
Discovering new peripheral
plasma biomarkers to identify
cognitive decline in type
2 diabetes

Haitao Yu1,2†, Yang Gao1†, Ting He1†, Mengzhu Li3, Yao Zhang4,
Jie Zheng5, Bijun Jiang6, Chongyang Chen1, Dan Ke1,
Yanchao Liu1,7* and Jian-Zhi Wang1,8*
1Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders,
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China, 2Department of Basic Medicine, Wuxi School of
Medicine, Jiangnan University, Wuxi, China, 3Department of Neurosurgery, Wuhan Central Hospital
Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
4Key Laboratory of Ministry of Education for Neurological Disorders, Li Yuan Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China, 5Key Laboratory of Basic
Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of
Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Department of
Pharmacology, Zunyi Medical University, Zunyi, China, 6Department of Physiology, School of Basic
Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
7Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 8Co-innovation Center of Neuroregeneration, Nantong
University, Nantong, China

Type 2 diabetes mellitus (T2DM) is an independent risk factor of Alzheimer’s

disease (AD), and thus identifying who among the increasing T2DM populations

may develop into AD is important for early intervention. By using TMT-labeling

coupled high-throughput mass spectrometry, we conducted a comprehensive

plasma proteomic analysis in none-T2DM people (Ctrl, n = 30), and the age-/

sex-matched T2DM patients with mild cognitive impairment (T2DM-MCI, n =

30) or T2DM without MCI (T2DM-nMCI, n = 25). The candidate biomarkers

identified by proteomics and bioinformatics analyses were verified by ELISA, and

their diagnostic capabilities were evaluated with machine learning. A total of

53 differentially expressed proteins (DEPs) were identified in T2DM-MCI

compared with T2DM-nMCI patients. These DEPs were significantly enriched

in multiple biological processes, such as amyloid neuropathies, CNS disorders,

andmetabolic acidosis. Among the DEPs, alpha-1-antitrypsin (SERPINA1), major

viral protein (PRNP), and valosin-containing protein (VCP) showed strong

correlation with AD high-risk genes APP, MAPT, APOE, PSEN1, and PSEN2.

Also, the levels of PP2A cancer inhibitor (CIP2A), PRNP, corticotropin-releasing

factor-binding protein (CRHBP) were significantly increased, while the level of

VCP was decreased in T2DM-MCI patients compared with that of the T2DM-

nMCI, and these changes were correlated with the Mini-Mental State
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Examination (MMSE) score. Further machine learning data showed that

increases in PRNP, CRHBP, VCP, and rGSK-3β(T/S9) (ratio of total to serine-

9-phosphorylated glycogen synthase kinase-3β) had the greatest power to

identify mild cognitive decline in T2DM patients.

KEYWORDS

type 2 diabetes, mild cognitive impairment, Alzheimer’s disease, diagnostic
biomarkers, proteomics

Introduction

Alzheimer’s disease (AD) is the most common form of senile

dementia affecting an increasing population worldwide

(Winblad et al., 2016; Hodson, 2018). Until most recently,

there is still no effective cure for AD. One of the bottlenecks

leading to the failed drug development is the lack of effective and

non-brain invasive biomarkers for the early diagnosis of AD. The

major dilemma is that it is often too late for an effective cure by

the time the patients begin to feel AD symptoms, while the

patients generally do not seek medical attention when they have

no obvious AD symptoms. To deal with the dilemmas, one can

start from AD high-risk factors to achieve its early diagnosis.

Type 2 diabetes mellitus (T2DM) is an independent risk

factor of AD, and the latter is thus termed as type 3 diabetes

(Diniz Pereira et al., 2021). Due to population aging, nutrition

excess, lack of physical exercise, overweight, and other factors

(Kahn et al., 2014), the number of T2DM patients is rapidly

increasing and can greatly contribute to the increased prevalence

of AD (Surguchov, 2020). Therefore, identifying biomarkers to

predict who among the T2DM patients may develop into AD is

important for the early diagnosis and eventually decreasing the

prevalence of AD.

The mild cognitive impairment (MCI) is an intermediate

state between normal aging and AD (Umegaki, 2014); therefore,

it provides a window period for AD intervention and prevention

(Petersen et al., 2001; Petersen et al., 2009). Aimed at seeking

periphery biomarkers correlated to a very mild cognitive decline

in T2DM patients, we used Mini-Mental State Examination

(MMSE) to divide the T2DM patients into two cohorts:

T2DM with MCI (T2DM-MCI) and T2DM without MCI

(T2DM-nMCI). Using hypothesis-driven screening tests, we

found that aging, upregulation of glycogen synthase kinase 3β
(GSK-3β), a key kinase involved in Aβ production, tau

hyperphosphorylation, and long-term synaptic inhibition seen

in both AD and T2DM (Plattner et al., 2006; Yi et al., 2018),

ApoE ε4 genetype, and olfactory dysfunction contributed to

cognitive decline in T2DM patients (Xu et al., 2016). In

addition, amyloidosis is a common pathological feature of AD

and diabetes mellitus (de Matos et al., 2018), and the diagnostic

accuracy of plasma Aβ1-42/1-40 combined with APP 669-711/

Aβ1-42 was 90% for AD (Nakamura et al., 2018), but the

potential association between plasma Aβ levels and cognitive

functions has not been reported.

