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In recent years, with the rapid development of computer technology, continual

optimization of various learning algorithms and architectures, and

establishment of numerous large databases, artificial intelligence (AI) has

been unprecedentedly developed and applied in the field of ophthalmology.

In the past, ophthalmological AI research mainly focused on posterior segment

diseases, such as diabetic retinopathy, retinopathy of prematurity, age-related

macular degeneration, retinal vein occlusion, and glaucoma optic neuropathy.

Meanwhile, an increasing number of studies have employed AI to diagnose

ocular surface diseases. In this review, we summarize the research progress of

AI in the diagnosis of several ocular surface diseases, namely keratitis,

keratoconus, dry eye, and pterygium. We discuss the limitations and

challenges of AI in the diagnosis of ocular surface diseases, as well as

prospects for the future.
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1 Introduction

Since the beginning of the 21st century, significant changes have occurred in daily life

with the rapid development of science and technology, including computer science. In

2018, the US Food and Drug Administration approved the launch of IDx-DR, which is the

first ophthalmic artificial intelligence (AI) device that can automatically diagnose and

grade diabetic retinopathy. Since then, there has been an upsurge in the application of AI

technology in the field of ophthalmology and various research results continue to emerge.

AI is a branch of computer science that mainly studies and develops new technical science

to simulate and extend the theory, methods, technology, and application systems of

human intelligence. Machine learning (ML), deep learning (DL), artificial neural

networks, deep neural networks (DNNs), convolution neural networks (CNNs), and

transfer learning all belong to this category. At present, a series of research achievements

have been made in AI technology for the diagnosis and treatment of eye diseases such as

diabetic retinopathy (Raman et al., 2019; Ai et al., 2021; Bhardwaj et al., 2021), retinopathy

of prematurity (Redd et al., 2018; Attallah, 2021; Wang et al., 2021a), age-related macular
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degeneration (Burlina et al., 2018; Yan et al., 2020; Yim et al.,

2020), retinal vein occlusion (Nagasato et al., 2018; Nagasato

et al., 2019; Xu et al., 2022), and glaucoma (Christopher et al.,

2018; Hood and De Moraes, 2018; Medeiros et al., 2021).

In general, ocular surface diseases are diseases that damage

the normal structure and function of the cornea, conjunctiva, and

ocular surface. In recent years, increasing studies have applied AI

to assist in the diagnosis of ocular surface diseases. In this review,

we summarize the application of AI in the diagnosis of four

common ocular surface diseases: keratitis, keratoconus, dry eye,

and pterygium. Moreover, we discuss the limitations and

challenges of AI in clinical applications and future prospects.

The term “diagnosis” used in this article has a broad meaning,

including the designation or detection of a specific disease and

other diagnostic decisions (for example, identification and

screening of different disease states, subtypes, stages or

degrees, and the prediction of disease progression).

The basic research flow of an AI model for such an

application is presented in Figure 1. First, the dataset is

organized, low-quality images are deleted, and the remaining

high-quality images are divided into the training, verification,

and testing sets. Subsequently, the AI model is trained using the

training set, validated using the verification set, and optimized

according to the results. Finally, the optimized AI model is tested

using the testing set, and the application performance of the AI

model is obtained.

The basic framework of this review, which is divided into

four parts, is depicted in Figure 2. The first part focuses the

current status of AI and its application in ophthalmic diseases;

the second part presents the research progress of AI in the

diagnosis of ocular surface diseases; the third part introduces

the limitations and challenges of AI in the diagnosis of ocular

surface diseases; the fourth part provides an overview of the

future application prospects of AI in the diagnosis of ocular

surface diseases.

2 Application of AI in ocular surface
disease diagnoses

2.1 Application of AI in keratitis diagnosis

Keratitis, which is the fifth most common cause of human

blindness (Pascolini and Mariotti, 2012; Flaxman et al., 2017),

refers to the weakening of the corneal defense ability and

inflammation of the corneal tissue as a result of exogenous or

endogenous pathogenic factors. The etiology of keratitis is

complex; it can be caused not only by pathogenic

microorganisms (such as bacteria, fungi, viruses, and

FIGURE 1
Basic flow chart of AI model.

FIGURE 2
Basic framework of this review.
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chlamydia), but also by autoimmune diseases such as rheumatoid

arthritis. The inflammation of adjacent tissues (such as

conjunctivitis, scleritis, and iridocyclitis) may also lead to

keratitis (Chidambaram et al., 2018; Khor et al., 2018). At

present, the classification of keratitis has not been unified. It

can be categorized as infectious, immune, malnourished,

neuroparalytic, and exposed keratitis, according to its

pathogenic causes. Infectious keratitis can be further

subdivided into bacteria, viruses, fungi, chlamydia, and so on,

according to different pathogenic microorganisms (Tena et al.,

2019).

