
Crosstalk Between Four Types of RNA
Modification Writers Characterizes
the Tumor Immune Microenvironment
Infiltration Patterns in Skin Cutaneous
Melanoma
Shichao Zhang1†, Yu Xiong1†, Chaochao Zheng2, Jinhua Long2, Houming Zhou1, Zhu Zeng1*,
Yan Ouyang2* and Fuzhou Tang2*

1Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou
Medical University, Guiyang, China, 2Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of
Biology and Engineering, Guizhou Medical University, Guiyang, China

The “writers” of four types of adenosine (A)-related RNA modifications (N6-
methyladenosine, N1-methyladenosine, alternative polyadenylation, as well as A-to-
inosine RNA editing) are closely related to the tumorigenesis and progression of many
cancer types, including skin cutaneous melanoma (SKCM). However, the potential roles of
the crosstalk between these RNA modification “writers” in the tumor microenvironment
(TME) remain unclear. The RNA modification patterns were identified using an
unsupervised clustering method. Subsequently, based on differentially expressed
genes responsible for the aforementioned RNA modification patterns, an RNA
modification “writer” scoring model (W_Score) was constructed to quantify the RNA
modification-associated subtypes in individual patients. Moreover, a correlation analysis
for W_Score and the TME characteristics, clinical features, molecular subtypes, drug
sensitivities, immune responses, and prognosis was performed. We identified three RNA
modification patterns, corresponding to distinct tumor immune microenvironment
characteristics and survival outcomes. Based on the W_Score score, which was
extracted from the RNA modification-related signature genes, patients with SKCM
were divided into high- and low-W_Score groups. The low-W_Score group was
characterized by better survival outcomes and strengthened immunocyte infiltration.
Further analysis showed that the low-W_Score group was positively associated with
higher tumor mutation burden and PD-L1 expression. Of note, two immunotherapy
cohorts demonstrated that patients with low W_Score exhibited long-term clinical
benefits and an enhanced immune response. This study is the first to systematically
analyze four types of A-related RNA modifications in SKCM, revealing that these “writers”
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essentially contribute to TME complexity and diversity. We quantitatively evaluated the
RNAmodification patterns in individual tumors, which could aid in developing personalized
immunotherapy strategies for patients.

Keywords: RNA modification “writer”, skin cutaneous melanoma, tumor microenvironment, W_Score,
immunotherapy

INTRODUCTION

Worldwide, there were 324,635 and 57,043 estimated new skin
cutaneous melanoma (SKCM) cases and deaths, respectively, in
2020 (Sung et al., 2021). SKCM accounts for approximately 4% of
all cases of skin cancer and is the most fatal subtype of skin cancer
(Lin et al., 2021). Previous studies have demonstrated that the
occurrence and development of SKCM are related to the
accumulation of mutations in gene-modulating signaling
pathways, including the Rb, p53, PI3K/AKT, and RAS/MAPK
pathways (Dietrich et al., 2018; Chamcheu et al., 2019). Although
the onset of SKCM may be partially attributed to somatic
mutations, epigenetic changes in cancer-related genes are also
associated with its etiology (de Unamuno Bustos et al., 2018).
Epigenetic alterations mainly affect the functions and
characteristics of genes by regulating gene transcription or
translation (Bauer et al., 2016; Gu H. et al., 2020; Blanco et al.,
2021). Furthermore, increasing evidence has revealed that RNA
modification is mechanism that is indispensable for epigenetic
regulation, which is involved in tumorigenesis and development
of multiple cancers, including SKCM (Gu et al., 2015; Shen et al.,
2019).

Over 170 types of RNA modifications have been identified
(Wang et al., 2013; Barbieri and Kouzarides, 2020; Chen et al.,
2021). Some of these modifications may interact to play key roles
in many important biological processes, but synthetically
analyzing all types of RNA modifications is difficult.
Adenosine (A) is the most commonly modified nucleotide in
RNA, with modifications that include N1-methyladenosine
(m1A), N6-methyladenosine (m6A), and A-to-inosine (I)
(Chen et al., 2021). Particularly, the m6A methylase negatively
modulates the A-to-I RNA editing (Xiang et al., 2018). Thus, in
this work, we focused on A-associated RNA modifications [m1A,
m6A, A-to-I, and alternative polyadenylation (APA)] to explore
the interaction by the “writers” that produced these
modifications.

m6A is the most common RNA modification. Till date, this
modification has been found in mRNAs, lncRNAs, miRNAs,
circRNAs, rRNAs, tRNAs, and snRNAs (Zhao et al., 2017; Gu L.
et al., 2020). Methyltransferases catalyze m6A methylation, and
these “writers” include METTL14, METTL3, RBM15, RBM15B,
VIRMA, WTAP, and ZC3H13 (Cao et al., 2016). In particular,
m6A regulators with abnormal expression and genetic changes
are involved in the pathogenesis and development of tumors, as
well as in immune dysregulation (Li et al., 2017; Xiang et al., 2017;
Zhang et al., 2017; Li et al., 2019; Gu C. et al., 2020). m1A is a
methylation modification at the first nitrogen atom of the A base
of the RNA molecule, which exists in tRNA, rRNA, and mRNA
(Agris, 1996; Safra et al., 2017). The “writers” of the m1A

modification include TRMT6, TRMT10C, TRMT61A, and
TRMT61B (Dominissini et al., 2016; Wang Y. et al., 2019).
Similar to the m6A modification, A-to-I RNA editing is also a
prevailing RNA modification in the A base of mRNA (Di
Giammartino et al., 2011; Abudayyeh et al., 2019). A-to-I
RNA editing is mainly mediated by members of the A
deaminase in the RNA (ADAR) family, including ADARB1,
ADARB2, and ADAR, which bind to double-stranded RNA
regions of protein-coding genes and non-coding sequences for
the deamination of A to I (Huang et al., 2012; Han et al., 2014).
APA is an important precursor-RNA processing mechanism
widely present in all eukaryotes, which can regulate the length
of the 3′-untranslated region (3′UTR) by cleaving mRNA at
different sites, followed by the addition of poly(A) tails to the
RNA 3′UTR (Elkon et al., 2013; Masamha et al., 2014). Several
APA-related “writers” have been found to modulate the synthesis
of poly (A) tails and the selection of variable poly (A) sites,
including CFI, CLP1, CPSF1, CPSF2, CPSF3, CPSF4, CSTF1,
CSTF2, CSTF3, NUDT21, PABPN1, and PCF11 (Batra et al.,
2015).

The crosstalk among m1A, m6A, A-to-I, and APA can help
reveal the mechanism underlying RNA modifications and the
significance of post-transcriptional modifications. In SKCM, a
complex regulatory network may be formed by the “writers” of
the m1A, m6A, A-to-I, and APA modifications. Therefore,
systematic analysis of the interaction between these “writers”
could provide novel insights into the pathogenesis of SKCM and
has potential clinical significance for tumor therapeutic target
identification.

