δi: the standard deviation of the ith subband wavelet
coefficients (i=1,2,3,4). Accordingly, a new formula is
defined as Eq. 13.

ψj �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αj if 1≤ j≤ 4
βj if 5≤ j≤ 8
γj if 9≤ j≤ 12
δj if 13≤ j≤ 16

(13)

Therefore, after the wavelet transform with λ � 3, the peptide
P can be re-expressed under the ξth physicochemical property as
Eq. 14.

P′(ξ) � ψ(ξ)
1 ψ(ξ)

2 /ψ(ξ)
16 (ξ � 1, 2,/, 10) (14)

Finally, the discrete wavelet transform was combined with the
physicochemical properties of amino acids to obtain the final
protein sequence features as defined in Eq. 15.

P � [P′(1), P′(2), /, P′(10)] (15)
After performing the above steps, a protein sequence of length

21 was converted into a 160-dim (16 × 10) feature vector.
To extract more feature information from protein sequences,

We fused five feature extraction methods to obtain a total of 811-
dim feature vectors from each protein sequence.

2.3 Feature Selection Method
High dimensional feature sets usually contain noise and
redundant features that are unfavorable to the prediction
performance of the model. Before building the model, it is
necessary to select the optimal subset of features through
feature selection to reduce the dimensionality of the feature
space and further reduce the risk of overfitting. Meanwhile,
removing irrelevant features before training can achieve better
the generalization performance and prediction ability of the
model. In this paper, LASSO (least absolute shrinkage and
selection operator) was used for feature selection to form the
optimal feature subset of the independent variables to
improve the prediction performance of the model (Wang,
2010).

This method has been successfully applied to predict protein
ubiquitination sites (Xca et al., 2019), tumor classification (Kang
et al., 2018), and drug-target interactions prediction (Han et al.,
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2019). The basic idea of LASSO is to introduce L1 norm
regularization from minimizing residuals sum of squares. The
LASSO sparse representation coefficient w can be described as
shown in Eq. 16.

J(w) � min
w

∑k
i�1
(yi − wTxi)2 + λ

����w‖
1

(16)

where xi represents the feature of each protein sequence and yi

represents the label of each protein sequence. The regularization
parameter λ controls the degree of punishment of the sparse
coefficient estimation, w1 is a L1 norm. Eq. 16 is optimized using
the coordinate gradient descent method.

2.4 Prediction Model Construction
2.4.1 Base Classifiers and Meta Classifier
Since the selection of classifiers plays a crucial role in
constructing an effective prediction model for succinylation
sites, after testing, SVM, BLS and LightGBM were finally
selected as the base classifiers used in this study, and LR
was selected as the meta classifier used in the study, and
then the stacking ensemble classifier was constructed on the
basis of these four base classifiers.

SVM(Ju and Gu, 2016) is such an algorithm that strives to
minimize the structural risk, which shows many unique
advantages in solving small sample, nonlinear and high-
dimensional pattern recognition.

LightGBM(Meng, 2018) is also an ensemble decision tree
based model that uses gradient boosting techniques, it has
faster training speed, higher efficiency, lower memory
consumption and better accuracy (Zhou et al., 2020).

BLS (Chen and Liu, 2018) is a powerful algorithm for offering
an alternative way of learning in deep structure, which is designed
based on the idea of taking the mapping feature as the input of
RVFLNN. The most important part of BLS is mapping from
input value to characteristic value and it can update the modeling
system step by step without retaining from the scratch.

LR is often appiled to find the relationship between the
predictors and binary responses. The main idea of LR
classification is to establish a regression formula for the
classification boundary according to the existing data, and to
classify it.

2.4.2 Stacking Ensemble Classifier
Stacking ensemble algorithm is an ensemble machine
learning algorithm, which uses meta-learning algorithms to
learn how best to combine predictions from two or more
base-learning algorithms. The advantage of the stacking
ensemble algorithm is that it can take advantage of the
ability of a series of well-performing models to classify
tasks and make better predictions than any of the models
in the ensemble algorithm.