Although the etiology of keratitis is varied, the pathological

processes of different types usually exhibit common

characteristics. The classical pathological process can be

divided into four stages: the infiltration, ulcer formation, ulcer

regression, and healing stages (Li et al., 2021). The most common

symptoms of keratitis in clinical manifestations include eye pain,

photophobia, tears, and blepharospasm, which can persist until

the inflammation subsides (Austin et al., 2017). Keratitis is often

accompanied by varying degrees of vision loss. Typical signs of

keratitis include ciliary hyperemia, corneal infiltration, and

corneal ulcer formation. Moreover, it is often accompanied by

varying degrees of vision loss. The shape and location of corneal

infiltration and ulcers also differ according to the location, size,

and nature of the lesion (Ting et al., 2018; Ting et al., 2021).

Although keratitis exhibits typical characteristics, its diagnosis is

challenging owing to its diverse clinical manifestations and

atypical symptoms and signs in the early stages, and especially

if the appropriate equipment is unavailable. Applying AI

technology to assist in keratitis diagnosis can aid the

treatment of keratitis and reduce the blindness rate (Li et al.,

2021; Tahvildari et al., 2021).

Kuo et al. (Kuo et al., 2021) constructed a model for the

diagnosis of bacterial keratitis based on several DL algorithms

(ResNet-50, ResNeXt-50, DenseNet-121, SE-ResNet50,

EfficientNet B0, EfficientNet B1, EfficientNet B2, and

EfficientNet B3). They collected 1,512 slit lamp images for the

training, modification, and verification of the diagnostic model.

Following verification, the EfficientNet B3 model exhibited the

best performance, with a sensitivity of 0.741, a specificity of 0.643,

and an accuracy of 0.703. Lv et al. (Lv et al., 2020) constructed an

AI model that can automatically diagnose keratitis based on the

ResNet algorithm, and collected 2,088 confocal microscope

images to train and test the model. Following testing, the

AUC value, sensitivity, specificity, and accuracy of the model

were 0.9875, 0.9186, 0.9834, and 0.9626, respectively. Kuo et al.

(Kuo et al., 2020b) constructed a DL model for the diagnosis of

fungal keratitis based on the DenseNet algorithm, and used

288 collected corneal images to train and test the DL model.

The sensitivity, specificity, and accuracy of the diagnostic model

were 0.711, 0.684, and 0.694, respectively. Liu et al. (Liu et al.,

2020) proposed a DL model that can diagnose keratitis using two

CNNs (AlexNet and VGGNet), and improved the diagnostic

performance of the model using data enhancement and image

fusion. They collected 1,213 confocal microscope images to train

and validate the model. The experimental results revealed that

the accuracies of the AlexNet and VGGNet models were

0.9995 and 0.9989, respectively. According to the

aforementioned research, intelligent diagnosis models based

on DL have exhibited good performance for keratitis diagnosis

and significant application potential. Keratitis can be diagnosed

as early as possible with limited medical resources, thereby

reducing the occurrence of corneal blindness.

Gu et al. (Gu et al., 2020) proposed a method to distinguish

infectious and non-infectious keratitis based on the Inception

v3 algorithm. They collected 5,325 slit lamp images for training

and testing. Following testing, the AUC values of the model for

diagnosing infectious and non-infectious keratitis were 0.930 and

0.934, respectively. Hung et al. (Hung et al., 2021) constructed an

AI model that can distinguish different types of keratitis using

various CNNs (DenseNet-121, DenseNet-161, DenseNet-169,

DenseNet-201, EfficientNet B3, Inception v3, ResNet-101, and

ResNet-50). They used 1,330 slit lamp images for training and

verification. The average accuracy was 0.80 and the performance

of DenseNet-161 was the best, with an AUC value of 0.85. Li et al.

(Li et al., 2021) presented a system using three classical DL

algorithms (DenseNet-121, Inception v3, and ResNet-50) to

distinguish different types of keratitis. They collected

13,557 slit lamp images for training and verification of the

classification system. The DenseNet-121 model exhibited the

best performance, with a sensitivity of 0.977, a specificity of

0.982, and an accuracy of 0.980. Ghosh et al. (Ghosh et al.,

2022) combined three CNNs (VGG-19, ResNet-50, and

DenseNet-121) to create an AI model that can distinguish

bacterial keratitis from fungal keratitis. They used 2,167 slit

lamp images for training and testing. The results

demonstrated that the model sensitivity was 0.77, the

F1 score was 0.83, and the AUC value was 0.904. The

above AI model exhibits good performance in the

classification of keratitis, which is close to that of clinical

practice, and is expected to become a powerful auxiliary tool

in clinical work.

