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The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is
crucial for biochemical and biomechanical cues that are required for tissue
morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the
heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-
uniform strain transfer and alters the magnitude of forces sensed by cells in articular and
fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully
established how these nonuniform forces ultimately influence cartilage health,
maintenance, and integrity. To comprehend tissue remodelling in health and disease, it
is fundamental to investigate how these forces, the ECM, and cells interrelate. However,
not much is known about the relationship between applied mechanical stimulus and
resulting spatial variations in magnitude and sense of mechanical stimuli within the
chondrocyte’s microenvironment. Investigating multiscale strain transfer and
hierarchical structure-function relationships in cartilage is key to unravelling how cells
receive signals and how they are transformed into biosynthetic responses. Therefore, this
article first reviews different cartilage types and chondrocyte mechanosensing. Following
this, multiscale strain transfer through cartilage tissue and the involvement of individual
ECM components are discussed. Finally, insights to further understand multiscale strain
transfer in cartilage are outlined.
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INTRODUCTION

All tissues in the body contain cells and a well organised extracellular matrix (ECM) compartment.
The ECM is tissue-specific and the constituents, such as collagens, proteoglycans (PGs), and
elastin, vary between different tissues. The ECM provides physical support and scaffolding for the
cells, and also regulates crucial biochemical and biomechanical cues that are required for tissue
morphogenesis, differentiation, growth, and homeostasis (Frantz et al. 2010; Theocharis et al.
2016). The cells within these tissues establish the ECM during development, maintain it in healthy
tissue, and repair it in response to disease and injury (Lu et al. 2011; Humphrey et al. 2014). This
reciprocal relationship between the cells and the ECM is based on the ability of cells to sense
physical signals and transduce them into biochemical responses. Converting mechanical signals
into chemical signals is called mechanotransduction (Mofrad et al. 2010; Wang 2017). Cross talk
between cells and ECM creates a local environment where matrix stiffness and the physical forces
sensed by the cells play an essential role in biological functions of cell and tissue physiology, and
lead to constant tissue remodelling. Given the finite life span of cells and ECM components, this
remodelling ensures a homeostatic balance in the tissue, e.g. structural integrity and functionality.
This homeostasis is thus achieved by balanced matrix degradation and deposition of new
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constituents. Disruption of these homeostatic processes leads to
tissue degeneration, fibrosis or other pathologies.

Cartilage is a connective tissue providing mechanical and
structural support in different anatomical locations in the
human body. Its ECM is produced by the relatively scarce
specialised cells, chondrocytes, and is mainly composed of
PGs, different collagen types, and elastin. It is classified into
three different types, hyaline cartilage (articular joints, nose, ribs),
elastic cartilage (ears, larynx), and fibrocartilage (menisci,
intervertebral discs). These different types vary in their
histological and physiological appearance and also in the
magnitude of physical daily load they experience (Homicz
et al. 2003; Heinegard et al. 2011; McNulty et al. 2015;
Nimeskern et al. 2015). Furthermore, different cartilage types
have a distinct ECM composition, with a highly heterogeneous
accumulation of different proteins, molecules, and fibres. This
variation in tissue composition between cartilage types leads to
heterogeneous transfer of mechanical stimuli and influences cell
morphology and biochemical response. Our knowledge about the
mechanoresponse of cartilage has tremendously increased. Single
cell responses to mechanical stimuli are well studied in health and
disease. However, mechanical signals do not originate in the
immediate vicinity of the cells. Rather they result from
movements of the whole body and forces from body weight
and joint movement. Even though we know well how
chondrocytes respond to mechanical stimuli, we do not fully
understand how these signals reach the cells, as it is a multiscale
process. Furthermore, it is not well known how different ECM
compositions and arrangements influence load transfer to cells.
Specifically, how heterogeneous strain in the ECM influences
chondrocytes and therefore long-term remodelling of cartilage in
both health and disease, is not known.

Understanding these processes and mechanisms is as critical
to progress in tissue regeneration and repair strategies as it is to
engineering cartilage tissues. Gaining further insights into
multiscale strain transfer and mechanotransduction in
different cartilage types would provide a benchmark by which
to compare tissue engineered constructs, and feed into developing
effective treatment strategies to address cartilage pathologies.
Therefore, this article first reviews different cartilage types and
chondrocyte mechanosensing. Following this, multiscale strain
transfer through cartilage tissue and the involvement of
individual ECM components are discussed. Finally, insights to
further understand multiscale strain transfer in cartilage are
outlined.