The memory impairment in AD and T2DM involves a

complex network regulation of insulin resistance, oxidative

stress, β-amyloid (Aβ) deposition, glucose and lipid metabolism,

and vascular damage (Akter et al., 2011; de Matos et al., 2018).

Therefore, non-hypothesis-driven approaches are needed for

finding novel periphery biomarkers. In this sense, proteomic

technology based on mass spectrometry has shown its strong

role in the neurological field, such as overall analysis of protein

expression levels, inter-molecular correlations, and biomarker

screening (Bader et al., 2020; Wang et al., 2020). Peripheral

blood is easy to obtain, and its dynamic changes can reflect the

overall health situation of the individual (Anderson and Anderson,

2002), which makes it an ideal source of biomarkers to predict the

changes occurred in the central nervous system. Compared with

traditional 2D-DIGE, TMT/iTRAQ has the advantages of short

cycle, small sample loss, simple operation, high sensitivity, and

wide identification range. By using proteomic analysis, we have

analyzed the platelet biomarkers correlated to cognitive decline in

age- and sex-matched populations (Yu et al., 2021).

In the present study, we analyzed the plasma protein

expression profile in T2DM-MCI and T2DM-nMCI patients

by using high-throughput and highly sensitive TMT–LC–MS/

MS proteomics. Further comprehensive bioinformatics, machine

learning and biochemical analyses revealed that multiple proteins

were involved in the cognitive changes in T2DM patients.

Among them, the increases in PRNP, CRHBP, VCP, and

rGSK-3β(T/S9) had the greatest power to identify cognitive

decline in T2DM patients.

Materials and methods

Participant information

Type 2 diabetes diagnosis standard adopts the World Health

Organization (WHO) (1999) criteria for diagnosis and

classification of diabetes (Olokoba et al., 2012). All the type

2 diabetes mellitus (T2DM) patients from the Central Hospital of

Wuhan were divided into two groups: the T2DM without mild

cognitive impairment (T2DM-nMCI) group and the T2DMwith

mild cognitive impairment (T2DM-MCI) group, which met the

National Institute on Aging and the Alzheimer’s Association

Guidelines (Albert et al., 2011), and received Mini-Mental State

Examination (MMSE) test scores (Folstein et al., 1975) (Table 1).
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Patients with traumatic brain injury, brain tumors, drug abuse,

alcohol addiction, and psychiatric disorders were excluded from

the study. Diabetes duration, hypertension, hyperlipidemia and

coronary heart disease (CHD), olfactory score, and Apo

lipoprotein E (APOE) were considered systematically (Table 1).

The study was approved by the Tongji Medical School Ethics

Committee, complies with the Helsinki Declaration II, and

includes written informed consent from all participants. The

project “Early Detection of Cognitive Dysfunction in Diabetes”

was registered in the Chinese Clinical Trial Registry (https://

clinicaltrials.gov; NCT01830998).

Fresh blood was stored in an anticoagulant tube, and the blood

sample is separated at 1,000 g, 4°C for 10 minwithin 2 h to separate

plasma and stored at −80°C. According to Agilent Technologies

operating instructions (Yadav et al., 2011), we used Agilent

Human 14/Mouse 3 Multiple Affinity Removal System Column

to remove high-abundance proteins in plasma. Then, for

desalination and concentration of low-abundance components,

we used a 10-kDa ultrafiltration tube (Sartorius) and added SDT

buffer (4% SDS, 100 mM DTT, and 150 mM Tris–HCl pH 8.0) to

the sample, boiled for 15 min, and centrifuged at 14,000 g for

20 min. The BCA method was used for protein quantification.

Filter-aided sample preparation

The FASP digestion was carried out by following a previous

method (Wisniewski et al., 2009). Specifically, 200 μg of protein

solution for each sample was added to dithiothreitol (DTT,

Sigma-Aldrich) to obtain a final concentration of 100 mM and

boiled in a water bath for 5 min. Then, 200 μl UA buffer (8 M

Urea and 150 mM Tris–HCl, pH 8.0) was added to the mixture,

TABLE 1 Information about the T2DM-MCI patients and age-/sex-matched T2DM-nMCI patients.