Xu et al. (Xu et al., 2021a) developed an AI model that can

automatically detect and evaluate corneal inflammatory cells in

patients with keratitis using five DL algorithms (VGG-16,

ResNet-101, Inception v3, Xception, and Inception-ResNet

v2). They used 4,011 confocal microscope images to train and

verify the model. The Inception-ResNet v2 model exhibited the

best performance, with an AUC value of 0.9646, an accuracy of

0.9767, a sensitivity of 0.9174, and a specificity of 0.9931. Tiwari

et al. (Tiwari et al., 2022) constructed an AI model based on a

CNN that can distinguish active keratitis from scar healing. They

collected 2,445 corneal images for the model training and

verification. Following verification, the F1 score of the model

was 0.843, the sensitivity was 0.935, the specificity was 0.8442,

and the AUC value was 0.9731. The above results suggest that AI
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technology also offers good application potential in evaluating

the activity of keratitis. The above studies are summarized in

Table 1.

2.2 Application of AI in keratoconus
diagnosis

Keratoconus is a congenital developmental disorder that is

characterized by localized conical protuberances with thinning of

the corneal stroma in the protuberant area. Conus protuberances

may lead to severe irregular astigmatism and high myopia,

thereby resulting in severe vision loss (Pinero et al., 2012;

Hashemi et al., 2020). The disease generally occurs before and

after puberty and occurs in both eyes, with a progressive decline

in visual acuity (Chatzis and Hafezi, 2012). It can be corrected by

myopic lenses in the early stages and contact lenses need to be

worn owing to irregular astigmatism in the later stages (Papali’i-

Curtin et al., 2019). The typical characteristics of the disease are

central or paracentric conic dilatation, whereby the cone may be

large or small, round or oval, and the thinning area of the corneal

stroma is most obvious at the top of the cone. Patients with

advanced keratoconus can see Munson’s sign, Vogt’s striae, or

Fleischer’s ring and other clinical signs, which can aid in

diagnosing keratoconus (de Sanctis et al., 2008; Gordon-Shaag

et al., 2012; Chan et al., 2021). Although clinical diagnosis is

straightforward for obvious keratoconus, it is difficult to diagnose

atypical early keratoconus. At present, the most effective method

for the early diagnosis of the disease is corneal topography, which

reveals that the central corneal topography is distorted and the

lower quadrant becomes steep. The corneal steepness expands to

the subnasal, superior temporal, and superior nasal quadrants

with the progression of the disease. Other examination methods

include keratometers, retinography, and Placido discs (Brunner

et al., 2018; Mohammadpour et al., 2018; Rocha-de-Lossada et al.,

2021). Patients with early keratoconus can wear frame glasses or

keratoplasty lenses according to the optometry results to improve

their visual acuity (Goh et al., 2020). Moreover, intracorneal ring

implants and corneal cross-linking or other methods can be used

to delay the progress of the disease (Ferdi et al., 2019). If patients

with early keratoconus do not receive effective intervention, the

late stage will lead to severe vision loss, requiring keratoplasty, or

even blindness. Therefore, the early screening, detection, and

effective intervention of keratoconus are particularly important.

Tan et al. (Tan et al., 2022) proposed a diagnostic model for

keratoconus based on the 5-FNN neural network model. They

collected corneal videos of 354 eyes for the model training and

testing. The results revealed that the diagnostic accuracy,

sensitivity, and specificity of the model were 0.996, 0.993, and

1.000, respectively. Kamiya et al. (Kamiya et al., 2019) developed

TABLE 1 Summary of application of AI models in keratitis.

Authors Task Sample
size

AI algorithms Diagnostic performance

Kuo et al.
(2021)

Diagnosis 1,512 images ResNet-50, ResNeXt-50, DenseNet-121, SE-ResNet-50,
EfficientNet B0, EfficientNet B1, EfficientNet B2, EfficientNet B3

Sensitivity = 0.741, Specificity = 0.643,
Accuracy = 0.703

Lv et al. (2020) Diagnosis 2,088 images ResNet AUC = 0.9875 Sensitivity =
0.9186 Specificity = 0.9834 Accuracy = 0.9626

Kuo et al.
(2020b)

Diagnosis 288 images DenseNet Sensitivity = 0.711 Specificity =
0.684 Accuracy = 0.694

Liu et al. (2020) Diagnosis 1,213 images AlexNet Accuracy of AlexNet = 0.9995

VGGNet Accuracy of VGGNet = 0.9989

Gu et al. (2020) Classification 5,325 images Inception v3 AUC of infectious keratitis = 0.930

AUC of non-infectious keratitis = 0.934

Hung et al.
(2021)

Classification 1,330 images DenseNet-121, DenseNet-161, DenseNet-169, DenseNet-201,
EfficientNet B3, Inception v3, ResNet-101, ResNet-50

Average accuracy = 0.80, AUC of DenseNet-
161 = 0.85

Li et al. (2021) Classification 13,557 images DenseNet-121, Inception v3, ResNet-50 Sensitivity = 0.977 Specificity =
0.982 Accuracy = 0.980

Ghosh et al.
(2022)