DIFFERENT CARTILAGE TYPES

Hyaline Cartilage
In hyaline cartilage, the so-called ‘solid’ phase of the ECM is
mainly composed of collagen II (15%–22%) and PGs (4%–7%).
The PGs are comprised of different glycosaminoglycans (GAG)
chains attached to a core protein. The fluid phase on the other
hand consists of up to 80% water (Eyre 2002; Heinegard 2009;
Sophia Fox et al. 2009). This water content is a result of the fixed
charge density created by the negatively charged sulphated GAGs.

Their charge attracts cations which leads to osmotic pressure in
the tissue. As the PGs with the attached GAGs swell, they are
physically limited by the collagen network which gives articular
cartilage a high compressive resilience. This feature is further
increased under physical load as the repulsive forces of the PGs
are pushed closer together and swelling is hindered by the tension
in the collagen fibres (Roth et al. 1980). This effect enables
articular cartilage to withstand significant loads up to multiple
times body weight (Mansour, 2003; Lu et al. 2009; Sophia Fox
et al. 2009; Thielen et al. 2019). The experienced physical load of
the cartilage varies depending on anatomical location.

Articular cartilage is divided into a superficial zone, a middle
zone, and a deep zone, which vary in their ECM composition, cell
orientation and morphology (Figure 1). In the superficial zone
chondrocytes are more abundant and have a flattened, elongated
form compared to the deeper zones where they are less densely
populated. In deeper zones the chondrocytes are more spherical
and are arranged in columns. The PG content in articular
cartilage increases with depth. The collagen content however
remains constant with increasing depth, but fibres change from
being arranged parallel to the surface in the superficial zone to a
perpendicular orientation in the deeper zones (Eggli et al. 1988;
Guilak, 1995;Wong et al. 1996; Poole et al. 2001; Athanasiou et al.
2009; Quinn et al. 2013). Elastin is present in the superficial zone
of articular cartilage (Mansfield et al. 2009). The elastin fibres run
parallel to the surface and roughly in the same direction as the
collagen fibres (Yeh et al. 2005; Yu et al. 2010).

All chondrocytes in the tissue are surrounded by a PG-rich
pericellular matrix (PCM) (Figure 1) (Poole 1997). The PCM has
a crucial function in absorbing, redistributing, and transmitting
mechanical forces in articular and meniscal cartilage (Poole 1997;
Sanchez-Adams et al. 2013; Gilbert et al. 2018) (Millward-Sadler
et al. 2004). It shields chondrocytes from extensive stress, and
because it is a direct link between the cells and the ECMmakes an
important contribution to transmitting biomechanical signals to
the cells (Quinn et al. 1998). The PCMhas a high concentration of
aggrecan and other PGs such as perlecan, biglycan and decorin
which play an important role in its integrity (Gomes et al. 2002;
Vincent et al. 2007;Wilusz et al. 2014; Shu et al. 2016). In addition
to PGs, collagen type VI in articular cartilage is highly
concentrated in the PCM and plays an important role in its
mechanical integrity. It connects the chondrocytes to the PCM
through β-integrin receptors and transmembrane PGs
(Marcelino et al. 1995; Wilusz et al. 2012). The PCM in the
articular cartilage superficial zone also contains elastin and lipids
(Poole 1997; Mansfield et al. 2009). As the tensile and shear
stresses are higher in this zone, this composition would protect
the chondrocytes from these stresses.