Characteristic Proteomics-Discover set ELISA-Validation set

T2DM-nMCI
(n = 25)

T2DM-MCI
(n = 30)

p-value T2DM-nMCI
(n = 30)

T2DM-MCI
(n = 25)

p-value

Age, mean (SD), year 70.68 (5.31) 76.27 (5.31) <0.001 72.27 (2.52) 73.33 (4.20) 0.237

Sex (male, female) 15M, 10F 8M, 22F 0.016 14M, 16F 14M, 16F >0.999
Olfactory score 7.78 (1.49) 8.941.49 0.026 7.43 (1.57) 7.87 (1.48) 0.276

Diabeted = s duration, year 11.65 (7.18) 7.87 (6.88) 0.086 11.87 (8.45) 11.83 (9.17) 0.988

Hypertension, n (%) 15 (75.00%) 19 (82.61%) 0.711 23 (76.67%) 26 (86.67%) 0.317

Hyperlipidemia, n (%) 2 (10.00%) 8 (34.78%) 0.076 3 (10.00%) 13 (44.33%) 0.004

CHD, n (%) 4 (20.00%) 2 (8.70%) 0.393 7 (23.33%) 7 (23.33%) >0.999
APOE ε4 (+), n (%) 4 (20.00%) 4 (17.39%) >0.999 4 (13.33%) 4 (13.33%) >0.999
GSK-3β (S9) 1.77 (0.60–3.57) 1.28 (0.11–3.17) 0.062 1.92 (0.53–14.60) 1.55 (0.48–5.59) 0.484

GSK-3β (total) 1.03 (0.13–2.38) 1.42 (0.11–3.17) 0.058 1.22 (0.13–7.16) 2.22 (0.63–10.64) 0.03

RGSK- 3β (total/S9) 0.63 (0.18–1.66) 1.13 (0.24–2.48) <0.01 0.67 (0.20–1.55) 2.31 (0.59–17.14) 0.011

Aβ1–40 282.4 (64.10–590.50) 211.80 (22.89–430.70) 0.110 239.78 (14.81–520.01) 189.47 (15.07–559.41) 0.174

Aβ1–42 66.07 (31.99–153.60) 78.68 (37.58–162.90) 0.170 54.13 (20.22–100.82) 78.89 (32.47–172.87) 0.002

Aβ1–42/1–40 0.30 (0.07–063) 0.70 (0.15–3.68) <0.05 0.41 (0.07–4.37) 1.23 (0.08–7.60) 0.018

MMSE 30 (0) 18.63 <0.001 28.93 21.67 (1.95) <0.001

TABLE 2 List of ELISA kit used in the study.

Specificity Source CAT. No.

Insulin-like growth factor-binding protein 3(IGFBP3) Cloud-Clone SEA054Hu

Corticotropin-releasing hormone-binding protein (CRHBP) Cloud-Clone SEC401Hu

Prion protein (PRNP) Cloud-Clone SEB680Hu

Cancerous inhibitor of PP2A (CIP2A) Cloud-Clone SER982Hu

Valosin-containing protein (VCP) Cloud-Clone SEC601Hu

Peptidase d (PEPD) Cloud-Clone E-EL-H0542c

Amyloid beta 1–40 (Aβ .1.40) Elabscience E-EL-H0543c

Amyloid beta 1–42 (Aβ .1.42) Elabscience
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centrifuged at 14000 g for 15 min in a 10-kD ultrafiltration

centrifuge tube, and incubated with 100 mM iodoacetamide

(IAA, Sigma-Aldrich) at room temperature for 30 min in

darkness. Then, the aforementioned samples were washed

twice with 100 ul UA buffer and 100 ul 100 mM TEAB buffer.

Finally, digestion was carried out with 4 μg trypsin (Promega) in

40 μl TEAB buffer for 12 h at 37°C, and the peptide concentration

was determined using a NanoDrop 2,000c spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, United States).

Tandem mass tag labeling and separation

The peptides (100 μg) were labeled with TMT tags according

to the manufacturer’s instructions (Thermo Fisher Scientific). To

fractionate TMT-labeled peptides, high-pH reversed-phase

chromatography separation was used. According to the

manufacturer’s instructions (Thermo Fisher Scientific), TMT-

labeled peptides were divided into 15 components under gradient

elution. After lyophilization, the sample was reconstituted with

12 μl of 0.1% FA, and the peptide concentration was determined

using a NanoDrop 2,000c spectrophotometer.