Current immunotherapies based on immune-checkpoint
inhibitors (ICIs) have achieved astounding clinical efficacy in
some patients. Unfortunately, immunotherapy is not effective in
approximately 40–50% of patients with SKCM (Albittar et al.,
2020). Tumor cells in the tumor microenvironment (TME)
interact directly and indirectly with other components to
induce hypoxia, chronic inflammation, and
immunosuppression. Indeed, the abundance of tumor-
infiltrating immune cells has been found to be associated with
the prognosis of patients with SKCM (Ladányi et al., 2004). A
high proportion of infiltrating CD8+ T cells appears to be a more
effective immunotherapeutic response (Daud et al., 2016). Base
on the characteristics of TME, tumors can be classified into
immune-desert, immune-excluded, and immune-inflamed
phenotypes, which present differences in the number of
infiltrating immune cells and the immunotherapy response
(Chen and Mellman, 2017; Zhang et al., 2020).

Recent studies have showed that the RNA modification
“writers” are closely related to TME immune cell infiltration.
Gao et al. revealed that m1A regulators, including “writers”,
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modulated the infiltration of immune cells in TME (Gao et al.,
2021). Wang et al. found that m6A modification mediated by the
RNA methyltransferase METTL3 promoted the functional
activation of dendritic cells (DCs). Silencing METTL3
significantly downregulated the m6A modification levels,
leading to a decreased antigen presentation ability of mature
DCs (WangH. et al., 2019). These studies were limited to one type
of RNA modification, but multiple types of “writers” exert
antitumor effects in a highly coordinated manner in cancer.
Thus, systematic identification of the correlation between
regulatory networks composed of multiple types of “writers”
and the TME will be helpful in predicting immunotherapy
responses and developing new immunotherapy strategies.

In this study, we comprehensively analyzed the relationship
between four types of A-related RNA modification patterns and
the characteristics of infiltrating immune cells by integrating
transcriptomic data from 1526 SKCM samples from the
Genotype-Tissue Expression (GTEx), Gene Expression
Omnibus (GEO), and The Cancer Genome Atlas (TCGA)
databases. Three distinct RNA modification patterns were
identified, and the characteristics of the TME in these three
patterns corresponded to immune-desert phenotype, immune-
excluded phenotype, and immune-inflamed phenotype,
respectively. We further constructed an RNA modification
“writers” scoring model to quantify RNA modifications
patterns in individual patients and to evaluate the patient
response to targeted therapy and immunotherapy.

METHODS

Data Acquisition of Skin Cutaneous
Melanoma Samples
The workflow of this study is presented in Supplementary Figure
S1A. Large-scale transcriptome data (including normal and
tumor samples) was downloaded from the TCGA (https://
tcga-data.nci.nih.gov/tcga/), GTEx (https://gtexportal.org/), and
GEO (http://www.ncbi.nlm.nih.gov/geo) databases. Clinical
information (including tumor stage, gender, age, and overall
survival times) and somatic mutation and copy number
variation (CNV) data from corresponding patients were
retrieved from the University of California Santa Cruz genome
browser (http://genome.ucsc.edu/). Patients with overall survival
times <90 days and without survival information were excluded.
Two GEO-SKCM cohorts (GSE78220 and GSE65904), one
TCGA-SKCM cohort, and one GTEx-SK cohort were obtained
for further analysis. The “limma with normalizeBetweenArrays”
package was used to correct for batch effects of non-
biotechnology deviation, and the basic information of these
datasets is shown in Supplementary Table S1.

Unsupervised Clustering and Differential
Expression Analysis of 26 “Writers”
Twenty-six RNA modification “writers” were obtained from the
TCGA-SKCM cohort for identifying distinct RNA modification
patterns. These 26 RNA modification “writers” included seven

m6A regulators (METTL14, METTL3, RBM15, RBM15B,
VIRMA, WTAP, and ZC3H13), four m1A regulators (TRMT6,
TRMT10C, TRMT61A, and TRMT61B), three A-I regulators
(ADARB1, ADARB2, and ADAR), and 12 APA regulators (CFI,
CLP1, CPSF1, CPSF2, CPSF3, CPSF4, CSTF1, CSTF2, CSTF3,
NUDT21, PABPN1, and PCF11). Based on the expression of 26
RNA modification “writers”, the tumor samples were classified
(defined as “writer cluster”) via the unsupervised clustering
analysis (Wilkerson and Hayes, 2010). For guaranteeing
clustering stability, 1,000 iterations were performed with
Spearman distance and pltem = 0.8 using the PAM
algorithm (“ConsensuClusterPlus” package). The Wilcoxon
signed-rank test was employed to analyze the differential
expression of the 26 RNA modification “writers” between
normal and tumor samples, and the expression correlation
between these regulators was identified using Pearson’s
correlation analysis.

Gene Set Variation Analysis and Functional
Annotation
To examine the variations in RNA modification patterns in
biological processes, gene set variation analysis (GSVA
enrichment analysis; using the “GSVA” R package) was
conducted (Hänzelmann et al., 2013). Gene sets with
“c2.cp.kegg.v7.4.-symbols-gmt” and “c5.go.bp.v7.4.symbols.gmt”
were retrieved from the Molecular Signatures Database followed
by GSVA analysis with an adjusted p < 0.05. The functional
annotation for 26 RNA modification “writers” was performed
using the “clusterProfiler” R package (Yu et al., 2012).

Evaluation of Tumor-Infiltrating Immune
Cells in the Tumor Microenvironment
Single-sample gene set enrichment analysis (ssGSEA) was
employed to evaluate the relative proportion of each
infiltrating immune cell type in the SKCM TME (Barbie et al.,
2009; Charoentong et al., 2017), including adaptive immune cells
(activated B cells, activated CD4+ T cells, activated CD8+ T cells,
gamma delta T cells, immature B cells, regulatory T cells, T
follicular helper cells, type 1 T helper cells, type 17 T helper cells,
and type 2 T helper cells) and innate immune cells (activated
DCs, CD56bright natural killer cells, CD56dim natural killer cells,
eosinophils, immature DCs, macrophages, mast cells, MDSCs,
monocytes, natural killer cells, natural killer T cells, neutrophils,
and plasmacytoid DCs) (Supplementary Table S2). The
enrichment scores were also calculated via ssGSEA.

Association Between Clusters and Other
Biological Processes
Correlation analysis between categories and some associated
biological processes was conducted. According to previous
reports, gene sets including several gene-related biological
processes were constructed, and these biological pathways
included antigen processing and presentation, DNA damage
repair, pan-fibroblast TGF-β response signature (pan-F-TBRS),
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angiogenesis, DNA replication, nucleotide excision repair,
mismatch repair, WNT targets, cell cycle, CD8+ T effectors,
antigen processing machinery, and immune-checkpoint genes
(Şenbabaoğlu et al., 2016; Mariathasan et al., 2018).