Classification 2,167 images VGG19, ResNet-50, DenseNet-121 Sensitivity = 0.77, F1 score = 0.83, AUC =
0.904

Xu et al.
(2021a)

Detection 4,011 images VGG-16,ResNet-101, Inception v3, Xception, Inception-ResNet v2 AUC = 0.9646, Accuracy = 0.9767,
Sensitivity = 0.9174, Specificity = 0.9931

Tiwari et al.
(2022)

Classification 2,445 images CNNs F1 score = 0.843, Sensitivity = 0.935,
Specificity = 0.8442, AUC = 0.9731
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a diagnostic classification model based on ResNet-18 to assist in

the diagnosis and classification of keratoconus. They collected

543 anterior segment optical coherence tomography (As-OCT)

images for the model training and testing. According to the

results, the diagnostic accuracy of the model was 0.991 and the

classification accuracy was 0.874. Dos Santos et al. (Dos Santos

et al., 2019) designed an AI model that can diagnose keratoconus

based on U-Net. They collected and marked 20,160 images for

the model training and testing. Following testing, the accuracy of

the model was 0.9956. The high accuracy and excellent

performance of the above AI models demonstrate that AI

technology can be used extensively in the clinical diagnosis

and treatment of keratoconus, thereby greatly reducing the

work stress of clinicians.

As early keratoconus often exhibits no typical symptoms and

signs, screening to distinguish patients with keratoconus will help

them to receive earlier treatment. Kuo et al. (Kuo et al., 2020a)

constructed an AI model that can screen keratoconus based on

three CNNs (VGG-16, Inception v3, and ResNet-152), and

collected 354 corneal topographic maps for model training

and external testing. The results revealed that the ResNet-152

model achieved the best performance, with an accuracy of 0.958,

a sensitivity of 0.944, a specificity of 0.972, and an AUC value of

0.995. Chen et al. (Chen et al., 2021) presented a model that can

detect coning modeling using CNNs. The model was trained and

tested using the whole Liverpool (United Kingdom) and

New Zealand (NZ) datasets. The results demonstrated that the

model accuracy was 0.9785. Lavric et al. (Lavric and Valentin,

2019) constructed a screening model that can rapidly screen

keratoconus based on CNNs, and collected 4,350 corneal

topographic maps to train and test the model. The results

indicated that the model accuracy was 0.9933. Al-Timemy

et al. (Al-Timemy et al., 2021) developed a detection model

that can recognize keratoconus based on the EfficientNet B0 DL

algorithm. They collected 4,844 corneal topography maps for the

training, debugging, and verification of the model. The AUC

value, F1 score, and accuracy of the model were 0.99, 0.99, and

0.985, respectively. Abdelmotaal et al. (Abdelmotaal et al., 2020)

constructed an AI model that can recognize keratoconus based

on CNNs, and used 19,310 corneal topographic maps for training

and testing. The test results demonstrated that the model

accuracy was 0.958. In view of the good results of the above

AI models in keratoconus identification and screening, timely

diagnosis and treatment is possible.

Castro-Luna et al. (Castro-Luna et al., 2021) developed a

model that can classify subclinical keratoconus using the random

forest (RF) model. They collected clinical data of 81 eyes to train

and verify the model. Kamiya et al. (Kamiya et al., 2021)

presented a neural network prediction model to predict the

progression of keratoconus, and collected 218 As-OCT images

for training and verification. The results revealed that the

prediction accuracy of the model was 0.794. Kato et al. (Kato

et al., 2021) constructed an AI model that can predict the

progression of keratoconus based on the VGG-16 neural

network model, and collected 274 corneal tomography images

for training and verification. According to the results, the AUC

value, sensitivity, and specificity of the model were 0.814, 0.778,

and 0.696, respectively. Yousefi et al. (Yousefi et al., 2018)

developed an AI model using ML to predict the severity of

keratoconus. They collected and processed 3,156 corneal

topographic maps for the model training and verification. The

specificity and sensitivity of the model were 0.941 and 0.977,

respectively. Herber et al. (Herber et al., 2021) presented an AI

model that can predict the severity of keratoconus through two

types of ML (linear discriminant analysis (LDA) and RF

algorithms), and collected clinical data of 434 eyes for training

and verification. Following verification, the accuracies of the

LDA and RF models were 0.71 and 0.78, respectively. The

above studies demonstrate that AI models can achieve

satisfactory results in the classification and prediction of the

progression of keratoconus. Thus, such models can be used to

create effective treatment plans for keratoconus patients. The

above studies are summarized in Table 2.

