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Background: NETosis occurs in the context of infection or inflammation and results
in the expulsion of decondensed DNA filaments called NETs (Neutrophil Extracellular
Traps) into the extracellular environment. NETosis activates coagulation and
contributes to the thrombotic risk of inflammatory diseases. To date, two
mechanisms of NETosis have been identified: suicidal NETosis, in which
neutrophils die after expelling the filaments; and vital NETosis, in which expulsion
appears without altering the membrane. Human pregnancy is associated with a mild
pro-inflammatory state, which is increased in the event of complications such as
preeclampsia (PE). NETosis has been observed in these situations, but the
mechanism of its production has not yet been studied. The aim of our study was
to evaluate the balance of vital vs. suicidal NETosis in normal pregnancy and in PE.

Patients/Methods: Neutrophils from healthy volunteers were stimulated with
plasma from normal pregnancies (n = 13) and from women developing
preeclampsia (n = 13). Immunofluorescent labelling was performed to determine
the percentages and origin of NETs in both groups. Inhibition with suicidal or vital
NETosis inhibitors was also performed to validate our results.

Results: We found a significant increase in NETs in women with PE compared to
women with normal pregnancies. We showed that vital and non-vital NETosis are
present in normal and preeclamptic pregnancies. We demonstrated that the higher
proportion of NETs observed in PE was due to non-vital NETosis whose main
component is represented by suicidal NETosis.

Discussion: These results suggest the important part of non-vital NETosis in the
pathophysiology of PE.
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Introduction

Preeclampsia is a placenta-mediated pregnancy complication
(PMPC) that is still associated with a significant mortality and
morbidity rate. It occurs in 5% of pregnancy and is defined by
maternal hypertension associated with proteinuria after 20 weeks of
pregnancy and/or evidence of maternal acute kidney injury, liver
dysfunction, neurological features, hemolysis or thrombocytopenia,
or fetal growth restriction (Brown et al., 2018; ACOG, 2019). The
pathophysiological mechanism of this complication is still poorly
understood. However, it is known to increase the risk of venous
thromboembolism (Egan et al., 2015).

Neutrophils are major components of innate immunity. In 2004,
Brinkmann et al. (2004) discovered a defence mechanism called
“NETosis”, a process that generates the release of histone-rich
DNA filaments and granular proteins from the neutrophil into the
extracellular domain, including elastase (NE) and myeloperoxidase
(MPO) (Urban et al., 2006; Urban et al., 2009; Papayannopoulos et al.,
2010; O’Donoghue et al., 2013; Dwyer et al., 2014). The aim of this
mechanism is to trap bacteria and avoid their dissemination. However,
in the event of an inflammatory phenomenon such as preeclampsia,
neutrophils will also produce “neutrophil extracellular traps” (NETs),
whose components will have a pro-coagulant and pro-thrombotic
activity (Gupta et al., 2005; Yipp and Kubes, 2013; Vayne et al., 2017;
Burgener and Schroder, 2020).

So far, two types of NETosis induction mechanisms have been
described, involving two distinct metabolic pathways. The first one
involves the induction of NADPH oxidase following the activation of
protein kinase C (PKC) via the ERK-MEK signalling route
(Rodríguez-Espinosa et al., 2015; Burgener and Schroder, 2020).
This pathway leads to an increase in reactive oxygen species (ROS),
generating the destruction of nuclear, granular and cytoplasmic
membranes (Papayannopoulos et al., 2010). Translocation of the
neutrophil elastase into the nucleus also occurs, leading to the
inactivation of histones, thus allowing chromatin de-condensation
and the production of NETs (Fuchs et al., 2007; Papayannopoulos
et al., 2010; Metzler et al., 2011; Metzler et al., 2014). This mechanism
provokes the death of neutrophils, hence the term “suicidal NETosis”.

The second pathway requires different stimuli, including Toll-Like
Receptors (TLRs) (Yipp et al., 2012; Pieterse et al., 2016), which in fine
activate PAD4 (Douda et al., 2015; Naffah de Souza et al., 2018), a
protein responsible for the hypercitrullination of nuclear histones.
This leads to their inactivation and the de-condensation of chromatin
(Wang et al., 2009). The NETs thus created can be ejected into the
circulation by a mechanism that is still currently unclear. This involves
the destruction of the nuclear membrane and vesiculation which,
together, cause the release of NETs into the circulation without
destroying the cytoplasmic membranes, hence preserving the
neutrophils’ integrity. This mechanism is therefore described as
“vital NETosis” (Pilsczek et al., 2010; Yipp et al., 2012; Gupta et al.,
2018).

The presence of NETs in pregnancy is now the subject of several
studies and has been well demonstrated (Gupta et al., 2005; Sur
Chowdhury et al., 2016; Hu et al., 2018; Bouvier et al., 2020;
Bouvier et al., 2021). However, several mechanisms seem to co-
exist for their establishment and, in the case of preeclampsia, they
appear to be exacerbated by other biological processes related to the
pathophysiology of this pregnancy complication. During pregnancy,
the proinflammatory state itself is an activator of NETosis, as is the

release of syncytiotrophoblast microparticles (STBMs) and the human
chorionic gonadotropin (hCG), oestrogen, progesterone, and
granulocyte colony-stimulating factor (G-CSF) hormones (Gupta
et al., 2006; Gupta et al., 2007; Giaglis et al., 2016). In
preeclampsia, in addition to the amplification of the inflammatory
phenomenon and increased release of STBMs, we also observe the
activation of NETosis by IL-8 and a strong hormonal imbalance.
Ultimately, it is highly unlikely that all these mechanisms activate a
single type of NETosis (Hahn et al., 2012; Giaglis et al., 2016; Konečná
et al., 2018).