Mass spectrometry data collection

The peptide mixture was processed on-machine for nanoLC-

MS/MS analysis. Buffer A is 0.1% formic acid aqueous solution,

and buffer B is 0.1% formic acid acetonitrile aqueous solution

(84% acetonitrile). The chromatographic column was

equilibrated with 95% buffer A (0.1% formic acid), and the

sample was loaded from the autosampler to the upper column

(Thermo Scientific Acclaim PepMap100, 100 μm* 2cm,

nanoViper C18) after separation by the analytical column

(Thermo Scientific Easy Column, 10 cm long, 75 μm inner

diameter, 3 μm resin) with buffer B (84% acetonitrile and

0.1% formic acid) at a flow rate of 300 nl/min.

To acquire MS data, the criteria used were as follows: running in

the positive ion mode, the scanning range of parent ion was

300–1800m/z, the resolution of primary mass spectrometry was

70,000 at 200m/z, and isolation width was 2 m/z with 30 ev

standardized collision energy. MS/MS spectra were searched using

MASCOT engine (Matrix Science, London,UnitedKingdom, version

2.2) with Proteome Discoverer 1.4. The value of the protein ratio ≥
1.2 with the p-value < 0.05 was defined as the differential protein.

Bioinformatics analysis

The heatmap.2 function in the R statistical analysis software

package (version 3.4.0) was used to perform hierarchical

clustering analysis for differential proteins. DAVID

Bioinformatics Resources 6.7 (https://david-d.ncifcrf.gov/) was

used for biological process analysis. Metascape (http://metascape.

org/gp/) was used for protein–protein interaction (PPI) and

gene–disease network (DisGeNET) analysis.

Enzyme-linked immunosorbent assay

The plasma levels of Aβ42/40, CIP2A, PRNP, CRHBP, VCP,
IGFBP3, and PEPD in T2DM-nMCI and T2DM-MCI were verified

by ELISA following the manufacturer’s instructions (Table 2).

Machine learning

The leave-one-out (LOO) cross-validation with the scikit-learn

Python package was performed on the validation set, and AUC

and accuracy values were calculated. As a typical machine learning

method, the LOO cross-validation is widely used in life sciences for

model training and parameter optimization (Bader et al., 2020; Shu

et al., 2020). More specifically, 59 samples were randomly selected

from 60 samples each time for modeling, and the remaining one

was used for validation. Thus, 60 cycles were carried out to achieve

the purpose of full data demonstration and cross-validation.

Statistical analyses

The data were expressed as mean ± SEM using SPSS

24.0 software (Statistical Program for Social Sciences Inc.,

Chicago, IL, United States). Student’s t-test was used to

evaluate the level of significance between the two groups, and

p-values < 0.05 was considered to be significant.

Results

Participant information and deep plasma
proteome profiling in different
populations

In the discovery cohort, the age- and sex-matched none-

T2DM controls (Ctrl, n = 30), T2DM-nMCI (n = 25), and

T2DM-MCI (n = 30) were analyzed. The candidate

biomarkers were further verified in the validation cohorts of

T2DM-nMCI (n = 30) and T2DM-MCI (n = 30) (Table 1).

Plasma proteomics and the ELISA verification were

combined to find candidate biomarkers for cognitive decline

in T2DM patients (Figure 1A). A total of 1,320 proteins were

identified in plasma proteomics, of which 752 proteins were

captured in each sample. The differentially expressed proteins

(DEPs) were defined as the fold change of protein abundance at

1.2 or above with the p-value < 0.05. In this study, from Ctrl to

T2DM-nMCI and T2DM-MCI groups, a total of 53 DEPs were
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identified, including 22 DEPs in T2DM vs. Ctrl and 36 DEPs in

T2DM-MCI vs. T2DM-nMCI (Figure 1B). After Z-score

transformation, the abundance of DEPs was displayed in the

form of a heatmap, and the DEPs were divided into three clusters

(C1, C2 and C3; Figures 1B,C).

Cluster 1 displays a significant increase in T2DM vs. Ctrl but

a decrease in T2DM-MCI vs. T2DM-nMCI (Figure 1C),

including immune response-related proteins alpha-2-

macroglobulin (A2M), myeloperoxidase (MPO), gelsolin

(GSN), gluconeogenesis/glycolysis-related proteins glucose-6-

FIGURE 1
Disease stage-dependent proteins in the plasma of T2DM patients identified by proteomics. (A) Strategy for profiling of the serum proteome
and subsequent verification of candidate biomarkers. (B) Heatmap of the proteomics dataset based on the changed proteins. The TMT intensities
(Z-score transformed) of each protein (rows) across three disease groups (columns) are indicated in a colored scale. (C) Clustering analysis of
changed proteins. Each line represents the change trend of one protein. The intensity of each protein is Z-score-transformed. (D) Enrichment
analysis of biological processes for each cluster protein.
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phosphate isomerase (GPI), and fructose-1,6-bisphosphatase 1