2.3 Application of AI in the diagnosis of
dry eye

Dry eye, which is also known as keratoconjunctivitis sicca,

refers to the decline in tear film stability caused by an abnormal

quality and quantity of tears or abnormal dynamics resulting

from any cause. It is accompanied by eye discomfort, resulting in

ocular surface tissue lesions of various diseases (Craig et al.,

2017a; Craig et al., 2017b). Dry eye disease is caused by many

complex pathological processes. It can be roughly divided into

abnormal tear dynamics and an abnormal ocular surface

epithelium (Hu et al., 2021), both of which often play a role

overall. Recent studies have demonstrated that changes in the eye

surface, immune-based inflammatory response, apoptosis,

decreased levels of sex hormones, and meibomian gland

dysfunction are the main causes of xerophthalmia (Cardona

et al., 2011; Argiles et al., 2015; Rodriguez et al., 2018;

DeAngelis et al., 2019). However, the relationship or causal

relationship between the factors is not yet fully understood.

At present, no consensus exists on the diagnostic classification

criteria of dry eye. According to the etiology, dry eye is mainly

divided into water sample deficiency dry eye, mucin deficiency

dry eye, lipid deficiency dry eye, and dry eye caused by abnormal

tear dynamics. The most common symptoms of dry eye are eye

fatigue, foreign body sensation, dryness, burning, eye distension,

eye pain, photophobia, and eye redness (Tepelus et al., 2017). Dry

eyes slightly affect visual acuity in the early stage. Filamentous

keratitis may occur after the development of the disease. Corneal

ulcers, corneal thinning, perforation, and occasional secondary

bacterial infection may occur in the late stage, and visual acuity

will be seriously affected after the formation of corneal scar,
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thereby resulting in a decline in the quality of life of patients

(Nichols et al., 2011; Stapleton et al., 2017). The main clinical

examination methods for dry eye include the tear secretion test,

tear film rupture time, tear river height measurement, Schirmer

test, tear osmotic pressure, and fluorescein staining (Nichols

et al., 2004; Sullivan et al., 2010; Zeev et al., 2014; Vehof et al.,

2020). Doctors need to spend more time and energy on

examination and analysis in the clinical diagnosis of dry eye.

Numerous research data have shown that dry eye has a high

incidence and consumes substantial manpower and financial

resources every year; thus, it is necessary to improve the

diagnosis and treatment efficiency of dry eye.

AI has been increasingly applied to dry eye with remarkable

effects. Chase et al. (Chase et al., 2021) constructed a DL model

for the diagnosis of dry eye. They collected 27180 As-OCT

images for the model training and testing. The results

demonstrated that the accuracy, sensitivity, and specificity of

the model in the diagnosis of dry eye were 0.8462, 0.8636, and

0.8235, respectively. Zhang et al. (Zhang et al., 2022) established a

dry eye diagnosis model using a U-Net image segmentation

algorithm and ResNet image classification algorithm. The

models were trained and evaluated using blinking videos of

357 patients with dry eye and 152 normal persons, and the

accuracies were 0.963 and 0.960, respectively. Da Cruz et al. (da

Cruz et al., 2020a) used six DL models (the support vector

machine (SVM), RF, naive Bayes, multilayer perceptron,

random tree, and radial basis function network) for the

classification of tear film images to assist in the diagnosis of

dry eye. They used the VOPTICAL_GCU database for training

and verification. The RF model achieved the best classification

effect, with an accuracy of 0.990, an AUC value of 0.999, a kappa

value of 0.995, and an F-measure of 0.996. Da Cruz et al. (da Cruz

et al., 2020b) also used the six DLmodels to classify tear film lipid

layers automatically for the diagnosis of dry eye. They trained

TABLE 2 Summary of application of AI models in keratoconus.

Authors Task Sample size AI algorithms Diagnostic performance

Tan et al. (2022) Diagnosis 354 eyes 5-FNN Accuracy = 0.996, Sensitivity = 0.993, Specificity =
1.000

Kamiya et al. (2019) Diagnosis 543 images ResNet-18 Accuracy = 0.991

Accuracy = 0.874

Dos Santos et al. (2019) Diagnosis 20,160 images U-Net Accuracy = 0.9956

Kuo et al. (2020a) Detection 354 maps VGG-16, Inception v3,
ResNet-152

Accuracy = 0.958, Sensitivity = 0.944

Specificity = 0.972

AUC = 0.995

Chen et al. (2021) Detection Liverpool and New Zealand
datasets

CNNs Accuracy = 0.9785

Lavric and Valentin,
(2019)

Detection 4,350 maps CNNs Accuracy = 0.9933

Al-Timemy et al. (2021) Detection 4,844 maps EfficientNet B0 AUC = 0.99

F1 score = 0.99

Accuracy = 0.985

Abdelmotaal et al. (2020) Detection 19,310 maps CNNs Accuracy = 0.958

Castro-Luna et al. (2021) Classification 81 eyes RF Accuracy = 0.89

Kamiya et al. (2021) Prediction 218 images Neural network Accuracy = 0.794

Kato et al. (2021) Prediction 274 images VGG-16 AUC = 0.814

Sensitivity = 0.778, Specificity = 0.696

Yousefi et al. (2018) Prediction 3,156 maps ML Specificity = 0.941

Sensitivity = 0.977

Herber et al. (2021) Prediction 434 eyes LDA, RF Accuracy of LDA = 0.71

Accuracy of RF = 0.78
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and tested various DL models on the VOPTICAL_GCU datasets.