Identification of Differentially Expressed
Genes Between Different RNA Modification
Phenotypes
To identify differentially expressed genes (DEGs) among the
different RNA modification phenotypes (three distinct RNA
modification patterns were identified based on the
aforementioned unsupervised clustering analysis), an empirical
Bayesian approach in the “limma” R package with an adjusted p <
0.05 was adopted (Ritchie et al., 2015). Furthermore, for
functional annotation, we used the “clusterProfiler” R package
to analyze DEGs with p < 0.05.

Constructing Gene Clusters
A univariate Cox regression analysis was performed to obtain
prognosis-related DEGs, and unsupervised clustering analysis
was then employed to classify these genes. In the PAM
algorithm (using the “ConsensuClusterPlus” package)
(Wilkerson and Hayes, 2010), 1,000 iterations were performed
with Pearson distance and pltem = 0.8 to ensure the stability of
the clusters.

Establishment of the W_Score Scoring
System
Principal component analysis was used to construct the W_Score
scoring model. First, we established a matrix consisting of
expression levels of the prognosis-related DEGs of each
patient. Then, principal components 1 and 2 were both
selected act as signature scores. Finally, we calculated the
W_Score for each cancer patient (similar to GGI) (Sotiriou
et al., 2006):

W–Score � ∑PC1i + PC2i

where i denotes the expression of prognosis-related
DEGs. Finally, according to the cutoff value (−0.646)
determined using the “survminer” package, the patients with
SKCM were divided into two categories (high W_Score and low
W_Score).

Association Between W_Score and
Immune-Related Signal Pathways
Correlation analysis between the W_Score and potential
biological processes was conducted based on gene sets,
including antigen processing and presentation, DNA damage
repair, pan-F-TBRS, angiogenesis, DNA replication, nucleotide
excision repair, mismatch repair, WNT targets, cell cycle, CD8+ T
effectors, antigen processing machinery, immune-checkpoint,
apoptosis regulation, ABL signaling, cytoskeleton, mitosis,
ERK/MAPK signaling, RTK signaling, PI3K/MTOR_signaling,

p53 pathway, protein stability and degradation, IGF1R signaling,
genome integrity, JNK and p38 signaling, chromatin histone
acetylation, EGFR signaling, metabolism, and WNT signaling
pathways (Supplementary Table S6) (Iorio et al., 2016;
Şenbabaoğlu et al., 2016; Mariathasan et al., 2018).

Evaluation of W_Score Correlations With
Clinical Features and Drug Sensitivity
We evaluated the relationship between the clinicopathological
characteristics, such as the Clark levels (I, II, III, IV, and V
grades), transcriptomic classifications (immune, keratin, and
MITF-low), and mutations subtypes (BRAF, RAS, and NF1)
(Network, 2015), and the W_Score using the Wilcoxon
signed-rank test. In addition, the data on drug response and
targets/pathways were obtained from the Genomics of Drug
Sensitivity in Cancer (GDSC) (http://www.cancerrxgene.org/
downloads) (Supplementary Table S7) (Yang et al., 2013),
and the Spearman’s correlation analysis was used to analyze
the correlation between the W_Score and drug sensitivity. The
“pRRophetic” package was used with an |Rs| > 0.2.

Analysis of W_Score and
Immune-Checkpoint Genes
Gene expression profiles of the immune-checkpoint in patients
with SKCM were retrieved from The Cancer Immunome
Database (TCIA) (http://tcia.at/home) (Charoentong et al.,
2017), including CTAL-4 positive and PD-1 negative (ips_
ctla4_pos_pd1_neg), CTAL-4 positive and PD-1 positive (ips_
ctla4_pos_pd1_pos), and CTAL-4 negative and PD-1 positive
(ips_ctla4_neg_pd1_pos). Two tumor immunotherapeutic
cohorts, including advanced urothelial cancer (treatment with
atezolizumab, an anti-PD-L1 antibody) (Mariathasan et al.,
2018), and metastatic melanoma (treatment with
pembrolizumab, an anti-PD-1 antibody) (Hugo et al., 2016),
were downloaded from http://research-pub.gene.com/
IMvigor210CoreBiologies and GEO (GSE78220), respectively.

Statistical Analysis
The differential expression analysis of 26 RNA modification
“writers” between normal and tumor samples was conducted
using the Wilcoxon signed-rank test. The correlation coefficients
of the expression of 26 RNA modification “writers” were
investigated using Pearson’s correlation analysis, while the
correlation coefficients between tumor-infiltrating immune
cells and 26 RNA modification “writers” were evaluated using
the Wilcoxon signed-rank test. The hazard ratios (HRs) of RNA
modification “writers” and DEGs were separately calculated via
univariate Cox regression model. We used the Kaplan-Meier
method with log-rank tests to obtain survival curves, and the
reliability of the models was analyzed by the receiver operating
characteristic (ROC) curve. A genome-wide CNV map with the
26 RNA modification “writers” was drawn using the R package
“RCircos” (Mayakonda et al., 2018). All statistical analyses were
two-sided, and p < 0.05 was considered statistically significant.
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RESULTS
Genetic Variation of Four Types of
A-Associated RNAModification “Writers” in
SKCM
In this study, 26 A-associated RNA modification “writers”,
including seven m6A modifications “writers”, four m1A
modifications “writers”, three A-I modifications “writers”, and
twelve APA modifications “writers”, were finally identified. We
first evaluated the incidence of somatic mutations of the 26 RNA
modification regulators in SKCM. Among the 467 samples, a
mutation in at least one “writer” was observed in 130 patients
(mutation frequency, 27.84%) (Figure 1A). Among the
26 “writers,” CFI exhibited the highest mutation frequency
(6%), followed by VIRMA (5%) and ADARB2 (4%), whereas

no mutations were found in TRMT61A and CPSF4 (Figure 1A).
Notably, a significant co-occurrence between ZC3H13 and
TRMT10C, ZC3H13 and CSTF1, ZC3H13 and ADAR,
ADARB2 and RBM15, and VIRMA and PCF11 was observed
(Supplementary Figure S2A). Furthermore, the patients were
divided into two groups (the “writers” mutation group and
the non-mutation group), and enrichment analysis via GSVA
revealed that tumor hallmarks associated gene sets, including
the KRAS signaling pathway, DNA repair pathway, and the
PI3K/AKT/MTOR signaling pathway, were mainly enriched
in “writers” mutation group (Supplementary Figure S2C). It
has been demonstrated previously that the PI3K/AKT/
MTOR signaling pathway is actively involved in the
regulation of cancer cell proliferation, metastasis, survival,
as well as the angiogenesis (Chamcheu et al., 2019). These

FIGURE 1 | The Genomic alterations and aberrant expression of RNA modification “writers” in SKCM. (A) The frequency of mutation of 26 RNA modification
“writers” in 467 samples from the TCGA-SKCM cohort. (B) The location of copy number variation (CNV) of 26 RNA modification “writers” on 23 chromosomes. (C) The
CNV frequency of 26 RNA modification “writers” in TCGA-SKCM cohort. (D) Principal component analysis based on the expression of 26 RNA modification “writers” to
distinguish tumors (red dots) from normal tissues (blue dots) in the TCGA-SKCM and GTEx-SK cohorts. (E) The expression differences of 26 RNA modification
“writers” between normal and tumor tissues. Tumor, red; Normal, blue. (*p < 0.05; **p < 0.01; ***p < 0.001).
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findings suggested that mutations in A-associated RNA
modification “writers” may cause functional changes
thereby affecting SKCM progression.