Fibrocartilage
Located in the knee joint, the menisci, composed of
fibrocartilage (Figure 1), are responsible for increasing the
contact area and distributing forces across the joint. In
contrast to hyaline and elastic cartilage, the main collagen
type in the menisci is type I (Fox et al. 2015). Collagen fibres
are oriented circumferentially in the interior layers of meniscal
cartilage compared to radially oriented fibres in the outer
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regions (Amis 2010). The circumferential alignment of these
collagen fibres contributes to the load bearing properties of the
menisci by converting compressive axial stresses to tensile hoop
stresses (McDermott et al. 2008; Sanchez-Adams et al. 2013; Fox
et al. 2015). Like articular chondrocytes, cells in meniscal
cartilage differ in their appearance depending on their
location within the tissue. Cells in the outer region of
meniscal cartilage have an oval, fusiform shape, whereas cells
in the inner region have a round shape (Hellio Le Graverand
et al. 2001; Makris et al. 2011). In contrast to the large amount of
collagen type I in outer regions of the meniscus, the inner region
has more collagen type II (60%) than type I (40%) (McDermott,
2010; Sanchez-Adams et al. 2013). PG-rich regions are
interspersed between these collagen fibres, leading to a highly
inhomogeneous tissue (Upton et al. 2008; Han et al. 2013; Han
et al. 2016). Similarly to the PCM in hyaline cartilage, the PCM
in meniscal cartilage is mainly composed of perlecan and
collagen type VI (Sanchez-Adams et al. 2013) (Figure 1).

Elastic Cartilage
Elastic cartilage is not exposed to large biomechanical forces, as it
is found in the head and neck region. It contains a high amount of
elastin which is arranged around the chondrocytes and
contributes to maintaining anatomic shape via complex
heterogeneous arrangement of tensile compressive fibre
networks (Figure 1) (Culav et al. 1999; He et al. 2013;
Nimeskern et al. 2016). Elastic ear cartilage is arranged in

different zones as well. Similar to articular cartilage, the
chondrocytes in the outer regions are smaller and flatter than
the cells in the intermediate and central zones, where the
chondrocytes are larger and further apart (Keith et al. 1977;
Jessop et al. 2016). Collagen type II in auricular cartilage is
arranged together with a dense elastin fibre network
surrounding the chondrocytes in a honeycomb like structure
(Chen et al. 2014; Bos et al. 2018). The composition of the PCM of
elastic cartilage has not been reported.

Despite their differences in ECM structure, all three cartilage
types are avascular (except the outer region of the menisci),
aneural, and alymphatic, resulting in a tissue with limited
intrinsic repair capabilities (Khan et al. 2008; Makris et al.
2011). These variations in the cartilage ECM make it a highly
heterogeneous tissue on a macrostructural as well as
microstructural level. These structural differences in cartilage
types directly influence the mechanical environments
experienced by the chondrocytes and this heterogeneity leads
to nonuniform strain and stress in cartilage. This in turn, changes
how mechanical signals are transmitted and received by the cells
in these different tissues.

CHONDROCYTE MECHANOSENSING

Chondrocytes establish the cartilage ECM during development
and maintain it in healthy tissue (Lu et al. 2011; Humphrey et al.

FIGURE 1 | Extracellular matrix heterogeneity of different cartilage types. The three cartilage types vary in ECM composition and arrangement. Elastic cartilage and
hyaline articular cartilage are arranged in different zones with the chondrocyte shape becoming smaller and flatter towards the outer region and superficial zone,
respectively. Proteoglycan (PG) concentration articular cartilage in the knee joint increases with depth of the tissue. In meniscal cartilage (fibro cartilage) the PG
concentration is highest in the outer region. The pericellular matrix (PCM) surrounds the chondrocytes and contains a high amount of PGs such as aggrecan and
perlecan, and collagen type VI in articular and meniscal cartilage.
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2014). This reciprocal relationship between the chondrocytes and
ECM is based on their ability to sense physical signals and
transduce them into biochemical responses, making them
highly mechanosensitive. This conversion of mechanical
signals into chemical signals is called mechanotransduction
(Mofrad et al. 2010; Wang 2017) and this allows chondrocytes
to sense changes in ECM properties. The response of articular
chondrocytes to mechanical stimuli is well studied. They have
several cell surface mechanoreceptors, e.g. ion channels, integrin
receptors, and primary cilia, that are sensitive to changes in
intrinsic tissue stiffness and external tissue compression
(Figure 2) and initiate intracellular signalling cascades that
modulate gene expression leading to ECM remodelling
(Gilbert et al. 2018). Furthermore, intracellular deformation
and signalling molecules enable responses to changes in
mechanical environment.