The results revealed that the classification effect of the RF model

was the best, with an accuracy of 0.97 and an AUC value of 0.99.

Based on the above research, AI models exhibit high accuracy

and superior performance in the diagnosis of dry eye, and can be

used in the clinical diagnosis and treatment of dry eye in the

future.

Koprowski et al. (Koprowski et al., 2016) developed a method

for the automatic quantitative assessment of meibomian gland

dysfunction (MGD) based on DL, and used 172 images (upper

and lower eyelid images of 86 participants) for training and

verification. The results revealed that the sensitivity of this

method was 0.993 and the specificity was 0.975, which was

faster and more accurate than an ophthalmologist. Wang

et al. (Wang et al., 2019) proposed a method that can

accurately evaluate meibomian gland atrophy based on a

DNN. They collected 706 upper eyelid images for the model

training, adjustment, and verification. The results demonstrated

that the segmentation accuracy of the meibomian gland atrophy

was 0.954 and the overall grading accuracy was 0.956. Waruoka

et al. (Maruoka et al., 2020) constructed various DL models to

detect obstructive MGD. Following training and verification

using 137 images, the performance of DenseNet-201 was the

best, with an AUC value of 0.966, a sensitivity of 0.942, and a

specificity of 0.821. Setu et al. (Setu et al., 2021) constructed an

algorithm for meibomian gland segmentation based on DL. A

total of 728 clinical images were used to train and evaluate the

model. According to the results, the average precision, recall, and

F1 score were 0.83, 0.81, and 0.84, respectively. The function of

the meibomian gland is closely related to the incidence of dry eye.

These studies, which are summarized in Table 3, demonstrate

that AI technology can be used to effectively evaluate the function

of the meibomian gland, reduce the analysis time, and improve

the diagnostic accuracy of doctors.

TABLE 3 Summary of application of AI models in dry eye.

Authors Task Sample size AI algorithms Diagnostic performance

Chase et al. (2021) Diagnosis 27,180 images DL Accuracy = 0.8642, Sensitivity = 0.8636,
Specificity = 0.8235

Zhang et al. (2022) Diagnosis 507 videos U-Net Accuracy of U-Net = 0.963

ResNet Accuracy of ResNet = 0.960

da Cruz et al.
(2020a)

Diagnosis VOPTICAL_GCU
database

SVM, RF, naive Bayes, multilayer perceptron, random tree,
radial basis function network

Accuracy = 0.990

AUC = 0.999

Kappa = 0.995

F-measure = 0.996

da Cruz et al.
(2020b)

Diagnosis VOPTICAL_GCU
database

SVM, RF, naive Bayes, multilayer perceptron, random tree,
radial basis function network

Accuracy = 0.97

AUC = 0.99

Koprowski et al.
(2016)

Assessment 172 images DL Sensitivity = 0.993

Specificity = 0.975

Wang et al. (2019) Assessment 706 images DNNs Accuracy of meibomian gland atrophy
segmentation = 0.954

Overall grading accuracy = 0.956

Maruoka et al.
(2020)

Detection 137 images DL AUC = 0.966

Sensitivity = 0.942

Specificity = 0.821

Setu et al. (2021) Detection 728 images DL Accuracy = 0.83

Recall = 0.81

F1 score = 0.84
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2.4 Application of AI in pterygium
diagnosis

Pterygium is a chronic inflammatory disease named for

its insect wing shape. It is mainly characterized by

fibrovascular hyperplasia of conjunctival tissue and the

invasion of the surrounding corneal tissue, which is also

known as proliferative disease (Yue and Gao, 2019; Wang

et al., 2021b). Pterygium usually consists of three parts: the

head, neck, and body, which often invade the cornea and

limbus cornea (Seet et al., 2012). Its incidence is closely

related to the geographical latitude, especially near the

equator between 30 and 35 degrees. Furthermore, the

disease is more common in outdoor working people (such

as fishermen and farmers) (Coroneo, 2011; Delic et al., 2017).

However, the specific cause of the disease remains unknown

and it may be related to ultraviolet exposure, smoke, viral

infections, ocular degeneration, sex, and age (Sjo et al., 2007;

Huang et al., 2013; Rezvan et al., 2018). Clinically, the disease

occurs in both eyes, especially on the nasal side. In the early

stage, there are generally no obvious symptoms or only a

slight foreign body sensation. When the lesion invades the

corneal pupil area, corneal astigmatism or direct occlusion of

the pupil area will occur, thereby resulting in a decline in

visual acuity (Kampitak et al., 2016). Pterygium can divided

into the progressive and static types according to the

development of abnormal tissue (Safi et al., 2016).