In general, the same predictive task will have different
prediction results in different classifiers, and ensemble
learning can use multiple classifiers to approximate the
optimal target function. In this study, for the differences of
different classifiers, stacking ensemble classifier was designed
using two-layer stacking ensemble, selecting three classifiers,
SVM, BLS and LightGBM classifier, as the base classifiers of the
first layer, taking into account the variability among the base
classifiers of the first layer, and also to reduce overfitting by
integrating the output values of the first layer using LR classifier
as the meta classifier of the second layer. Here, an optimization
has been performed, i.e., the output values of the first layer was
combined with the features extracted from the original dataset
for stitching as the input to the second layer as represented in
Figure 5. The stacking ensemble classifier can be represented by
Eq. 17.

P(y � ± 1|X) � 1

1 + e−ywTX
(X � [x1, x2, x3, xoriginal]) (17)

where X is a 305-dim vector spliced by the output values for
SVM, BLS, LightGBM classifier and the features vectors

FIGURE 4 | A schematic drawing to illustrate the procedure of multi-level DWT.
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extracted from the original dataset,w is the weight vector for the
305-dim vector.

2.5 Performance Evaluation
For any with P true positive samples and N true negative
samples, there are four results of binary classification in
the confusion matrix, namely true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).
Then we can obtain five performance statistics as defined in
Eq. 18.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sp � TN

TN + FP

Sn � TP

TP + FN

Acc � TP + TN

TP + TN + FP + FN

F1 − Score � 2 × TP

2 × TP + FP + FN

MCC � TP × TN − FP × FN��������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√
(18)

To intuitively evaluate the predictive performance of our
proposed succinylation predictor, we considered the use of five
metrics: Sensitivity (Sn), Specificity (Sp), Accuracy (Acc),
Mathews correlation coefficient (MCC), and F1-Score
(Sokolova and Lapalme, 2009), Sn measures the proportion
of positives correctly predicted, Sp measures the proportion of
negatives correctly predicted, Acc measures the
overall proportion of samples correctly predicted, and the
F1-Score is a weighted summed average of accuracy and
recall. MCC is considered to be one of the best measures
(Boughorbel et al., 2017), even when the positive and negative

distributions are very unbalanced. In general, -1 means that
the prediction is completely wrong, 0 means that the
categorical prediction is no better than the random
prediction, and +1 means that the complete prediction is
correct.

In addition, we used the ROC curve and the area under the
ROC curve (AUC) to calculate the prediction performance of
the predictor. To evaluate the performance of the proposed
predictor using the previously mentioned performance
metrics, the performance of the model was examined
using 10-fold cross-validation. The purpose of 10-fold
cross-validation is to verify the performance of the model,
that is, to avoid the chance of the experiment, and to use the
average of the results of 10 times to represent the overall
performance of the model. The original dataset was
randomly divided into 10 equal groups, and among the 10
groups, one group was selected as the testing set and the
remaining nine groups were used as the training set, and
then all performance metrics were calculated for each
predictor. This is repeated 10 times by varying the training
set and testing set from the 10 groups, and finally, the
average of each performance metric was calculated for each
predictor.

3 RESULTS AND DISCUSSION

3.1 Sequence Analysis of Protein Lysine
Succinylation Sites
To better analyze the differences between succinylation sites
and non-succinylation sites in the protein sequences, this
study used Two Sample Logo (Vacic et al., 2006) (http://
www.twosamplelogo.org/) to analyze the protein sequences
and investigated the frequency and position differences of 20

FIGURE 5 | The framework of stacking ensemble classifier.
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common amino acids near the succinylation sites and non-
succinylation sites, as shown in Figure 6.

n this study, the sequence fragment length is 21,
which included one central lysine, 10 upstream amino acids

and 10 downstream amino acids. As shown in Figure 6, lysine
(K), glycine (G), and alanine (A) appear more frequently around
the succinylation site, and serine (S) appears more frequently
around the non-succinylation site. Therefore, we concluded that

FIGURE 6 | A two-sample logo of succinylation sites against non-succinylation sites. This logo is prepared using the web server http://www.twosamplelogo.org/
and only residues significantly enriched and depleted surrounding succinylation sites (t test, p-value < 0.05) are shown.

TABLE 3 | Performance comparison of different feature extraction methods on the training set according to ten-fold cross-validation based on the stacking ensemble
classifier proposed in this study.