We also investigated the CNVs of these “writers” and
found that somatic copy number alterations were
widespread in the 26 RNA modification regulator
(Figure 1C). CPSF1 exhibited the highest frequency of CNV
gains, followed by ADAR and CLP1, whereas CNV loss was
observed in WTAP. Figure 1B showed the 26 RNA
modification “writers” loci on a schematic of the genome.
Interestingly, based on the expression levels of the
26 “writers”, the normal and tumor samples could be
completely distinguished by principal component analysis
(Figure 1D). We further discovered that the 26 RNA
modification regulators have heterogeneous expression
between normal and tumor tissues (Figure 1E), and the
“writers” with amplified CNVs presented markedly higher
expression in SKCM tissues, suggesting that CNV is one of
the main factors that regulate “writers” expression
(Supplementary Figure S3). The above analysis indicates
that these RNA modification regulators with genomic

alterations and expression imbalance play a potential role in
the onset and development of SKCM.

Correlation Between RNA Modification
“Writers” and TME Characteristics
The comprehensive landscape of the interactions of 26 RNA
modification “writers” and their prognostic values in patients
with SKCM was described in the regulator network (Figure 2A
and Supplementary Figure S2B and Supplementary Table S3).
We found that the expression of RNA regulators among the
different types of RNA modification showed significant
correlations. Therefore, crosstalk among these writers may
play critical roles in the formation of distinct RNA
modification patterns.

Based on the expression of the RNA modification “writers’’,
unsupervised clustering analysis was then employed to stratify
SKCM tumors with qualitatively different RNA modification
patterns (Supplementary Figure S6A-D). A total of 3 clusters
with distinct modification patterns were obtained, including 212
patients in cluster 1 (writer cluster A), 127 patients in cluster 2

FIGURE 2 | RNA modification patterns and corresponding biological characteristics of each pattern. (A) The correlations between 26 RNA modification “writers”
expression in SKCM. The circle size represented the prognostic value of each regulator. (B) Survival analyses for the three RNA modification patterns based on 443
patients with SKCM from TCGA-SKCM cohort (Log-rank test; p = 0.007). (C–F) Comparison of GSVA and GO enrichment analysis (biological pathways) in distinct RNA
modification patterns. (C,E), GSVA enrichment analysis; (D,F), GO enrichment analysis; (C,D), writer cluster A vs. writer cluster B; (E,F), writer cluster B vs. writer
cluster C.
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(writer cluster B), and 103 patients in cluster 3 (writer cluster C).
Next, based on the prognostic analysis for these clusters, patients in
cluster_writer B were found to have a prominent survival
advantage, whereas a poor prognosis was revealed for patients
in writer cluster C (Figure 2B; log-rank test, p = 0.007). To further
explore the biological significance underlying these distinct RNA
modification patterns, GSVA enrichment analysis was conducted.
The writer cluster A was significantly related to carcinogenic
activation pathways (e.g., the TGF-β signaling pathway, the
JAK-STAT signaling pathway, and the regulation of autophagy)
(Figure 2C). The writer cluster B was mainly enriched in immune-

associated signaling pathways (e.g., allograft rejection, chemokine
signaling pathways, toll-like receptor signaling pathway,
cytokine–cytokine receptor interactions, and T cell receptor
signaling pathways) (Figure 2E), while writer cluster C was
enriched in signaling pathways associated with metabolic
reprogramming (e.g., tyrosine metabolism, glycine serine and
threonine metabolism, and phenylalanine metabolism) (Figures
2C,E). These results were supported by gene ontology (GO;
biological process) enrichment analysis (Figures 2D,F).

Because patients with writer cluster B presented a remarkable
survival advantage and showed enrichment of immune-related

FIGURE 3 | TME and transcriptome characteristics in distinct RNA modification patterns. (A) Evaluating the abundance of each tumor-infiltrating immune cell in
three writer clusters using ssGSEA. (*p < 0.05; **p < 0.01; ***p < 0.001). (B) Differences in immune-associated pathways among three writer clusters (ANOVA analysis;
*p < 0.05; **p < 0.01; ***p < 0.001). (C) Principal component analysis for the transcriptome profiles of patients in different writer clusters. (D) The association between
RNA modification patterns (based on writer clusters) and clinical parameters, including age, gender, clinical stage, T-stage, N-stage, M-stage and survival status.
(E) Functional annotation for differentially expressed genes (DEGs) (GO enrichment analysis, biological progress; BP).
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pathways, we attempted to examine the functional roles of distinct
RNAmodification patterns in TME. The results showed that in the
TCGA cohort (Supplementary Table S4), the writer cluster B
exhibited increased fractions of tumor-infiltrating immune cells
(e.g., mast cells, macrophages, MDSCs, plasmacytoid DCs,
activated DCs, immature DCs, and natural killer cells)
(Figure 3A), as well as a higher enrichment score for immune-
related pathways (e.g., antigen processing and presentation)
(Figure 3B), which was similar to the findings obtained for the
GEO cohort (GSE65904; Supplementary Figure S4). Thus, writer
cluster B could be characterized as an immune “hot” and activation
phenotype, while writer cluster C was an immune “cold” and desert
phenotype (Figures 3A,B). Previous studies have demonstrated
that the prognosis for patients with SKCM is positively related to
tumor-infiltrating immune cells, such as MDSCs, DCs, and natural
killer cells, whereas it is negatively correlated with the infiltration of
neutrophils and monocytes (Schmidt et al., 2007; Chevolet et al.,
2015; Cursons et al., 2019), which is consistent with our results.