Progressive pterygium exhibits protuberance of the head

and infiltration at the front, Stocker lines at times, and

hyperemia and hypertrophy of the body, with gradual

growth into the cornea. Static pterygium exhibits a flat

head, thin body, and static non-development (Mohd Radzi

et al., 2019). At present, the clinical diagnosis of pterygium is

mainly dependent on anterior segment photography (Abdani

et al., 2022). Surgery is the main treatment for the disease.

Small and static pterygium generally do not require

treatment, but sand, sunlight, and other stimulation

should be reduced as far as possible. Furthermore, when

the pterygium invades the pupil area, it should be resected in

time (Graue-Hernandez et al., 2019). However, surgical

resection may still result in postoperative complications in

patients with advanced pterygium, such as a high recurrence

rate, corneal scarring, and astigmatism (Hirst, 2003; Mahar

and Manzar, 2013; Resnikoff et al., 2020). Therefore, it is very

important to screen pterygium and evaluate the timing of

surgery in the early stage.

In recent years, with the rapid development of AI, it has

been increasingly applied to assist in the clinical screening,

diagnosis, and prognosis of pterygium. Zheng et al. (Zheng

et al., 2021) constructed two diagnostic models (MobileNet

1 and MobileNet 2) that can aid in the diagnosis of pterygium.

They collected 436 images of the anterior segment of the eyes

for the testing and training of the diagnostic models. The

MobileNet 2 model achieved the best performance, with a

sensitivity of 0.8370, a specificity of 0.9048, and an F1 score of

0.8250. Wan et al. (Wan et al., 2022) constructed a diagnosis

system for pterygium using U-Net, which was employed to

assist doctors in creating surgical treatment strategies for

pterygium patients. They collected 489 anterior segment

images to test and verify the diagnosis system. The

experimental results revealed that the Dice coefficients of

the pterygium and corneal segmentation were 0.9020 and

0.9620, respectively, and the kappa consistency coefficient

between the diagnosis results of the system and those of

doctors was 0.918, which indicates that the system offers

practical application significance. Xu et al. (Xu et al.,

2021b) studied a diagnostic system that can intelligently

diagnose pterygium using a DL algorithm. They collected

1,220 anterior segment images for the system training and

testing. Compared with the expert diagnosis results, the

diagnostic accuracy of the system was 0.9468 and the

specificity was high. The above research demonstrates that

AI technology can be used as an auxiliary diagnostic tool to

assist clinicians with diagnosing pterygium, thereby

significantly reducing their work stress and improving their

efficiency.

Zaki et al. (Wan Zaki et al., 2018) built a system for pterygium

screening based on a DL algorithm, and evaluated the system

using a using an SVM and an artificial neural network. They used

the UBIRIS, MILES, and Brazil Pterygium databases to train,

modify and test the system. The results demonstrated that the

accuracy, sensitivity, specificity, and AUC value of the system

were 0.9127, 0.887, 0.883, and 0.956, respectively. Abdani et al.

(Abdani et al., 2021) developed a system that can automatically

screen pterygium through the DL algorithm, and used

328 images of the anterior segment of the eye for training and

verification. The accuracy of the system was 0.9330. Fang et al.

(Fang et al., 2021) created a pterygium detection model based on

DL, and collected 9443 images of the anterior segment of the eye

for the model training and testing. The AUC value, sensitivity,

and specificity of the model were 0.995, 0.985, and 0.990,

respectively. These studies demonstrate that AI models have

exhibited good performance in pterygium screening. It is

expected that such approaches can be used in pterygium

screening in areas where medical resources are scarce or the

economy is challenged to achieve early diagnosis and timely

medical treatment for pterygium patients.

Jais et al. (Jais et al., 2021) developed a model that can predict

the best corrected visual acuity of patients with pterygium using

four different ML algorithms (the decision tree, SVM, logistic

regression, and naive Bayes). They used the data of 93 patients

with different types of pterygium as the dataset for the model.

The final results showed that the SVM model achieved the best

performance, with an accuracy of 94.44% ± 5.86%, a specificity of

100%, and a sensitivity of 92.14% ± 8.33%. Hung et al. (Hung

et al., 2022) developed a DL system for grading pterygium and
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predicting postoperative recurrence. The system used 237 images

for training and testing. According to the results, the sensitivity,

F1 score, and accuracy for the pterygium grading were

0.8000–0.9167, 0.8182 to 0.9434, and 0.8667 to 0.9167,

respectively, whereas the sensitivity and specificity for

predicting the postoperative recurrence of pterygium were

0.6667 and 0.8182, respectively. Thus, AI models can aid in

predicting the recurrence and prognosis of pterygium, and can

help clinicians to deal with various postoperative complications

better, so as to create the most effective treatment plan. The above

studies are summarized in Table 4.