Methods Sn Sp Acc MCC

EBGW 0.5783 ± 0.0245 0.6533 ± 0.0267 0.6175 ± 0.0175 0.2324 ± 0.0350
One-Hot 0.7283 ± 0.0189 0.7354 ± 0.0184 0.7320 ± 0.0139 0.4635 ± 0.0278
CBOW 0.6817 ± 0.0435 0.7463 ± 0.0431 0.7155 ± 0.0164 0.4305 ± 0.0328
CGR 0.5621 ± 0.0334 0.6672 ± 0.0173 0.6170 ± 0.0109 0.2308 ± 0.0225
AAF_DWT 0.6160 ± 0.0377 0.6638 ± 0.0425 0.6409 ± 0.0132 0.2808 ± 0.0263
ALL 0.7491 ± 0.0158 0.7651 ± 0.0208 0.7574 ± 0.0150 0.5142 ± 0.0298

FIGURE 7 | Comparison of prediction results on different feature extraction methods.
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the frequencies and positions of amino acid residues around the
lysine succinylation site and the non-succinylation site are clearly
different.

3.2 Effectiveness Analysis of Feature
Extraction Methods
The information obtained by single feature extraction
methods is often not comprehensive enough and the
prediction results are not satisfactory. Multi-feature fusion

can utilize different types of features to improve the
prediction performance of the model. In this paper, the
protein sequences were encoded using EBGW, One-Hot,
CBOW, CGR and AAF_DWT to obtain 15-dim, 420-dim,
200-dim, 16-dim and 160-dim feature vectors, respectively.
These five types of feature vectors were fused to obtain the
fused feature set named ALL, the feature vectors extracted by
five single feature extraction methods and the fused feature
vectors vwere input into the model constructed based on the
stacking ensemble classifier proposed in this study and the
prediction results of different feature extraction methods for
Sn, Sp, Acc, and MCC are shown in Table 3.

In Table 3, it can be seen that different feature extraction
methods correspond to different prediction results. among the
five single feature extraction methods, Sn, Acc, and MCC of
One-Hot reach the highest values, 0.7283 ± 0.0189, 0.7320 ±
0.0139, and 0.4635 ± 0.0278, respectively. Sn, Acc, and MCC of
CGR are the lowest, 0.5621 ± 0.0334, 0.6170 ± 0.0109, and
0.2308 ± 0.0225, respectively. After fusing these five features, Sn,
Sp, Acc and MCC were 0.7491 ± 0.0158, 0.7651 ± 0.0208,
0.7574 ± 0.0150 and 0.5142 ± 0.0298, respectively. Compared
with the single feature, the Sn, Sp, Acc and MCC of the fused
feature method are increased by at least 2.1%, 1.9%, 2.5% and
5.1%, respectively. The results indicate that multiple feature
fusion can improve the prediction accuracy of various
indicators.

To better analyze the effects of different feature extraction
methods on the prediction of succinylation sites, Figure 7 shows
the histograms of Sn, Sp, Acc, and MCC for the six feature
extraction methods.

TABLE 4 | Effectiveness analysis of LASSO on the training set according to ten-fold cross-validation.

Methods Sn Sp Acc MCC

no-LASSO 0.7491 ± 0.0158 0.7651 ± 0.0208 0.7574 ± 0.0150 0.5142 ± 0.0298
LASSO 0.7606 ± 0.0290 0.7926 ± 0.0234 0.7773 ± 0.0120 0.5541 ± 0.0243

TABLE 5 | Performance comparison of different classification algorithms on the training set according to ten-fold cross-validation.

Algorithm Sn Sp Acc MCC

LR 0.7017 ± 0.0258 0.7392 ± 0.0120 0.7213 ± 0.0133 0.4414 ± 0.0271
SVM 0.7029 ± 0.0227 0.7331 ± 0.0112 0.7187 ± 0.0128 0.4362 ± 0.0260
LightGBM 0.6924 ± 0.0213 0.7248 ± 0.0163 0.7093 ± 0.0112 0.4175 ± 0.0226
BLS 0.7043 ± 0.0268 0.7405 ± 0.0119 0.7232 ± 0.0130 0.4452 ± 0.0265
Stacking 0.7606 ± 0.0290 0.7926 ± 0.0234 0.7773 ± 0.0120 0.5541 ± 0.0243

FIGURE 8 | Receiver operating characteristics (ROC) curves for the five
classifiers according to 10-fold cross-validation. The value of AUC represents
the area under the ROC curve.

TABLE 6 | Performance comparison of pSuc-FFSEA with other existing methods.