Next, Spearman’s correlation analysis was conducted to
investigate the specific associations between infiltrating immune
cells and RNAmodification “writers” (Supplementary Table S5A).
We observed that WTAP (an m6A modification “writer”)
demonstrated a positive correlation with a large number of TME
infiltrating immune cells in SKCM. In particular, patients with
elevated expression of WTAP presented remarkable more
enrichment of TME DCs infiltration, including plasmacytoid
DCs, activated DCs and immature DCs (Supplementary Figure
S5B-C). Recently, Cao et al. proposed that RNA modulation
“writers” can promote DC activation. DCs acting as antigen-
presenting cells are a bridge between innate and adaptive
immunities, and the activation of DCs relies on the high
expression of adhesion factors, costimulatory factors, and MHC
molecules (Qian and Cao, 2018). As expected, patients with a high
expression of WTAP had an overall increase in the expression of
adhesion factors, costimulatory factors, and MHC molecules
(Supplementary Figure S5D). We also noted that the
enhancement of immune-related pathways is accompanied by
elevated expression of immune-checkpoint PD-1/L1 (CD279/
CD274) in tumors with high expression of WTAP
(Supplementary Figure S5D-E). Therefore, we evaluated the
therapeutic effects of immune-checkpoint blocking antibodies
between high and low WTAP expression patients. In anti-PD-1
immunotherapy cohort (GSE78220; Patients with metastatic
melanoma treated with anti-PD-1 antibody immunotherapy),
patients with a high expression of WTAP exhibited a survival
benefit trend (Supplementary Figure S5F). Interestingly, WTAP
was also associated with prolonged survival in GEO cohort
(GSE65904; Supplementary Figure S5G). Taken together,
WTAP may regulate the activation of DCs in the TME via RNA
modification, participating in the antitumor immune response.

RNA Modification “Writer”
Phenotype-Related DEGs
Despite patients with SKCM could be divided into three RNA
modification phenotypes based on the expression of the RNA
modification “writers” (Figures 3C,D and Supplementary

Figure S6E), the genomic alterations and expression profile
differences in these phenotypes are unclear. Therefore, we
analyzed the changes in RNA modification-associated
transcriptional expression across three RNA modification
patterns. A total of 2281 RNA phenotype-associated DEGs
were identified using an empirical Bayesian approach in the
“limma” package (Supplementary Figure S6F). The
“clusterProfiler” package was then used to perform GO
analysis for these DEGs, and it showed that the biological
processes were related with neutrophil-mediated immunity
signaling pathway, neutrophil activation involved in immune
response signaling pathway, regulation of the toll-like receptor
signaling pathway, and the TRIF-dependent toll-like receptor
signaling pathway (Figure 3E). 950 of these DEGs were
significantly correlated with clinical outcomes, which were
considered as RNA modification-associated signature genes.
These results reconfirmed that RNA modification “writers”
played an important role in the immune regulation in TME.
Unsupervised clustering analysis was conducted to further verify
this modulation mechanism, based on the gained 950 RNA
phenotype-associated signature genes. This analysis classified
patients into three genomic subtypes (Supplementary Figure
S7A-D and Figure 4A), defined as gene cluster A, gene cluster B,
and gene cluster C (183 cases, 83 cases, and 177 cases were
clustered into gene cluster A, gene cluster B, and gene cluster C,
respectively). We observed that the survival probability of
patients was significantly different among these categories,
and patients in gene cluster B presented the best prognosis
compared with patients in gene cluster B and gene cluster C
(with patients in gene cluster C showing the worst survival
outcomes) (Figure 4C). Furthermore, a significant difference
among the three categories was found for a variety of
immune-related marker genes and enriched signaling
pathways as well as the expression levels of 26 RNA
modification “writers” (Figure 4B, and Supplementary Figure
S7E-I). In addition, differences in prognosis and RNA “writer”
expression between the three subgroups were further confirm by
the analysis of patients with SKCM from GEO (GSE65904)
(Supplementary Figure S8A-B). To our surprise, the
characteristics of prognosis and the TME of gene cluster A, B,
and C correspond to writer cluster A, B, and C, respectively.

Generation of W_Score and Evaluation of Its
Clinical Relevance
Considering the complexity and heterogeneity of RNA
modification, we built a scoring model based on the RNA
modification significant genes (950) to quantify the m6A
modification pattern of individual patients with SKCM. We
discovered that patients with writer cluster C exhibited a high
W_Score, whereas those in writer cluster B di not. A similar
association also observed between the W_Score and gene clusters
(Figures 4E,F and Supplementary Table S5). Figure 5A showed
the association among the writer cluster, Clark level, gene cluster,
and W_Score. To evaluate the effect of the W_Score on TME, we
compared the immune cell infiltration and scores of immune-
related signaling pathway between the W_Score-low and -high
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groups. The results showed that patients with a lowW_Score had
a relatively high abundance of infiltrating immune cells in the
TME (e.g., neutrophils, T follicular helper cells, MDSCs, activated
DCs, mast cells, natural killer cells, macrophages, immature DCs,
immature B cells, eosinophils, activated B cells, activated CD8+

T cells, activated CD4+ T cells, and regulatory T cells)

(Supplementary Figure S9E) and a significant enhancement in
immune activation pathways (e.g., CD8+ T effectors pathway,
antigen processing machinery pathway, immune-checkpoints
pathway, antigen processing and presentation pathway, and
JNK and p38 signaling pathway) (Figures 4D,G). Therefore,
tumors with low W_Score could be characterized by the

FIGURE 4 | Construction of the W_Score. (A) Unsupervised clustering of RNA modification phenotype-related differentially expressed genes (DEGs) in TCGA-
SKCM cohort to classify patients into different genomic subtypes, defined as gene cluster A, B, and C. The writer clusters, gene clusters, age, gender, clinical stage,
T-stage, N-stage, M-stage and survival status were used as patient annotations. (B) The differences in expression of 26 A-related RNA modification “writers” in three
gene clusters (TCGA-SKCM cohort). (ANOVA analysis; *p < 0.05; **p < 0.01; ***p < 0.001). (C) The survival curves of three gene clusters based on 443 patients
from TCGA-SKCM cohort (Log-rank test; p < 0.001). (D) The associations between W_Score and the known signaling pathways in TCGA-SKCM cohort. (E,F)
Differences of the W_Score in writer clusters (E) and gene clusters (F), respectively, in TCGA-SKCM cohort (K-W test; p < 0.001). (G) Differences in immune-related
pathways between high- and low- W_Score groups. (*p < 0.05; **p < 0.01; ***p < 0.001).
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immune “hot” phenotype, while high W_Score tumors could be
closely linked to immune “cold” phenotype.