Ion Channels
Ion channels such as transient receptor potential vanilloid 4
(TRPV4) and Piezo channels are Ca2+-permeable and situated
in the plasma membrane where they play a role in mechanically
induced Ca2+ signalling. Mechanical perturbations such as changes
in membrane tension, lipid bilayer distortion and osmotic stress
activate these channels. This facilitates Ca2+ influx into the
chondrocyte and initiates intracellular signalling pathways
(Guilak et al. 1999; Pingguan-Murphy et al. 2006). TRPV4 is
highly expressed in chondrocytes and promotes anabolic

responses. It provides an essential link between mechanical
loading and ECM synthesis (Phan et al. 2009; O’Conor et al.
2014; Zelenski et al. 2015). Piezo 1 and 2 channels however are
involved in transducing hyperphysiological mechanical stimuli
resulting from injuries or overload (Lee et al. 2014; Lee et al.
2017). Mechanical integrity of the ECM and mechanical stimuli
experienced by the cells are therefore tightly related to the resulting
cellular response.

Integrins
Integrins also play an important role in chondrocyte
mechanosensing. They are a family of transmembrane proteins
comprised of α and β subunits. Their large extracellular domains
bind to PCM ligands such as fibronectin and collagen type VI,
whereas the cytoplasmic domains bind to the actin skeleton of the
chondrocytes, making integrins a transmembrane link between
ECM molecules and the cytoskeleton (Millward-Sadler et al.
2000; Hynes 2002; Wolfenson et al. 2013). Mechanical
stimulation activates integrins, and also increases their
expression in chondrocytes (Lucchinetti et al. 2004).
Furthermore, cell death resulting from cartilage injuries and
overload has been associated with integrin-mediated signalling.
Integrins transduce mechanical signals from the ECM to the
chondrocytes and are sensitive to changes in mechanical
properties and stimuli.

The activation of integrins can result in activation and
phosphorylation of mitogen-activated protein kinases

FIGURE 2 | Different cell membrane receptors and signalling molecules are involved in chondrocyte mechanotransduction. Transmembrane ion channels induce
intracellular Ca2+ signalling upon mechanical stimulation of cartilage and regulate extracellular matrix (ECM) biosynthesis. Integrins serve as a link between ECM
molecules and the cytoskeleton and lead to an activation of the MAPK pathway. Signalling molecules such as Wnt activate intracellular signalling cascades that are
important for cartilage homeostasis.
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(MAPKs). MAPKs comprise ERK1/2, p38 and JNK (Fitzgerald
et al. 2008). Their activation leads to many intracellular processes
like cell division, differentiation, apoptosis, and transcription. A
shear strain of 3% applied at 0.1 Hz for up to 24 h has led to an
activation of ERK1/2 and p38K in bovine cartilage explants. The
inhibition of ERK1/2 or p38K however abolished the
mechanically induced transcription of aggrecan and type II
collagen (Fitzgerald et al. 2008). JNK is thought to have role
in load-induced matrix anabolism. Cyclic loading at 0.33 Hz for
up to 3 h induced JNK activation together with increased PG
synthesis in human chondrocyte monolayers (Zhou et al. 2007).

Primary Cilia
Primary cilia are microtubule-based structures extending from
the chondrocyte surface into the PCM where they sense matrix
deformation and osmotic changes through integrins in the
primary cilia membrane and extracellular matrix components,
and through mechanosensing ion channels. (McGlashan et al.
2006; Ruhlen et al. 2014). In chondrocytes under 15%
compressive strain primary cilia were involved in upregulated
PG synthesis (Wann et al. 2012). Furthermore, they have been
shown to transduce mechanical signals via activation of the
MAPK/ERK pathway. A loss of cilia leads to inhibition of
downstream cartilage matrix gene expression such as type II
collagen (COL-II), type X collagen (COL-X) and BMP-2 (Irianto
et al. 2014). As a result, primary cilia play a crucial role in cartilage
ECM formation.

Intracellular Deformation
Cytoskeletal organisation and cell shape likewise influence
chondrocyte metabolism and activate intrinsic signalling
(Ingber et al. 1994; Guilak 1995). Tissue compression as well
as changed mechanical properties can lead to compressive
deformation of the cellular components, including the nucleus,
endoplasmic reticulum, cytoskeleton, and integrins (Guilak 1995;
Mobasheri et al. 2002; Wong et al. 2003; Szafranski et al. 2004).
These events either lead to direct changes in gene expression or
protein synthesis or induce other signalling cascades like
intracellular calcium signalling (D’Andrea et al. 2000; Guilak
et al. 2000; Roberts et al. 2001; Martins et al. 2012; Hall 2019).