Classifier Sn Sp Acc MCC F1-score AUC

IFS-LightGBM 0.7223 − 0.7360 0.4708 0.7232 −

SuccSPred 0.7731 − 0.7498 0.5001 0.7563 0.8132
pSuc-FFSEA 0.7606 0.7926 0.7773 0.5541 0.7651 0.8501
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In Figure 7, we can see that the six feature extraction methods
have different effects on different evaluation indexes. Comparing
the six feature extraction methods, the Sn, Sp, Acc and MCC of
multi-feature fusion have the highest proportion, and it is shown
that multi-feature fusion can make the information more
comprehensive and improve the prediction ability of the
model. Therefore, we used the multi-feature fusion method to
extract protein sequence features for lysine succinylation sites
prediction.

3.3 Effectiveness Analysis of LASSO
Multi-feature fusion extracts protein sequences and
physicochemical information, but it generates redundant
and noisy information, which will affect the prediction
effect of the model, so feature selection is necessary to
retain the important features for classification and further
improve the computational efficiency of the model. In this
study, we applied the method of LASSO to select the effective
features from the 811-dim features of the fused feature dataset
and obtained a subset of 302-dim features, which were input
into the stacking ensemble classifier for classification. As
shown in Table 4, Sn, Sp, Acc, and MCC of the feature
subset obtained by the method of LASSO have been

improved by 1.1%, 2.75%, 2%, and 4%, respectively, and the
results illustrate that the feature subset obtained by LASSO
with dimensionality reduction can improve the classification
ability of stacking ensemble classifier.

3.4 Effectiveness Analysis of Classifiers
To evaluate the effectiveness of the stacking ensemble classifier to
predict succinylation sites, four commonly-used classifiers
including LR, SVM, LightGBM, and BLS were selected to
predict lysine succinylation sites in this paper. These classifiers
were compared with the stacking ensemble classifier proposed in
this study to show which classifier had better performance.

In statistical prediction, the following three cross-validation
methods were commonly used to derive predictor metrics values:
independent dataset test, subsampling (or K-fold cross-
validation) test, and Jackknife testing. And, of these three tests,
the Jackknife test is considered the least arbitrary, always
producing unique results for a given benchmark dataset, as
described in Ref.(Chou, 2011). and proven by the equation,
and ultimately, Jackknife has become widely accepted and
increasingly used by researchers to test the performance of
predictors. However, in order to reduce the computation time
and to evaluate the prediction performance more fairly, like most

FIGURE 9 | The screenshot to show the homepage of the pSuc-FFSEA web-server at https://bio.cangmang.xyz/pSuc-FFSEA.
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researchers, we used 10-fold cross-validation to test the
effectiveness of the method in this paper.

In order to make these classifiers have better prediction
performance, we optimized the hyperparameters of these
classifiers respectively. The hyperparameters of LR, SVM and
LightGBM classifier were optimized using Bayesian optimization
algorithm, while the hyperparameters of BLS were optimized
using grid search algorithm. We found that the hyperparameters
of LR is the best by default. The adjusted hyperparameters of
SVM are as follows: kernel=’linear’, C=1, and gamma=1. The
adjusted hyperparameters of LightGBM are as follows:
learning_rate=0.27, max_depth=40, num_leaves=51, and
n_estimators=587. The adjusted hyperparameters of BLS are as
follows: s=0.9, c=2**(-30), N1=3, N2=100, and N3=100.

The results of the 10-fold cross-validation are summarized in
Table 5 and Figure 8, where the stacking ensemble classifier
predicts the best results in Table 5.

Graphs are powerful tools for studying complex biological
systems because they provide visual insight, and as demonstrated
in a series of previous studies, receiver operating characteristic
(ROC) graphs are used to show improvements in predictors in
order to provide a visual comparison. the area under the ROC
curve is called the AUC (area under the curve), and the larger the
AUC value, the better the predictor. As shown in Figure 8.

Figure 8 shows that the stacking ensemble classifier has a
higher accuracy ROC curve in the ten-fold cross-validation, and
the area under the curve is 0.7936, 0.7907, 0.7820, 0.7939, 0.8501
for LR, SVM, LightGBM, BLS, and stacking ensemble classifier,
respectively. The results show that the stacking ensemble classifier
performs the best compared to the other four classifiers.