3 Limitations and challenges

According to the aforementioned diverse applications of AI

in ocular surface disease diagnoses, AI has shown considerable

advantages for ocular surface and other ophthalmic disease

diagnoses, especially through data and image analysis.

However, although many studies on the application of AI to

the diagnosis of ocular surface diseases have exhibited

satisfactory results, they still have numerous limitations and

challenges. 1) Datasets suffer from image quality problems

(Ghosh et al., 2022; Dong et al., 2022). Some of the images in

the training, verification, and test sets used in some AI studies

suffered from quality problems, such as unclear or incomplete

images, which significantly impacted the research results. 2) The

external verification of algorithms face many challenges (Tan

et al., 2022; Martins et al., 2022). The DL algorithms in several

studies was verified and tested on open datasets. When they are

applied to actual clinical diagnosis and treatment, their

performance will be reduced owing to the differences in image

quality, shooting equipment, patient cooperation etc. 3) The

sample size used in some studies was small (Zhang et al.,

2022; Kang et al., 2022). The datasets used in some studies

contained small sample sizes, resulting in unstable

performance of the AI models and large differences in results.

4) Heterogeneity of patients (Wan et al., 2022; Sheng et al., 2022).

Every person is different, and most individuals have considerable

differences among each other. This human heterogeneity is likely

to result in a decline in the accuracy of AI model verification and

testing for clinical diagnosis and treatment. 5) Biases exist in AI

model datasets (Hung et al., 2022; Keel et al., 2018; Pur et al.,

2022). The AI models are most likely to be successful when they

are trained and validated using high-quality datasets. However,

many studies used small or common datasets (wherein some data

may be biased), which caused certain biases in their results,

resulting in low external applicability of AI models.

TABLE 4 Summary of application of AI models in pterygium.

Authors Task Sample size AI algorithms Diagnostic performance

Zheng et al. (2021) Diagnosis 436 images MobileNet 1, MobileNet 2 Sensitivity = 0.8370, Specificity = 0.9048

F1 score = 0.8254

AUC = 0.8720

Wan et al. (2022) Diagnosis 489 images U-Net Dice of pterygium = 0.9020

Dice of cornea = 0.9620, Kappa = 0.918

Xu et al. (2021b) Diagnosis 1,220 images DL Accuracy = 0.9468

Wan Zaki et al.
(2018)

Detection UBIRIS, MILES, and Brazil
Pterygium databases

SVM, neural network Accuracy = 0.9127, Sensitivity = 0.887,
Specificity = 0.883

AUC = 0.956

Abdani et al.
(2021)

Detection 328 images DL Accuracy = 0.9330

Fang et al. (2021) Detection 9,443 images DL AUC = 0.995

Sensitivity = 0.985, Specificity = 0.990

Jais et al. (2021) Prognosis and
recurrence

93 patients Decision tree, SVM, logistic regression,
naive Bayes

Accuracy = 94.44% ± 5.86%

Specificity = 100%

Sensitivity = 92.14% ± 8.33%

Hung et al. (2022) Prognosis and
recurrence

237 images DL Sensitivity = 0.6667

Specificity = 0.8182
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4 Prospects for the future

Although the application of AI to the clinical diagnosis

of ophthalmic diseases, such as ocular surface diseases, still

faces numerous challenges. The current AI studies on ocular

surface disease diagnoses indicate that AI can obtain the

disease characteristics from the training set and apply them

to the verification or testing set to diagnose the corresponding

disease. AI can classify images into different types according

to the disease characteristics, such as disease classification

and stage. Additionally, AI can also detect and segment

the anatomical structure in the image, such lesion shape, to

realize the automatic quantization of image biomarkers

and perform auxiliary diagnosis. Therefore, based on these

advantages, the application of AI technology in clinical

diagnosis and treatment offers infinite potential and

significant prospects. With the continual progress of science

and technology, the ongoing improvements in AI, and the

establishment and improvement of relevant legal systems,

AI will be better applied to the clinical diagnosis and

treatment of ophthalmology, especially in economically

challenged areas and those that lack medical resources,

in the near future. The application of AI will greatly

improve the level of diagnosis and treatment in such

areas, thereby aiding more patients to detect diseases as

soon as possible, which is essential for early diagnosis

and treatment. Moreover, if clinical diagnosis and treatment

course can be entirely established through AI, the work

stress of clinical medical staff will be significantly reduced

and their work efficiency will improve, allowing them to

perform the best diagnosis and offer the best treatment plan

for patients.

AI offers the potential to improve the diagnosis level of

ophthalmic diseases significantly. In the future, with the

expansion of AI in the field of ophthalmology, in

addition to image processing technology, other AI

technologies will be researched and applied in the field of

ophthalmology. The full application of AI will result in

fundamental changes in the clinical ophthalmology

diagnosis and treatment.
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