The actin skeleton and the vimentin network are responsible
for cell integrity. Disrupting actin leads to a 90% reduction in cell
stiffness (Trickey et al. 2004). Following actin disruption, nuclear
height and shape are severely changed, which is likely to have an
effect on the biochemical response of the cells (Guilak 1995;
Martins et al. 2012). Furthermore, the actin skeleton is highly
sensitive to mechanical stimulation. High hydrostatic pressure
(15–30 MPa) can break down the actin network, and dynamic or
static loading has resulted in actin remodelling in bovine
chondrocyte monolayers (Parkkinen et al. 1995). This
sensitivity of actin to loading and the resulting changes in cell
stiffness likely influence chondrocyte gene expression and protein
biosynthesis. The vimentin network is prominent in weight-
bearing areas of rabbit articular cartilage, whereas it is
disassembled in unloaded rat articular cartilage explants (Eggli
et al. 1988; Durrant et al. 1999). This suggests a similarly

important role of vimentin in chondrocyte homeostasis (Blain
et al. 2006).

Wnt Signalling
Biomechanical effects in cartilage are mediated through
activating and/or suppressing intracellular signalling pathways.
Wnts are a family of signalling molecules that are essential during
chondrogenesis and chondrocyte homeostasis (Tamamura et al.
2005; Yuasa et al. 2008). Wnt is bound to the ECM, mainly to
heparan sulphate, a specific GAG chain (Takada et al. 2017)and
its activation is thought to occur through mechanical as well as
enzymatic activity (Scholtes et al. 2018; Thielen et al. 2019). The
downstream effects of Wnt ligands include translocation of
b-catenin to the nucleus to effect transcription, regulation of
Ca2+ release, and cytoskeleton reorganisation. In vivo both
excessive activation and lack of Wnt leads to cartilage
breakdown, therefore the mechanoregulation of Wnt signalling
is essential for cartilage integrity and homeostasis (Zhu et al.
2008; Zhu et al. 2009; Nalesso et al. 2011).

Mechanosensing in Meniscal Cartilage
How chondrocytes in meniscal cartilage respond to mechanical
forces remains largely unknown. Like articular chondrocytes,
meniscal chondrocytes are highly mechanosensitive.
Physiological compression of porcine ex vivo meniscus
explants at a strain rate of 10% increases aggrecan gene
expression (Aufderheide et al. 2006; Zielinska et al. 2009).
However, 20% strain induces a catabolic response and
increased PG breakdown (McHenry et al. 2006; Zielinska et al.
2009). Even though we have gainedmore insight into biochemical
activities in meniscal cartilage under load, many underlying
mechanisms still need to be investigated.

Mechanosensing in Elastic Cartilage
Elastic cartilage is not exposed to constant high loading, and so,
although they are mechanosensitive, mechanotransduction
processes in elastic cartilage chondrocytes have not been
established. When subjected to dynamic compression, porcine
auricular chondrocytes upregulate collagen I, collagen II, and
aggrecan gene expression (Chung et al. 2008); however, hese cells
were seeded in hyaluronan hydrogels which do not mimic the
native ECM components of elastic cartilage. An ECM that lacks
elastin may therefore not be an ideal scaffold to study cellular
response of chondrocytes from elastic cartilage. The influence of
this distinct ECM in auricular cartilage on the chondrocytes
remains to be investigated.

We have a good understanding of how articular chondrocytes
respond to mechanical stimuli in vitro and which
mechanosensitive channels, receptors and signalling pathways
are activated upon stimulation. However, it is also essential to
comprehend how stress and strain resulting from movement and
body weight are transferred through the ECM to the cells in situ.
Mechanical stimulation upregulates ECM biosynthesis and
deposition. Therefore, there is likely a direct relationship
between ECM composition, mechanical properties and
resulting cellular response which should be further explored.
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STRAIN TRANSFER AND INDIVIDUAL ECM
COMPONENTS

Body movements are complex resulting in different stresses and
strains in all cartilage tissues. In the knee strains in articular
cartilage can reach up to around 20% depending on the
movements and are higher in more load bearing regions
(Eckstein et al. 1999; Liu et al. 2010; Coleman et al. 2013).
Even though compression is the main force experienced by
joints, their movements also include sliding and rotation.
Therefore, articular cartilage is also subjected to shear forces
(Wong et al. 2008).

