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Introduction

Mitochondria Apoptosis and Cancer (MAC) was first organized and held as an

EMBO workshop in Prague, CZ, in 2009 (MAC′09). Following the enthusiastic response
and success of the first meeting, the scientific committee decided to make MAC

symposium a regular biannual event. MAC 2021 was the seventh symposium in the

series, organized and hosted by Department of Physiology, Yong Loo Lin School of

Medicine, National University of Singapore, Singapore, as a virtual event due to the

COVID-19 pandemic. The virtual symposium provided ample opportunities for

discussion and exchange of ideas amongst the speakers and participants. As with the

previous MAC symposia, opinion leaders as well as young and emerging researchers

touched on the multi-faceted roles of mitochondrial metabolism in cell fate signaling

during health and various pathologies, such as mitochondrial adaptation during hypoxia,

the important role of OPA1 in maintaining cristae structure and mitochondrial fission,

post-translational modifications of proteins involved in preventing mitochondrial

permeability, mitochondrial transfer as a novel cancer promoting mechanism and

targeting mitochondrial metabolism to overcome drug resistance in mutant KRAS

addicted cancers.
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Mitochondrion: A multifaceted
organelle

In addition to their critical role in processes and pathways

maintaining cellular homeostasis, mitochondria also function as

a central hub controlling various execution signals. To that end,

mitochondrial outer membrane permeabilization (MOMP)

induced upon translocation and oligomerization of pro-

apoptotic proteins of the Bcl-2 family, such as Bax, Bak and

Bok, facilitate the egress of cytochrome C and apoptosis inducing

factor (AIF) that amplify apoptotic signaling (Wei et al., 2001).

MOMP is regulated by the interplay between BH3-only proteins,

Bim, Bad, Noxa and Puma, and anti-apoptotic members of the

Bc-2 family, in particular Bcl-2, Bcl-xL and Mcl-1 (Chen et al.,

2015). MOMP and its regulation have also been linked to cellular

redox state, such as observations linking ROS to Bax

translocation which in turn further amplifies mitochondrial

ROS to compromise mitochondrial outer membrane integrity

(Hirpara et al., 2000; Ahmad et al., 2004; Garcia-Perez et al.,

2012). Interestingly, a non-canonical redox-dependent

mechanism involving mitochondrial metabolism has also been

demonstrated for the anti-apoptotic activity of Bcl-2, which

involves it´s post-translational modification (Clement et al.,

2003; Chen and Pervaiz, 2007; Chen and Pervaiz, 2010; Low

et al., 2014; Chong et al., 2020). Furthermore, mitochondria have

been shown to play a critical role in non-apoptotic cell death,

such as via redox-mediated execution of necroptosis and

ferroptosis (Stockwell et al., 2017) as well as pathogen-induced

inflammasome-mediated pyroptosis. Recent evidence also

implicates MOMP in inflammation, thus indicating a non-

lethal role. In this context, inner membrane remodelling or

rupture allows for the release of mitochondrial DNA, thus

triggering the cGAS-STING pathways to promote

inflammation (McArthur et al., 2018). This Research Topic

highlights emerging roles of mitochondria and mitochondrial

metabolism in the various processes and pathways regulating

health and disease (elegantly reviewed in (Bock and Tait, 2020).

Sassano et al. provide a review of membrane contact sites

(MCS) and their role in the exchange of ions and other

substances across organelles, particularly focusing on

endoplasmic reticulum (ER)-Mitochondria contact sites

(EMCS). MCS are highly dynamic molecular bridges involved

in structural integrity and inter-organellar communication via

lipid-mediated signaling (Balla et al., 2019). Dysregulation of

MCS is associated with neurodegenerative disorders, lysosomal

storage disease and cancer. The review specifically focuses on two

important functional attributes of EMCS, Ca2+ fluxes and lipid

transfer, between ER and mitochondria and how these functions

are deregulated in cancer. The crosstalk between ER and

mitochondria, including the role of various interacting

proteins (transporters), in Ca2+ signaling and its dysregulation

in cancer has been well documented (Cardenas et al., 2016),

however, the mechanism by which EMCS regulate mitochondrial

lipid homeostasis remains less well characterized. EMCS are

involved in the synthesis of phosphatidylserine (PS) and its

conversion to phosphatidylethanolamine (PE), and cardiolipin,

which is synthesized in the mitochondria, however, majority is

transported from the ER via the MCS (Vance, 2014). Disruption

of lipid homeostasis has implications for pathologies involving

deregulated autophagy, apoptosis, ferroptosis and necroptosis as

membrane damage promotes MOMP as well as mitochondrial

dynamics via remodelling inner membrane and cristae integrity.

Lai et al. provide a comprehensive account of the role that

mitochondria play in various cell death modalities in

osteosarcoma (OS), a highly aggressive and most common

primary bone cancer affecting children and young adults with

high metastatic potential and limited treatment options.