3.5 Comparison With the Existing Method
To prove the effectiveness of our predictor named pSuc-
FFSEA, We performed a 10-fold cross-validation using the
same training set to objectively compare pSuc-FFSEA with the
existing methods, which are IFS-LightGBM(Zhang et al., 2020)
and SuccSPred (Ge et al., 2021). IFS-LightGBM was
constructed based on LightGBM classifier and the
combination of the LightGBM feature selection method and
the incremental feature selection method. SuccSPred was
proposed to predict succinylation sites by fusing feature
representation and ranking method. In order to improve
the prediction effect, our predictor fused a variety of
features and constructed the stacking ensemble classifier to
predict succinylation sites.The performance comparison of the
methods was shown in Table 6, it was found that pSuc-FFSEA
has been significantly better than IFS-LightGBM in all metrics,
Sn, Acc, MCC and F1-Score have been improved by 3.8%,
4.1%, 8.4% and 4.2%, respectively. For SuccSPred, Sn is 1.3%
lower, meanwhile, ACC, MCC, F1-Score and AUC are 2.8%,
5.4%, 0.9% and 3.7% higher, respectively, and the results
indicate that the proposed new predictor has better
sensitivity, specificity, accuracy, F1-Score, and Mathews
correlation coefficient.

Therefore, we expect that pSuc-FFSEA may become a useful
high-throughput tool in this important field, or at least
complement existing methods.

3.6 Web Server and User Guide
In order to further enhance the practical application value of
pSuc-FFSEA, based on all the above studies on lysine
succinylation, an open online web server for pSuc-FFSEA
has been established at https://bio.cangmang.xyz/pSuc-
FFSEA. In addition, in order to maximize the convenience
of most researchers, a guide to use is provided below:

Step 1: Use your browser to visit the website and you will see
the homepage of pSuc-FFSEA as shown in Figure 9.
Click on the “Help” or “More info..." button to see a
brief introduction about the predictor.

Step 2: Enter or copy/paste a single protein sequence into the
input box in the center of Figure 9. The input sequence
should be in FASTA format. For an example of a
sequence in FASTA format, click on the example
button above the input box.

Step 3: After entering the protein sequence, click the “Submit”
button to jump to the result page, where the lysine
residues predicted to be succinylation sites are marked
in red.

Step 4: The web server also provides a bulk protein prediction
feature, which allows users to upload files via “Browse”
button to upload a file and the file must be in FASTA
format. And enter the project name and the email
address to receive the prediction results, and finally
click the “Submit” button, and the web server will send
the prediction results to the user’s email address.

4 CONCLUSION

In this study, we constructed a novel and more effective
predictor named pSuc-FFSEA based on feature fusion and
stacking ensemble algorithm. Five feature extraction methods
were fused, and these methods extracted sequence information
and physical and chemical information features of peptide
fragments based on EBGW, One-Hot, CBOW, CGR, and
AAF_DWT, and then found the optimal feature
representation using LASSO feature selection technique.
Finally, the optimal model was built using the stacking
ensemble classifier. This is also the first time to use BLS as
a base classifier of stacking ensemble classifier to predict
succinylation sites, pSuc-FFSEA can achieve relatively stable
and high performance using the stacking ensemble classifier
compared to existing predictors in this field.

For the convenience of most researchers, this study provided a
web server and usage guide for pSuc-FFSEA, throughwhich users can
easily obtain the expected data and results without detailedly going
through the complicatedmathematics. The reason for including them
in this paper is to make the new prediction method more sharable
and testable, which will be beneficial to develop even more powerful
methods for further predicting other PTM sites.

We anticipate that pSuc-FFSEA will be a very useful high-
throughput tool, or at least a complementary tool to existing
methods for predicting protein succinylation sites. In the future,
the flexible application of feature extration methods and the

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 89487413

Jia et al. Predicting Lysine Succinylation Sites

https://bio.cangmang.xyz/pSuc-FFSEA
https://bio.cangmang.xyz/pSuc-FFSEA
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


optimization of classifiers will be the next step to explore in order
to ease the difficulty of acquiring high-quality data. In this study,
we also find the advantage of BLS, which may be even better than
deep learning and traditional maching learning in various
prediction problems. In the next work, we are going to apply
deep learning to extract features and then use multiple BLS to
build stacking ensemble classifier for the prediction of
succinylation sites, which we believe will have more
unexpected gains in the next experiments. With the
development of proteomics research technology, the new
methods will help to reveal the regulatory mechanism of lysine
succinylation in normal physiological processes as well as
pathological mechanisms, while succinylation has the potential
to become the target of new drug action and provide new ideas for
both biomedical research and drug development.
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