Meniscal cartilage is important for absorbing shock and
distributes more than 50% of the axial load on the knee joint
(Fukubayashi et al. 1980; Fithian et al. 1990). The strains
measured in meniscal cartilage under physiological loading are
in the range of 3–8% (Kolaczek et al. 2016).

Strain transfer involves organs, tissues, and cells, originating at
a macro level, then travelling through the tissues to reach the cells
and elicit a response. The cartilage ECM is highly heterogeneous
(Figure 1) ensuring that force transfer is a complex, nonlinear
and nonuniform process.

Bulk Cartilage Tissue Strain is
Heterogeneous
The heterogeneity in articular and fibrous cartilage leads to non-
uniform compressive strain gradients that are depth-dependent
(Eckstein et al. 1999; Erne et al. 2005; Upton et al. 2008). Articular
cartilage explants exhibit distinct depth-dependent strain
distributions in response to uniaxial compression. The tissue
strain in the superficial layer is significantly higher compared to
strain in the middle and deep zones in response to tensile and
compressive forces (Erne et al. 2005; Mansfield et al. 2015). The
higher compressive modulus in deeper zones of articular cartilage
correlates with the higher PG content in these zones. Swelling
pressure determines the tissue’s response to compression.
Therefore, in the superficial zone with a lower PG
concentration, water is lost more easily as the swelling
pressure is lower (Chen et al. 2001).

In meniscal cartilage, strain transfer through the tissue was
also heterogeneous and tissue specific (Han et al. 2013). The
strain was less attenuated through the tissue at low applied strains
(3%–6%) and more attenuated with higher applied
strains (6%–15%).

In non-load bearing cartilage, i.e., elastic cartilage, the specific
strain distribution has not been reported. Only the mechanical
properties of the bulk tissue have been analysed (Nimeskern et al.
2016; Chang et al. 2020).

Despite our good understanding of the mechanics of different
zones, the underlying mechanisms and micromechanics of the
local tissue composition around the cells remain to be fully
investigated. A wide range of cellular responses in the same
zone of articular cartilage indicates that cells might not
experience the same mechanical loading on a microscale level
(Mansfield et al. 2015; Kwon et al. 2016). Microscale strain is also
highly heterogeneous in fibrocartilage (Figure 3) (Mansfield et al.

2015; Han et al. 2016). Looking beyond bulk tissue mechanics has
revealed mechanical loading produces highly heterogeneous
microscale strains potentially influencing chondrocyte
responses and tissue remodelling. Investigating this local
microscale environment is key to unravelling how forces from
tissue scale are transmitted to cell level. Therefore, exploring the
contribution of the individual ECM components and their
interaction under bulk load is essential to understand the
micromechanics and investigate the influence of heterogeneous
strain on tissue health and disease.

Collagen
Collagen fibres in articular cartilage have been widely explored in
relation to tissue mechanics. They are able to resist very high
tensile loads. Tensile modulus is largest in the direction parallel to
the long axis of collagen fibres and up to 5 times higher in the
superficial zone of articular cartilage compared to deeper zones
(Figure 1). Tensile modulus is related to the degree of
crosslinking between collagen fibres (Huang et al. 2005;
Responte et al. 2007). In the superficial zone of articular
cartilage, where collagen fibres are parallel to the surface, the
strain following tensile load is highly heterogeneous. Tensile
strain of 6% either applied along the main axis of the collagen
fibres or transverse to the main collagen axis in the superficial
zone resulted in heterogeneous strain distribution (Mansfield
et al. 2015). This heterogeneity in the tensile strain field is
thought to be due to the leaf-like organisation of the collagen
layers (Nickien et al. 2013; Mansfield et al. 2015).

Proteoglycans
Under compression, the swelling pressure resulting from the
GAGs is resisted by the tensile forces of the collagen fibres.
The PG concentration increases with tissue depth (Figure 1)
and correlates with the compressive modulus (Mansfield et al.
2015). On a microscale level, while Irwin et al. observed only a
weak correlation between GAG content and strain magnitude
(Irwin et al. 2021) they acknowledged it is difficult to distinguish
GAGs from collagen fibres using Raman spectroscopy and so the
measured strain might not have resulted from GAGs solely.
Furthermore, strain transfer in PG-rich regions in meniscal
cartilage was significantly attenuated compared to fibre rich
regions which suggests an intimate and direct involvement of
the PGs in strain attenuation and distribution (Han et al. 2016).
Diseases like osteoarthritis are related to PG loss and impaired
mechanical tissue integrity, which leads to a cascade of
deteriorating events. Therefore, a clear understanding of the
role of PGs in stress and strain transfer at the microscale is
important.