(FBP1) (Figure 1D). The proteins displayed by cluster 2 were

stable in T2DM vs. Ctrl but were significantly up-regulated in

T2DM-MCI vs. T2DM-nMCI (Figure 1C), including alpha-1-

antitrypsin (SERPINA1), PP2A cancer inhibitor (CIP2A), major

prion protein (PRNP), mitochondria-related proteins

cytochrome b-c1 complex subunit 2 (UQCRC2), valosin-

containing protein (VCP), and stress-70 protein (HSPA9),

involving cellular response to the heat stress biological process

(Figure 1D). The proteins displayed by cluster 3 were

significantly down-regulated from Ctrl to T2DM-nMCI and

T2DM-MCI (Figure 1C), including learning- or memory-

related proteins insulin-like growth factor-binding protein 3

(IGFBP3), beta-glucuronidase (GUSB), and corticotropin-

releasing factor-binding protein (CRHBP), involving the

secretion process (Figure 1D).

These data together indicate that multiple pathways and

proteins are involved in cognitive decline in T2DM patients

compared with the non-T2DM control group.

Integrating analyses to identify human
disease-associated differentially
expressed proteins

To explore the relationship between DEPs and human

diseases, we performed a gene–disease network (DisGeNET)

analysis using Metascape online analysis software.

Interestingly, the central system-related GO terms including

“amyloid neuropathies,” “CNS disorder,” and “pick disease of

the brain” were strongly enriched in T2DM-MCI vs T2DM-

nMCI (p-value < 0.01) (Figure 2A). In addition, metabolic

acidosis was also found in T2DM-MCI subjects compared

with T2DM-nMCI (Figure 2A). Specifically, the proteins

associated with the central system, including the well-known

PRNP, CIP2A, fructose-bisphosphate aldolase B (ADLOB), and

fructose-1,6-bisphosphatase 1 (FBP1) and the less-known

SERPINA1 and VCP, were increased in T2DM-MCI

compared with T2DM-nMCI, in which ADLOB and

FBP1 were involved in metabolic acidosis (Figure 2B).

The candidate proteins correlated with
cognitive decline in T2DM patients

Compared with the non-T2DM control group, 22 significant

dysregulated proteins were identified in T2DM-nMCI patients,

including 14 up-regulated proteins (red) and eight down-

regulated proteins (green) (Figure 3A, (Supplementary Table

S1). When compared with T2DM-nMCI patients,

36 significant dysregulated proteins were identified in T2DM-

MCI patients, including 15 up-regulated proteins (red) and

21 down-regulated proteins (green) (Figure 3B, Supplementary

Table S1). The combination of Cytoscape (3.7.0) and Metascape

FIGURE 2
Integrating information on human disease-associated DEPs analyzed using Metascape. (A) Top GO terms of the gene–disease network
(DisGeNET) with -log10 (p-value < 0.01). (B) Relative expression abundance of amyloid neuropathies, CNS disorder, Pick’s disease, and metabolic
acidosis (p < 0.05, increased proteins: red; decreased proteins: blue).
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was used to analyze the protein–protein interaction (PPI)

network. As shown in Figure 3C, VCP, stress-70 protein

(HSPA9), and GPI were at the core of the entire network.

Importantly, PPI interaction analysis showed that dysregulated

proteins SERPINA1, VCP, APOC4, and PRNP had strong

interactions with AD high-risk genes APP, MAPT, APOE,

PSEN1/2 (Figure 3D).

The bioinformatics data together indicate that upregulation of

SERPINA1, VCP, PRNP, CIP2A, HSPA9, and UQCRC2 and

downregulation of IGFBP3, CRHBP, PEPD, and GUSB were

correlated to cognitive decline in T2DM patients (Figure 3E).

The increased candidate proteins also include: 1) alpha-1-

antitrypsin (SERPINA1), which is responsible for serine-type

endopeptidase inhibitor activity; 2) transitional endoplasmic

reticulum ATPase (VCP), a mitophagy-related protein that is

mainly involved in frontotemporal dementia, amyotrophic lateral

sclerosis, and muscle and bone degeneration (Kakizuka, 2008); 3)

stress-70 protein (HSPA9), a mitochondria-related protein, as a risk

factor for Parkinson’s disease (PD) and Alzheimer’s disease (AD)