To further evaluate the clinical relevance of theW_Score, patients
with SKCMwere divided into high- and low-W_Score groups based
on the cutoff value (0.0291) determined by the “survminer” package.
Patients with a low W_Score had a survival advantage (Figure 5B;
log-rank test, p < 0.001), and the 5-years survival rate was twice than
patients in the high-W_Score group (46.1 vs 23.7%, respectively).
Interestingly, multivariate Cox regression analysis (gender, age and
T-stage, N-stage, M-stage, and clinical stage as covariates) confirmed
that W_Score was an independent prognostic biomarker (HR =
1.022 (95% CI = 1.013–1.032), p < 0.001; Supplementary Figure

S9A). The reliability of the W_Score was verified using 189 patients
with SKCM from GEO (GSE65904). Consistent with the above
findings, the W_Score-low group displayed a prominent survival
benefit (Supplementary Figure S9F; log-rank test, p < 0.001), and
W_Score could act as an independent prognostic indicator (HR =
1.082 (95% CI = 1.045–1.120), p < 0.001; Supplementary Figure
S9B). These analyses indicate that W_Score can reflect the RNA
modification patterns and be used to predict the clinical outcomes of
patients with SKCM.

Subtypes distribution across different tumor grades and stages
showed that patients diagnosed as advanced T-stage and higher
Clark levels, as well as older ages had an elevated W_Score

FIGURE 5 | Clinical features associated with the W_Score. (A) Alluvial diagram exhibiting the relationship among the writer cluster, Clark level, gene cluster and
W_Score. (B) Survival analyses for high- and low- W_Score groups in TCGA-SKCM cohort using Kaplan-Meier curves (Log-rank test; p < 0.001). (C–E) Distribution of
W_Score in the different subtypes including gene mutations subtypes (C), immune subclasses (D), and the Clark levels (E). (F) Survival analyses for high- and low- TMB
groups in TCGA-SKCM cohort (Log-rank test; p < 0.001). (G) Survival analyses for high TMB and high W_Score (H-TMB + H-W_Score), high TMB and low
W_Score (H-TMB + L-W_Score), low TMB and high W_Score (L-TMB + H-W_Score), and low TMB and low W_Score (L-TMB + L-W_Score) patient groups in
TCGA-SKCM cohort using Kaplan-Meier curves (Log-rank test; p < 0.001). (H–I) The waterfall plot of tumor somatic mutation constructed in low- (H) and high-W_Score
(I) groups.
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(Supplementary Figure S9C-D, and Figure 5E), implying the
involvement of parameters comprising the W_Score in cancer
progression. Based on the most markedly mutated genes, four
subtypes were classified in the previous studies, including mutant
BRAF, mutant RAS, mutant NF1, and mutant triple-wild-type

(triple-WT, lacking hot-spot mutations in BRAF, RAS, or NF1).
The BRAF subtype group presented the lowest W_Score
(Figure 5C), suggestive of survival advantage, which was in
accordance with the previous studies (Network, 2015).
Moreover, SKCM patients in the keratin subclass were

FIGURE 6 | The W_Score predicting the drug sensitivity and immunotherapy efficacy. (A) The association between W_Score and drug sensitivity (Spearman
analysis). (B) Signaling pathways targeted by drugs that are resistant (red) or sensitivity (blue) to the W_Score. (C,D) Differences in expressions of PD-L1 and CTAL-4
between high- and low- W_Score groups (Wilcoxon test; p < 0.0001). (E–G) The correlation between co-expression of PD-L1 and CTLA-4 and the W_Score (samples
with SKCM from TCGA), including CTAL-4 positive and PD-1 negative (ips_ctla4_pos_pd1_neg) (E), CTAL-4 positive and PD-1 positive (ips_ctla4_pos_pd1_pos)
(F), and CTAL-4 negative and PD-1 positive (ips_ctla4_neg_pd1_pos) (G). (H) Kaplan-Meier curve showing overall survival of SKCM patients between high- and low-
W_Score groups in the anti-PD1 immunotherapy cohort (GSE78220 cohort; Log-rank test; p < 0.001). (I) The relationship of W_Score with clinical response to PD-1
blockade immunotherapy (GSE78220 cohort). (J) The proportion of patients with response to anti-PD-1 immunotherapy in high and low W_Score groups (GSE78220
cohort). PD, progressive disease; CR, complete response; PR, partial response. (K,L) The differences in the W_Score among distinct PD-1 blockade immunotherapy
response groups (GSE78220 cohort). (M) The predictive value of W_Score in SKCM patients treated with anti-PD-1 immunotherapy (GSE78220; AUC, 0.863).
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reported to exhibit worse prognosis than those in the immune
subclass and the MITF-low subclass (Network, 2015). As
expected, keratin subclass was significantly associated with a
higher W_Score and worse prognosis (Figure 5D). These
findings demonstrate the reliability of W_Score and augment
the previous classification.

Increasing evidence has demonstrated that patients with high
TMB have a favorable SKCM prognosis (Edwards et al., 2020;
Yan et al., 2020). We also found that patients with a higher TMB
displayed a survival advantage (Figure 5F). Therefore, we sought
to identify the value of W_Score in evaluating the clinical
outcome of patients with TMB. Patients with TMB were
divided into four types, including high TMB and high
W_Score (H-TMB + H-W_Score), high TMB and low
W_Score (H-TMB + L-W_Score), low TMB and high
W_Score (L-TMB + H-W_Score), and low TMB and low
W_Score (L-TMB + L-W_Score). The patients in the H-TMB
+ L-W_Score group exhibited the best prognosis, whereas those
in the L-TMB + H-W_Score group demonstrated the worst
prognosis (Figure 5G). Furthermore, the TMB quantification
analysis confirmed that a lower W_Score was remarkably related
with a higher frequency of oncogenemutations, such as BRAF (56
vs. 45%), DNAH8 (32 vs. 24%), and DNAH10 (24 vs. 17%)
(Figures 5H,I). These data enabled us more comprehensively to
understand the effect of W_Score classification on genomic
variation and prognosis of patients with SKCM, as well as to
reveal the potential roles of RNA modification in the individual
somatic mutations.

Potential Role of W_Score in Predicting
Chemotherapeutic Drugs and Response to
Immunotherapy With a PD-L1 Blocker
To further explore the effects of the W_Score on drug response,
we evaluated the correlation between the W_Score and the
response to drugs. A total of 48 drugs were identified from the
GDSC database (Figure 6A). Among them, the sensitivity of 25
drugs was associated with the W_Score, including the
farnesyltransferase inhibitor FTI-277 (Rs = −0.38, p = 6.72E-
17), the WNT/β-catenin pathway inhibitor FH535 (Rs = −3.20,
p = 9.07E-12), and the AKT and ERK inhibitors Sorafenib (Rs =
−0.30, p = 2.93E-10), whereas 23 drugs showed the resistance
related to the W_Score, including the DNA double-strand break
and apoptosis activator Cisplatin (Rs = 0.38, p = 1.08E-16), the
AKT inhibitor VIII (Rs = 0.28, p = 2.11E-09), and the cyclin-
dependent kinase inhibitor CGP-60474 (Rs = 0.38, p = 1.01E-11).
Then, the signaling pathway enrichment analysis based on drug-
targeted genes revealed that the W_Score was linked to drug-
associated signaling pathways, including the PI3K/MTOR
signaling pathway, RTK signaling pathway, ERK/MAPK
signaling pathway, p53 signaling pathway, and cell cycle
signaling pathway (Figure 6B).