Elastin
The elastin fibres in the superficial zone of articular cartilage are
always under tension and a strain of around 15% even in
unloaded tissue. Under compression, the fibres show minimal
deformation or movement and there is no difference in
compressive response when elastin is depleted from articular
cartilage (Mansfield et al. 2015; Nimeskern et al. 2016). Therefore,
elastic fibres are thought to be involved in recovery after shear and
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tensile stress (Mansfield et al. 2015). These stresses are highest in
the superficial zone of articular cartilage, where the majority of
the elastin fibres are present. In auricular cartilage, however,
elastin is a major ECM component. Extensive mechanical
evaluation has highlighted its importance in the viscoelastic
response of auricular cartilage. The tissue loses its compressive
and tensile integrity following elastin depletion (Nimeskern et al.
2016).

Pericellular Matrix
The high PG concentration in the PCM produces a high negative
charge which attracts counterions therefore providing immediate
Ca2+ sources for channel activation and swelling, giving it its
distinct mechanical properties. The ECM in articular cartilage
outside the PCM has a stiffness of up to 1000 kPa, whereas the
stiffness of the PCM is only around 50 kPa with a decrease of
stiffness in towards deeper zones of the tissue (Figure 3) (Darling
et al. 2010; Wilusz et al. 2012). In meniscal cartilage the PCM
stiffness is around 150 kPa in the outer region gradually
decreasing towards the inner region where the stiffness is
around 30 kPa (Sanchez-Adams et al. 2013). The chondrocytes
themselves have the lowest stiffness, which is 0.1 kPa
(Alexopoulos et al. 2003; Steklov et al. 2009; Darling et al.
2010; Nia et al. 2015; Carlson et al. 2017; Chery et al. 2020).

The PCM mechanical properties vary with changes in protein
and PG composition. Reduced PG content results in a less

negative environment and thus less Ca2+ leading to reduced
osmotic swelling, ultimately changing the stiffness (Guilak
et al. 2006; Danalache et al. 2019; Zhou et al. 2019; Chery
et al. 2020). Intact PCMs exhibited a lower elastic modulus
compared to PCMs that were depleted of perlecan and were
mainly composed of collagen type VI (Wilusz et al. 2012).
However, a lack of collagen type VI also decreases the PCM
mechanical properties (Alexopoulos et al. 2009; Zelenski et al.
2015; Chery et al. 2020).

These changes in PCM mechanical properties directly
influence the chondrocytes. Several studies have shown that a
loss of the PCM or a decreased PG content in the PCM leads to
increased cell deformation (Millward-Sadler et al. 2004) (Guilak
et al. 2006; Danalache et al. 2019; Chery et al. 2020). Recent in
silico studies have revealed that the softening of the PCM resulted
in an increase of strain in the PCM as well as the chondrocyte,
even when the macroscale mechanical properties of the tissue did
not change (Khoshgoftar et al. 2017). This highlights the
importance of the PCM in attenuating mechanical stress and
strain shielding of the chondrocytes especially in the superficial
zone of articular cartilage where stresses are higher. In a study
subjecting bovine articular cartilage explants to
hyperphysiological impact loading resulting in cell death due
to high strain on integrins. However, when the cell-matrix
adhesion was inhibited the cells did not die under injury
loading (Sauter et al. 2012; Jang et al. 2014).