(Chung et al., 2017); 4) cytochrome b-c1 complex subunit 2

(UQCRC2), whose binding to Aβ leads to mitochondrial

dysfunction (Nakamura et al., 2009); 5) major prion protein

(PRNP) that participates in the neurotoxicity caused by Aβ;
when it is knocked out, the synaptic defects of AD mice are

rescued (Gimbel et al., 2010; Salazar et al., 2017); and 6)

cancerous inhibitor of PP2A (CIP2A) that promotes AD

pathology by inhibiting PP2A activity (Shentu et al., 2018). The

decreased candidate proteins also include: 1) insulin-like growth

factor-binding protein 3 (IGFBP3), which affects the course of AD

by regulating the level of free IGF in the brain (Jogie-Brahim et al.,

2009); 2) corticotropin-releasing factor-binding protein (CRHBP),

which is involved in CRF-mediated

hypothalamic–pituitary–adrenal (HPA) axis imbalance associated

with AD under chronic stress (Vandael and Gounko, 2019); 3) xaa-

FIGURE 3
Protein–protein interaction network of DEPs in T2DM-MCI patients analyzed by a comprehensive analysis. (A,B) Volcano plot for the identified
plasma proteins in T2DM-nMCI vs. Ctrl and T2DM-MCI vs. T2DM patients. Red and green dots indicate significantly up-regulated and down-
regulated proteins, respectively. (C) All the differentially expressed proteins (DEPs) were visualized and mapped using Cytoscape 3.7.1. STRING
analyses of hippocampal DEPs. Red dots indicate key regulatory nodes. (D) PPI modules associated with AD high-risk genes. Based on existing
database experiments and data, STRING online analysis was used to obtain APP, MAPT, APOE, PSEN1/2, and DE protein–protein interactionmodules
(interaction score >0.4). (E) Relative expression levels of key proteins in T2DM-nMCI and T2DM-MCI. Data are presented as mean ± SEM. *p < 0.05,
**p < 0.01, and ***p < 0.001 vs. Ctrl group; #p <0.05 and ##p <0.01 vs. T2DM-nMCI group.
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Pro dipeptidase (PEPD), whose deficiency is associated with

immune malfunction and intellectual disability (Kitchener and

Grunden, 2012); and 4) beta-glucuronidase (GUSB), a biomarker

related to memory and AD (Niculescu et al., 2019).

Collectively, these candidate proteins may have great

potential for distinguishing T2DM-nMCI and T2DM-MCI.

Validation of the candidate proteins by
ELISA

We first validated the candidate proteins CIP2A, PRNP, VCP,

CRHBP, IGFBP3, and PEPD in T2DM-nMCI (n = 30) and T2DM-

MCI (n = 30) patients. Compared with T2DM-nMCI, the protein

levels of CIP2A, PRNP, and CRHBP were significantly increased in

T2DM-MCI, while the level of VCP was decreased (Figures 4A–D).

Consistent with the proteomics results, PEPD and IGFBP3 showed a

decreasing trend in a limited number of samples (Figures 4E,F).

Using Pearson’s analysis, we found that changes of CIP2A

(r = −0.257, p = 0.048, Figure 5A), PRNP (r = −0.285, p = 0.028,

Figure 5B), CRHBP (r = −0.345, p = 0.007, Figure 5C), and VCP (r =

0.268, p = 0.038, Figure 5D) were correlated with the MMSE score.

A previous report showed that the ratio of plasma Aβ42/
40 was decreased in AD patients (Nakamura et al., 2018). We also

detected the plasma Aβ levels in T2DM patients with or without

MCI. We observed that the plasma level of Aβ42 and Aβ42/
40 were significantly increased in T2DM-MCI compared with that

of T2DM-nMCI patients, while no difference in Aβ40 was shown
(p = 0.174, Figures 6A–C). Additionally, the changes in PEPD and

VCP were negatively correlated with Aβ42/40, though the

correlation coefficient was relatively low (PEPD: r = -0.267, p =

0.039; VCP: r =−0.264, p = 0.042, Figures 6D,E). An elevated

platelet GSK-3β activity could discriminate T2DM-MCI from

T2DM-nMCI (Xu et al., 2016). Here, we also observed that

platelet GSK-3β-total and the ratio of GSK-3β-total to GSK-3β-
S9 (rGSK-3β, activity) were significantly increased in T2DM-MCI

compared with those of T2DM-nMCI patients, while no difference

was observed in GSK-3β-S9 (inactive form, p = 0.484, Figures

6F–H). Both Aβ42/40 and rGSK-3β were moderately correlated

with the MMSE score (Aβ42/40: r = −0.363, p = 0.004; rGSK-3β:
r = −0.598, p < 0.001, Figures 6I,J), suggesting their association

with cognitive decline.

These data together indicate that periphery CIP2A, PRNP,

VCP, CRHBP, Aβ42/40, and rGSK-3β could be biomarkers for

cognitive decline in T2DM patients.