Chemotherapy following surgical resection remains the main

therapeutic option, however, development of chemoresistance

warrants the need for a better understanding of disease

mechanism(s) and identification of biomarkers as well as

novel drug targets. The review highlights the involvement of

various regulated cell death pathways and their deregulation in

OS, including the role of apoptosis inhibitors such as Bcl-2 family

and potential use of BH3 mimetic Bcl-2 inhibitors, the role of

ROS modulation that impacts ferroptosis and other modalities

such as necroptosis and pyroptosis, the prognostic value of

autophagic markers and use of autophagy inhibitors, and the

largely untapped area of mitochondrial metabolism. It is

tempting to speculate that regulating intracellular ROS might

be a potential therapeutic strategy against OS, considering how

cellular redox metabolism impacts most cell death modalities. To

that end, redox dependent non-canonical apoptosis regulatory

activity of Bcl-2 as well as pro-survival signaling by other

oncoproteins have been recently demonstrated (Hirpara et al.,

2020; Raman et al., 2020; Yee et al., 2021).

The multi-faceted role of mitochondrial NAD+ deacetylase,

Sirtuin 3 (SIRT3), in various cell death modalities is reviewed by

Yapryntseva et al. This review discusses the role of SIRT3 in

regulating MOMP and various cell death modalities by

deacetylation-mediated activation of transcription factors, such

as FOXO3a and Nrf2, which control the expression of anti-

oxidant genes, or via deacetylating mitochondrial anti-oxidant

proteins such as succinate dehydrogenase (SDH) and proteins of

the electron transport chain. This anti-oxidant effect results in

suppression of Ras mediated PI3K/Akt and MAPK activation,

thus suppressing carcinogenesis (Torrens-Mas et al., 2017),

however, by maintaining a low oxidant environment

SIRT3 can also have the opposite effect of promoting

oncogenesis (Kim et al., 2020). This is also corroborated by

the ability of SIRT3 to inhibit iron uptake through the transferrin

receptor (TFR1), which could blunt the effect of drugs that use

ferroptosis for death execution (Jeong et al., 2015). Also, by

activating autophagy/mitophagy, SIRT3 can also inhibit

inflammasome assembly thus regulating pyroptosis (Liu et al.,

2018). The divergent effects of SIRT3 on cell fate are in line with
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recent reports indicating the dichotomy of redox signaling in

cancer cell fate decisions. Whether the divergent effects of

SIRT3 is a function of distinct redox milieu remains to be

elucidated.

Hsu et al. provide a focused review on the DNA anchor

protein of the YAP transcription complex, TEAD4 (TEA

Domain Transcription Factor 4), which plays an essential

role in cell growth, differentiation, and proliferation.

Conventionally, TEAD4 requires YAP/TAZ for its

transcriptional activity; however, a YAP-independent

function has also been described. Notably, increased

expression of TEAD4 has been described in a variety of

human cancers, which could be linked to its unique ability

to transcribe mitochondrial and nuclear-encoded OXPHOS

genes, thereby keeping cellular ROS levels at a manageable

level (Kumar et al., 2018). A link between viral infections such

as hepatitis virus and sendai virus and TEAD4 activity has also

been demonstrated, which might explain viral-induced

carcinogenesis in the gastrointestinal tract (Jiao et al.,

2018). Notably, TEAD4 knockout mice are viable after

embryo implantation stage and with functional redundancy

with other TEAD members, specific targeting of TEAD4-

mediated signaling in cancer cells could have potential

implications. Along these lines, the authors discuss the

difficulty in directly targeting TEAD4 due to its pleiotropic

function, but present evidence to support the use of strategies

to disrupt YAP/TEAD4 interaction for the preferential

execution of cancer cells.

Nahacha et al. summarize findings on mitochondria

transport proteins Miro and their role in mitochondrial

transfer in cancer cells. This is relevant considering that

cancer cells with damaged OXPHOS machinery are able to

import mitochondria from healthy neighboring cells for their

sustenance, thus corroborating the role of mitochondrial

metabolism in cancer cell survival and progression. The

spatial localization and transport of mitochondria are

mediated through the function of a family of small

GTPases, Miro, localized in the outer membrane. These

proteins are also involved in ER-Mitochondria contact sites

by contributing to the MICOS complex and thereby regulating

Ca2+ metabolism and mitophagy (Saotome et al., 2008).

The authors focus on the important role of Miro proteins

in intra- and intercellular transport and trafficking of

mitochondria and its functional significance in various

processes associated with carcinogenesis such as migration

and metastasis.

Unresolved questions

While the role of cellular redox metabolism appears to play

an important role in the various pathways and processes

involving the mitochondria, there are several interesting

questions that remain unanswered, such as: Is MOMP

induction a point of no return? What are the molecular

mechanisms underlying the divergent signaling by

mitochondrial ROS in cell fate decisions? What cell states

distinguish the tumor suppressor function of SIRT3 from its

cancer promoting activity? Do mitochondria function as central

hub connecting various cell death pathways? Addressing these

important questions will unravel novel mechanisms and targets

with therapeutic implications against a host of human

pathologies involving mitochondrial metabolism.
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