Immunotherapies based on CTLA-4/PD-1/PD-L1 inhibitors
have achieved astounding clinical efficacy in malignant tumor
therapy. Significant efforts have beenmade to identify biomarkers
for predicting immunotherapy response, such as the expression of
PD-L1 and CTLA-4 (Van Allen et al., 2015; Gibney et al., 2016;

Miao et al., 2018). As shown in Figures 6C,D, the expression of
PD-L1 and CTLA-4 obviously elevated in the low W_Score
group. Subsequent analysis also revealed that a low W_Score
was remarkably associated with high expression of PD-L1 and/or
CTLA-4 (Figures 6E–G). Given that the W_Score was strongly
related to the immune microenvironment, we further evaluated
the power of theW_Score model in predicting patients’ responses
to immunotherapy with PD-1/PD-L1 inhibitors, based on the
anti-PD-1 cohort (GSE78220; metastatic melanoma) and anti-
PD-L1 cohort (IMvigor210; advanced urothelial cancer). Patients
with a lower W_Score displayed remarkably clinical benefits and
a significantly prolonged survival in both cohorts (Figure 6H; p <
0.001, and Supplementary Figure S9G; p < 0.001). The better
therapeutic outcomes and improved clinical response to anti-PD-
1/L1 immunotherapy in W_Score-low patients were confirmed
(Figures 6I–L, and Supplementary Figure S9H-I). Moreover, an
AUC value with 0.870 indicated that the quantification of RNA
modification patterns was a robust biomarker for evaluating
patients’ prognosis and response to immunotherapy
(Figure 6M). Taken together, these analyses imply that the
W_score model could provide the selection of
chemotherapeutic drugs and contribute to evaluating the
response to anti-PD-1/L1 immunotherapy in SKCM.

DISCUSSION

Mounting evidence has demonstrated that RNA modifications
have an essential role in innate immunity, inflammation, and
antitumor activity by interacting with multiple “writers” (Lin
et al., 2020; Shulman and Stern-Ginossar, 2020; Chen et al., 2021;
Chong et al., 2021). While current research has mainly focused on
one type of RNA modification “writers”, such as m1A “writers”
and m6A “writers” (Zhang et al., 2020; Gao et al., 2021), the roles
of numberous types of RNA modification “writers” in tumor
progression have not been fully recognized. Therefore, in this
study, we explored global changes in four types of A-associated
RNAmodification “writers” (m6A, m1A, A-to-I, and APA) at the
molecular level and the relationship between their interaction and
the TME, so as to identify distinct RNA modification patterns in
the tumor immune microenvironment. This would eventually
reinforce our understanding of antitumor immune response and
aid in the development of efficient immunotherapy strategies for
patients with SKCM.

In this work, three distinct RNA modification patterns were
identified based on 26 RNA modification “writers”. These three
modification patterns showed remarkably different tumor
immune microenvironment characteristics. The writer cluster
B was characterized by the immune activation and abundant
lymphocyte-infiltration, which correspond to the immune-
inflamed phenotype. The writer cluster C was characterized by
the immune-desert phenotype. The writer cluster A was
characterized by the infiltration of immune cells together with
the activation of TGF-β signaling pathway, JAK/STAT signaling
pathway, and WNT signaling pathway, which correspond to the
immune-excluded phenotype. The activated TGF-β pathways
may suppress immune function by preventing lymphocytes
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from entering the tumor parenchyma, while specific molecular
inhibitors that target TGF-β can restore the antitumor immunity
by remodeling the tumor immune microenvironment (Fabregat
et al., 2014; David et al., 2016; Mariathasan et al., 2018; Panagi
et al., 2020). Studies have shown that the immune contexture of
the TME influences the development and progression of SKCM,
and can be used to predict immunotherapeutic response and
prognosis (Galon and Bruni, 2019). The levels of tumor-
infiltrating immune cells (e.g., natural killer cells, DCs,
macrophages, and CD4 + /CD8 + T cells) are associated with
the immune response that is generated (Topalian et al., 2016;
Galon and Bruni, 2019; Zeng et al., 2020). Thus, these findings
demonstrate the reliability of immunophenotypic classification
based on distinct RNA modification patterns.

Furthermore, GO analysis and univariate Cox regression
analysis suggested that prognosis-related DEGs could act as
the signature genes of A-associated RNA modification. Of
note, similar to the classification results of the RNA
modification “writers”, the three gene categories based on
A-associated RNA modification signature genes were
constructed and were found to be remarkably related with
different clinical outcomes and immunophenotypes. This
confirmed that the significance of RNA modification “writers”
in shaping the different landscape of TME. Because of the
heterogeneity in RNA modification, we built a W_Score
model to quantify the RNA modification patterns of
individual patients. The RNA modification pattern
characterized as the immune-inflamed phenotype displayed
a lower W_Score, whereas those the modification patterns
characterized as immune-desert and immune-excluded
phenotypes presented a higher W_Score. We also found
that the W_Score was significantly associated with clinical
features of patients with SKCM and tumor subtypes.
Noticeably, the W_Score was shown to be an independent
prognostic biomarker for patients with SKCM, and this finding
was verified in the GEO-SKCM cohort.

Because the benefits of survival and therapeutic responses
of patients subjected to tumor immunotherapy remain limited
to a small population, classifying patients to obtain better
insight into the optimal use of tumor immunotherapy is an
effective strategy (Harel et al., 2019; Albittar et al., 2020; Guo
and Shen, 2020). Patients with SKCM were divided into high-
and low-W_Score groups based on the cutoff value, and these
two groups displayed extremely distinct tumor immune
microenvironment characteristics. The low W_Score
exhibited an immune “cold” phenotype characterized by a
lack of immune-cell infiltration, indicative of a non-
inflammatory TME (Kim and Chen, 2016). The high
W_Score exhibited TME characteristics that were opposite
to those of the immune “hot” phenotype, which was
characterized by an enhanced immune-cell infiltration,
indicative of an inflammatory tumor immune
microenvironment (Turley et al., 2015; Chen and Mellman,
2017). These two groups could represent the distinct potential
mechanisms modulating tumor immune escape,
corresponding to different treatment strategies. The “hot”
tumor (low W_Score group) exhibited a favorable immune-