Machine learning shows diagnostic
efficacy of the potential biomarkers

Then, we used leave-one-out (LOO), a classic machine learning

method, to build the most accurate and rigorous diagnostic model

for cognitive decline in T2DM patients. By permutation and

combination of each biochemical index, only one sample was

FIGURE 4
Validation of proteomics-identified plasma candidate biomarkers by ELISA. (A–F) Levels of plasma-derived CIP2A (A), PRNP (B), CRHBP (C), VCP
(D), PEPD (E), and IGFBP3 (F) in T2DM-nMCI and T2DM-MCI. *p < 0.05 and **p < 0.01 vs. T2DM-nMCI group.
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retained as the verification set at each time, and the remaining

samples were all used for the training set. Therefore, a total of

3,780 cycles of verification were carried out. After LOO full cross-

validation, we found that the combination of PRNP, CRHBP, VCP,

and rGSK-3β(T/S9) had the highest diagnostic efficiency with a

maximum receiver operating characteristic (ROC) (AUCROC =

0.927), accuracy of 83.3%, recall of 0.833, precision of 0.833, F1 score

of 0.833, and the precision recall curve (AUCPR) of 0.926 (Figures

7A–D; Supplementary Table S3). After this rigorous algorithm,

rGSK-3β was identified as the most valuable single diagnostic

biomarker, with an AUCROC of 0.870, accuracy of 75.0%, recall

of 0.733, precision of 0.759, F1 score of 0.746, and AUCPR of 0.876

(Figures 7A–D), which was consistent with our previous large

cohort studies (Xu et al., 2016).

Discussion

The early diagnosis of AD has been an unsolved problem,

which severely impedes new drug development. In addition to

different types of neuropsychological scales that cannot avoid

subjective bias from the operators, the current laboratory

methods for AD diagnosis were mainly aimed at measuring

Aβ deposition and tau hyperphosphorylation, such as

measuring Aβ and tau in cerebrospinal fluid by ELISA, in the

brains using MRI and PET (Frisoni et al., 2010; McKhann et al.,

2011; Rice and Bisdas, 2017). However, due to technical and cost

reasons, these methods are difficult for popularization.

Additionally, it is always too late to cure when patients have

already started to feel/show AD symptoms. Thus, finding fast,

convenient, and cost-effective biomarkers in high-risk

populations is important for a reliable early diagnosis of AD.

Patients with T2DM are at high risk to suffer from AD.

Periphery plasma or platelet proteomics has unique advantages

in biomarker screening (Bader et al., 2020; Wang et al., 2020).

Here, we used TMT-LC-MS/MS techniques to analyze the

plasma protein expression profiles in T2DM-MCI and T2DM-

nMCI patients. Among 1,320 identified proteins, 752 showed

good reproducibility and 53 DEPs were significantly different in

two groups. Bioinformatics analysis showed that the DEPs were

FIGURE 5
Correlation of the potential marker protein levels with MMSE. (A–D) Correlations between CIP2A or PRNP or CRHBP or VCP levels and MMSE
scores.
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involved in multiple CNS-related diseases and amyloid

neuropathies, and the changes in SERPINA1, PRNP, VCP,

and APOC4 had a strong correlation to high-risk genes for

AD. In addition, the deregulated glucose metabolism in

diabetic patients was closely associated with FBP1 and

ALDOB, the molecules involved in glycolysis/gluconeogenesis.

By integrating proteomics and machine learning data, we

identified that changes in PRNP, CRHBP, VCP, and rGSK-3β
had the greatest power to identify cognitive decline in T2DM

patients.

Amyloid neuropathies were remarkably enriched in the

gene–disease network (DisGeNET). Our data showed that

plasma Aβ42/40 was significantly increased in T2DM-MCI

compared with T2DM-nMCI, which may be related to amyloid

neuropathies protein CIP2A. As an endogenous PP2A inhibitor,

CIP2A promotes tau and APP phosphorylation and Aβ
production (Shentu et al., 2018). More generally, it is believed

to promote the proliferation of cancer cells, the growth of non-

adherent cells, and anti-apoptosis (Soofiyani et al., 2017). In

addition, SERPINA1 that can bind with Aβ (Kouza et al., 2017)

was significantly increased in T2DM-MCI compared with T2DM-

nMCI. PRNP, also known as PrPc, mediates the neurotoxicity

caused by Aβ, and conditional knockout of PRNP can reverse

memory deficits and synaptic disorders in ADmice (Gimbel et al.,

2010; Salazar et al., 2017). It should be noted that PRNPplays a role

in reno-protective effects and kidney iron uptake andmay also be a

diagnostic marker for kidney-related diseases (Yoon et al., 2021).

VCP is located in different organelles and plays important roles in

autophagy, mitochondrial disorders, endoplasmic reticulum (ER)-

stress, andDNAdamage repair (Meyer et al., 2012).We found that

the amyloid neuropathy-related proteins VCP, SERPINA1, and

PRNP had strong connectivity with APP and other AD high-risk

genes, such as MAPT, APOE, and PSEN1/2, in the protein

interaction modules. VCP mutation decreases its enzyme

activity, which retards the tau degradation pathway (Darwich

et al., 2020).

