AUTHOR=Wang Zi-Yue , Li Ang , Huang Xin , Bai Gen-Long , Jiang Yu-Xin , Li Ruo-Lin , Liu Chuan , Wen Zhu-Yuan , Wang Ping , Chen Ai-Jun TITLE=HSP27 Protects Skin From Ultraviolet B -Induced Photodamage by Regulating Autophagy and Reactive Oxygen Species Production JOURNAL=Frontiers in Cell and Developmental Biology VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2022.852244 DOI=10.3389/fcell.2022.852244 ISSN=2296-634X ABSTRACT=
Ultraviolet (UV) irradiation has been well documented to be linked with almost all skin problems we know, and both dermis and epidermis may be affected to varying degrees by UV irradiation. Every time when exposed to sunlight without protection, our skin will step closer to photoaging, leading to irreversible consequences ultimately. Heat shock protein 27 (HSP27) is a vital protein involved in cell growth, autophagy, apoptosis, drug resistance, tumor genesis and metastasis. Evidence suggests that the organism is subjected to various internal and external environmental stresses (heat, oxidative stress, organic toxicants, etc.), and HSP27 with high expression has protective function. However, the expression of HSP27 in coping with UV irradiation have not been examined thoroughly. In this study, photodamage models were developed through different doses of UVB irradiation in human epidermal keratinocytes (HEKs) (30 mJ/cm2), human dermal fibroblasts (HDFs) (150 mJ/cm2) and mouse skin (2,700 mJ/cm2). HSP27 knockdown decreased cell viability and increased the incidence of UVB-induced reactive oxygen species (ROS) production. We got consistent results