activated phenotype and may be responsive to ICIs (Wang
et al., 2021). Notably, our data revealed that low W_Score
showed a significantly high TMB. Analysis of genomic data
indicated that a high TMB induced an increase in the number
of neoantigens and boosted the immune response rate to ICI
therapies (Liu et al., 2019; Hodi et al., 2021). In addition,
patients with low W_Score had high enrichment scores in the
immune-related signaling pathways. Roper et al. discovered
that high expression of genes with antigen-processing
machinery was beneficial for checkpoint immunotherapy
(Roper et al., 2021). Ahn et al. reported that the PD-1
blockade promoted the activation of CD8+ T effectors and
resulted in faster clearance of infection (Ahn et al., 2018).
Furthermore, the clinical benefit of checkpoint
immunotherapy is associated with high expression of
immune-checkpoint proteins and suppression of
angiogenesis (Castet et al., 2019; Zavareh et al., 2021). Of
note, we confirmed that patients with low W_Score in two
immunotherapy cohorts exhibited an enhanced immune
response and long-term clinical benefits of immunotherapy.
These analyses indicated that the W_Score could be regarded a
powerful “predictor” for identifying patients sensitive to
immunotherapy. In particular, the W_Score also has
predictive values to evaluate the benefits of chemotherapy or
targeted therapies. RNA modification patterns determined by
the interaction of RNA modification “writers” were linked to
immune phenotypes and affected the therapeutic effects of ICIs,
whichmay provide clues on appropriate drug and immunotherapy
strategies for SKCM.

In this study, we comprehensively analyzed RNAmodification
patterns based on four types of A-associated RNA modification
“writers”, and revealed the association between these RNA
modification patterns and tumor immune microenvironment
characteristics. We also constructed a W_Score model and
identified their clinical utility in targeted therapy and tumor
immunotherapy. This paper has some limitations that further
experimental verification are needed to validate these findings.
This study thus highlighted the clinical significance of the
crosstalk of multiple A-associated RNA modification. We
believe that the findings of this study will contribute to
developing personalized immunotherapy strategies for patients
with SKCM.
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Supplementary Figure S1 | Overview of study design.

Supplementary Figure S2 | Mutation characteristics of 26 A-related RNA
modification “writers” in TCGA-SKCM cohort. (A) The mutation co-occurrence
and exclusion analyses for 26 RNA regulators. Co-occurrence, blue; Exclusion,
Khaki. (B) The prognostic analyses for 26 RNA regulators base on univariate Cox
regression model. (C) GSVA enrichment analysis showed the differences between
“writers” mutation and non-mutation tumors.

Supplementary Figure S3 | CNVs regulating the “writers” expression in TCGA-
SKCM cohort. P value less than 0.05 indicated a statistical difference.

Supplementary Figure S4 | The characteristics of tumor microenvironment in three
RNA modification patterns. Evaluating the abundance of each tumor-infiltrating
immune cell in three writer clusters using ssGSEA (GSE65904). (*p < 0.05;
**p < 0.01; ***p < 0.001).

Supplementary Figure S5 | Association between tumor immune
microenvironment and 26 A-related RNA modification “writers”. (A) The
correlation between the abundance of tumor-infiltrating immune cells and RNA
regulators (TCGA-SKCM cohort; Spearman analysis; *p < 0.05; **p < 0.01; ***p <
0.001). (B) Differences of immuneScore between WTAP high expression and low
expression groups (Wilcoxon test; p < 0.001). (C) Differences of tumor-infiltrating
immune cells between WTAP high expression and low expression groups. (*p <
0.05; **p < 0.01; ***p < 0.001). (D) Differences in the expression of adhesion
molecules, MHC molecules, and costimulatory molecules between WTAP high
expression and low expression groups. (*p < 0.05; **p < 0.01; ***p < 0.001). (E)
Differences in immune-activated pathways between WTAP high expression and low
expression groups. (*p < 0.05; **p < 0.01; ***p < 0.001). (F,G) Kaplan-Meier curve
showing overall survival of SKCM patients between high- and low- WTAP
expression groups in the anti-PD-1 immunotherapy cohort (GSE78220 cohort)
(F), and GEO-SKCM cohort (GSE65904) (G).

Supplementary Figure S6 | Unsupervised clustering of 26 A-related RNA
modification “writers” in the TCGA-SKCM cohort. (A–D) Consensus matrices of
the TCGA-SKCM cohort for k = 2–5. (E) The difference in expression of 26 RNA
regulators among the writer cluster A, writer cluster B, and writer cluster C. (TCGA-
SKCM cohort; *p < 0.05; **p < 0.01; ***p < 0.001). (F) 2281 differently expressed
genes DEGs genes shown in venn diagram.

Supplementary Figure S7 | Immune-related molecular characteristics in distinct
gene clusters. (A–D) Unsupervised clustering of prognosis-related differently
expressed genes (DEGs) in the TCGA-SKCM cohort (k = 2–5). (E) Evaluating the
abundance of each tumor-infiltrating immune cell in three gene clusters using
ssGSEA. (*p < 0.05; **p < 0.01; ***p < 0.001). (F) Difference in immune-related
pathways among three gene clusters. (*p < 0.05; **p < 0.01; ***p < 0.001). (G–I)
Difference in the immune-activation (G), chemokines and cytokines (H), and
immune-checkpoint (I) related gene expression among three gene clusters. (*p <
0.05; **p < 0.01; ***p < 0.001).

Supplementary Figure S8 | The expression of 26 “writers” in three gene clusters
(GSE65904). (A) The survival curves of three gene clusters (GSE65904; Log-rank
test; P < 0.05). (B) The differences in expression of 26 A-related RNA modification
“writers” in three gene clusters. (GSE65904; ANOVA analysis; *p < 0.05; **p < 0.01;
***p < 0.001).

Supplementary Figure S9 | The correlation between W_Score and
clinicopathological parameters. (A,B) Multivariate Cox regression analysis for
W_Score in TCGA-SKCM cohort (A) and GEO-SKCM (GSE65904) cohort (B)
shown by the forest plot. (C,D) Difference in W_Score among distinct clinical
subgroups [age (C) and T-stage (D)] in TCGA-SKCM cohort. (*p < 0.05;
**p <0.01; ***p < 0.001). (E) Evaluating the abundance of each tumor-infiltrating
immune cell between high- and low- W_Score groups using ssGSEA. (F) Kaplan-
Meier curve showing overall survival of SKCM patients between low- and high-
W_Score groups (GSE65904) (Log-rank test; P < 0.001). (G) Kaplan-Meier curve
showing overall survival of patients between low- and high- W_Score groups in the
anti-PD-L1 immunotherapy cohort (IMvigor210 cohort; Log-rank test; P < 0.001).
(H) The differences in the W_Score among distinct PD-L1 blockade immunotherapy
response groups (IMvigor210 cohort). (I) The proportion of patients with response to
PD-L1 blockade immunotherapy in high and low W_Score groups (IMvigor210
cohort). PD, progressive disease; CR, complete response; PR, partial response; SD,
stable disease.
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