Among the CNS disorder-associated proteins identified by

proteomics, such as CRHBP, IGFBP3, PEPD, and GUSB, CRHBP

was significantly increased in T2DM-MCI compared with

T2DM-nMCI patients verified by ELISA. The level of

FIGURE 6
Elevated plasma Aβ42/40 and platelet rGSK-3β and their correlations with MMSE in T2DM-MCI patients. (A–C) Comparison of plasma Aβ1-40,
Aβ1-42, and Aβ42/40 in T2DM-MCI vs. T2DM-nMCI. (D,E) Correlation of the PEPD or VCP level with the Aβ42/40 ratio. (F–H)Comparison of platelet
GSK-3β-total, GSK-3β-S9, and rGSK-3β (total/S9) in T2DM-MCI vs. T2DM-nMCI. *p <0.05 and **p < 0.01 vs. T2DM-nMCI subjects. (I,J)Correlation of
Aβ42/40 or rGSK-3β with MMSE scores (Aβ42/40 and MMSE: r = −0.363, p = 0.004; rGSK-3β and MMSE: r = −0.598, p < 0.0001).
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CRHBP-mediated corticotropin-releasing factor (CRF) was

significantly decreased in the cortex and cerebrospinal fluid of

AD patients (Bissette et al., 1985; May et al., 1987); therefore,

downregulating CRHBP may increase the level of free CRF,

which could be an attractive direction for the treatment of

AD (Vandael and Gounko, 2019). Indeed, a study on the AD-

like animal model had shown that targeting CRHBP could

improve brain functions with restoration of learning and

memory (Behan et al., 1997). These data together suggest that

the increase of CRHBP may contribute to cognitive decline in

T2DM patients by inhibiting CRF.

Acidosis may increase the risk of dementia in T2DM patients

(Chen et al., 2019). Our data showed that the glycolysis/

gluconeogenesis-related proteins FBP1, ALDOB, and

UQCRC2 were dysregulated and enriched in the metabolic

acidosis process in T2DM-MCI patients. As a rate-limiting

enzyme, FBP1 catalyzes the reaction of fructose 1,6-

bisphosphate to fructose 6-phosphate, while the deficiency of

FBP1 increases the levels of uric acid and hyperalaninemia with

the consequence of metabolic acidosis or ketosis (Bijarnia-Mahay

et al., 1993). ALDOB catalyzes the conversion of fructose 1, 6-

diphosphate into glyceraldehyde-3P, and lack of aldehyde acetal

leads to the accumulation of F1-P substrates (Bouteldja and

Timson, 2010). UQCRC2 is a subunit of the mitochondrial

electron transport chain complex III, which affects the electron

transport process and ATP generation (Fernandez-Vizarra and

Zeviani, 2018). Thus, the omics data reveal that the reduced

FBP1 and ALDOB and increased UQCRC2 can contribute to

cognitive decline in T2DM patients through the mechanisms

involving deregulated glucose metabolism and acidosis.

Together, we revealed by proteomics and bioinformatics

analyses that the peripheral plasma molecular alterations

could reflect the CNS disorders, and four molecules (namely,

CIP2A, PRNP, CRHBP, and VCP) were identified to be closely

associated with AD pathologies. Further studies by ELISA and

Peterson’s analyses validated that the upregulation of CIP2A,

FIGURE 7
High performance discrimination of T2DM-MCI from T2DM-nMCI achieved by machine learning. (A) ROC area and corresponding accuracy
based on the leave-one-out (LOO) algorithm in the validation set. The red box shows the selected protein with high area under the curve (AUC) and
accuracy for the blinded test set. (B) Corresponding protein and various parameters for evaluating the efficiency of the biomarkers under each best
combination. Red numbers represent the corresponding protein. (C,D) Based on the LOO algorithm, the area under the receiver operating
characteristic curve (AUCROC) and precision–recall curve (AUCPR) for each best combination of biomarkers. AUCROC was based on the true-
positive rate and false-positive rate: True-positive rate = [true-positive/(true-positive + false-negative)], False-positive rate = [false-positive/(true-
negative + false-negative)]. PRAUC was obtained based on precision and recall: Precision = [true-positive/(true-positive + false-positive)]; Recall =
[true-positive/(true-positive + false-negative)]. In addition, F1 score = 2 * (precision * recall)/(precision + recall).
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PRNP, and CRHBP and downregulation of VCP were indeed

correlated to cognitive decline in T2DM patients. The final leave-

one-out (LOO) cross-validation confirmed that PRNP, CRHBP,

and VCP combined with elevated rGSK-3β could most effectively

distinguish T2DM-MCI from T2DM-nMCI with an AUC of

0.927 and accuracy of 0.833.
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