FIGURE 3 | Multiscale strain transfer in articular and meniscal cartilage occurs from the organ to macroscale and microscale. Tissue strains resulting from
mechanical compression and tensile loading are non-uniform. (A) Heterogeneous strain in the superficial zone of ex vivo equine articular cartilage at 38% compressive
strain demonstrated by (Mansfield et al. 2015), and (B) heterogeneous strain distribution in the central region of ex vivo bovine medial meniscal cartilage at 10%
compressive strain demonstrated by (Lai et al. 2010). Stiffness maps of the PCM measured with atomic force microcopy reveal a softer PCM compared to the
surrounding ECM in both (C) the superficial zone of human articular cartilage and (D) the middle zone of human meniscal cartilage. Panel (A) from (Lai et al. 2010), (B)
from (Han et al. 2016), (C) from (Wilusz et al. 2012), and (D) from (Sanchez-Adams et al. 2013) used with permission.
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Mechanical integrity of the PCM is necessary for physiological
mechanotransduction and cartilage health. It is crucial in
providing the right mechanical cues for chondrocytes
homeostasis and is imperative for the cell-matrix connection.
A change in mechanical properties of the PCM seems to have a
more direct influence on the cells than bulk tissue strain. It is
however not well understood how the heterogeneous strain from
the tissue is received by the PCM on the microscale and how this
impacts the cells.

Chondrocytes
There is evidence that the nonuniform ECM and resulting strain
transfer through the tissue influences chondrocyte deformation
and morphology. Cell shape is influenced by the ECM
composition which is different in the different zones
(Figure 1) (Benya 1988; Guilak, 1995). Chondrocytes in the
superficial zone, where there is a lower compressive modulus,
experience larger changes in volume compared to chondrocytes
in the other zones (Mansfield et al. 2015). There can be a wide
range of changes in cell thickness in the same zone under
compression, indicating that even in the same zone, cells
might not experience the same mechanical load (Mansfield
et al. 2015; Kwon et al. 2016). Under compression no
significant chondrocyte shape changes or displacement were
detected in the plane parallel to the surface, whereas under
tensile load, all chondrocytes deformed parallel to the articular
surface. At a tissue strain of 38%, the median compressive strain
in the chondrocytes was 46% (Mansfield et al. 2015). These
deformation differences could be due to the original shape of
the chondrocytes before mechanical stimulation. In meniscal
cartilage, spherical cells deform less than elongated cells which
readily deform (Han et al. 2013). Besides in vitro experiments,
different in silico models have highlighted this relationship
between cellular deformation and tissue heterogeneity (Breuls
et al. 2002; Klika et al. 2019; Tanska et al. 2020).

In addition to variable changes in cell morphology,
intracellular strains are also nonuniform. Chondrocyte
deformation generates heterogeneous intracellular strain fields
which appear to be dependent on cell organelle organisation
(Knight et al. 2006). Cell nuclei deform less than the cytoplasm as
they have a higher stiffness (Gilchrist et al. 2007). Chondrocyte
metabolism is influenced by ECM composition and zonal
arrangement (Benya 1988; Guilak et al. 1995; Hall 2019).
Elevated strain magnitudes, especially in the superficial zone of
articular cartilage, are associated with mitochondrial dysfunction,
apoptosis, and cell death (Bonnevie et al. 2018). Although this
demonstrates that the mechanical environment influences
chondrocyte metabolism, it remains unknown what effects this
has in the long term and how this heterogeneous strain affects
tissue remodelling over time. Furthermore, it is unclear how
stress and strain reach cells and are distributed through the whole

heterogeneous tissue, and further how a change in matrix
composition and integrity influences the forces sensed in the
microenvironment of the cell.

FURTHER DIRECTIONS AND OUTLOOK

The transfer of stress and strain signals to and from cells in tissues
involves the integration of the ECM. Different cartilage types have
a distinct overall ECM molecular composition, that is spatially
highly heterogeneous. The heterogeneity in the ratio of ECM
molecules is different in cartilage tissues and regions and leads to
a depth-dependent non-uniform compressive strain transfer and
alters the magnitude of forces sensed by cells in articular and
fibrocartilage, influencing chondrocyte metabolism and
biochemical response.

As our understanding of how strain and force are transferred
through cartilage tissue grows, it is evident that it is a multiscale
process. The influence of matrix molecule interaction and
distribution is not well understood, and even though single
cell responses to mechanical stimuli are well studied, there is a
lack of understanding of the long term effects. It will be important
to link the cell response to the tissue scale forces and
longitudinally investigate remodelling over a longer time span.

Investigation of multiscale strain transfer would further our
understanding of the complex mechanisms of mechanobiology
and remodelling in different cartilage tissues, not only load
bearing types. Furthermore, it would increase our knowledge
about native cartilage tissue, providing a benchmark by which to
compare tissue engineered constructs and feed into the
development of effective treatment strategies to address
cartilage pathologies.
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