Based on the existing literature devoted to NETosis in pregnancy
and preeclampsia, as well as vital and suicidal NETosis, we felt
compelled to analyse the existence of a balance between suicidal
and vital NETosis in pregnancy, and to evaluate a potential
deregulation of this balance in preeclampsia in favour of a
preferred mechanism of NETosis in pre-eclampsia.

Methods

Participants

Plasmas of this ancillary study were obtained from a prospective
cohort study conducted at the department of Gynaecology and the
Haematology Outpatients Department, Nîmes University Hospital
(France). Participants were included from June 2015 to December
2018 (“Grosspath” study. clinicaltrials.gov identifier: NCT 01736826).
The sample-size estimation was based on the primary objective to
compare plasma nucleosomes and cfDNA levels between women with
normal pregnancies and women developing placenta-mediated
pregnancy complications. Participants were recruited as previously
described (Bouvier et al., 2020). Briefly, in the “GrossPath” study, we
recruited 30 healthy, non-pregnant volunteers (Group HV),
50 pregnant women with normal pregnancies (Group NP), and
14 pregnant women who had developed preeclampsia (Group PE).

The healthy, non-pregnant women were recruited after a general
call to all hospital staff. Ages of controls were matched with the ages of
pregnant women. Exclusion criteria were: pregnancy and postpartum
period (up to 3 months after childbirth), any history of thrombotic
events, chronic disease, chronic or recent infection and cancer.

The 50 pregnant women who finally experienced normal
pregnancies were recruited during their initial consultation at the
department of gynaecology and obstetrics in their 12th week of
gestation. These women gave a single blood sample at the time of
delivery. Exclusion criteria were: any previous placenta-mediated
pregnancy complications, any history of thrombotic events, chronic
disease, chronic or recent infection and cancer. Any patients from
Group NP who subsequently developed pregnancy complications
during follow-up were then transferred to the abnormal pregnancy
group and analysed in that group.

A total of 14 pregnant women who had developed PE were
included at the onset of the disease. Among these 14 patients,
one woman from Group NP was transferred following the
occurrence of preeclampsia in the seventh month of
pregnancy. Blood samples were obtained in order to compare
biological markers between Group NP and Group PE just before
delivery to avoid a bias caused by labour and delivery between the
two groups. PE was diagnosed according to the international
criteria (Brown et al., 2018; ACOG, 2019). If 24 h-urine collection
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was not available, the protein-creatinine ratio was measured from
a random urine sample (Price et al., 2005).

All plasmas available from preeclamptic women (n = 13/14) were
tested for this study. One plasma from the GrossPath study could not
be tested due to insufficient quantity. In parallel, 13 plasmas from
normal pregnancies were tested. The 13 women with normal
pregnancies were selected via the propensity score method with
maternal and gestational ages as matching variables (+/−2 years old
and+/−1 week of gestation respectively).

The main and ancillary studies (clinicaltrials.gov identifier: NCT
01736826 and NCT 05470712, respectively) were approved by the
Institutional Review Board (IRB) and ethics committee (IRB no. 22.07.
01) at Nîmes University Hospital and by the local Committee for the
Protection of Persons undergoing Biomedical Research (CPP Sud
Méditerranée III). This clinical investigation was performed in
accordance with the Helsinki declaration of 1975 as revised in
1996. All participants had given written informed consent to
participate in the trial (NCT 01736826) and to constitute a biobank
to be used later for the same theme. All pregnancies were singletons.

The patients’ clinical data—age, smoking habits, blood pressure,
information about current and previous pregnancies, delivery, and
perinatal outcomes—were all collected.

Isolation of neutrophils

PMN cells from three healthy consenting volunteers were
immediately purified after blood collection using density gradient
centrifugation according to the manufacturer’s instructions
(Polymorphoprep™, Proteogenix). A complete blood cell count was
made in parallel. At the end of purification, 4.5 *105 purified PMNs
were seeded on 0.001% poly-L-lysine coated coverslips in a 24-well
plate using Roswell Park Memorial Institute medium (RPMI) with
50% phosphate buffer saline (PBS) Ca2+, Mg2+ without fetal bovine
serum (FBS).

Neutrophil staining and stimulation

For each experiment, several conditions were tested. Purified
neutrophils were non-stimulated or stimulated with either plasma
from non-pregnant women (negative controls), phorbol-12-
myristate-13-acetate at 25 nM, (PMA, Merck Biodevelopment,
France, chemical NETs inductor, positive controls (Urban et al.,
2009; O’Donoghue et al., 2013; Douda et al., 2015) or plasma from
participants (1:1 dilution in RPMI with 50% PBS, Ca2+, Mg2+ without
FBS): normal pregnancy (Group NP) or women having developed PE
(Group PE) for 4 h at 37°C as described by Hu et al. (2018).

PMNs were then fixed on coverslip using 4% paraformaldehyde
(Santa Cruz Biotechnology, INC) for 10 minutes and stained after
three washes with PBS. After permeabilization with PBS/Tween-20
0.2% for 10 minutes, non-specific antigenic PMN sites were blocked
with PBS/Tween 0.1% with bovine serum albumin (BSA) 1% without
EDTA for 30 minutes. After three additional washes, cells were
incubated with antibodies: Fluorescein isothiocyanate (FITC) anti-
myeloperoxydase antibody (mouse anti-human clone 5B8, BD
Biosciences™, United States, 1:10 dilution); uncoupled anti-
citrullinated histone H3 antibody (Rabbit polyclonal to Histone H3
(citrulline R2 + R8 +R17), Abcam™, Canada, 1/1,000 dilution)

overnight at 4°C in the dark. Cells were then washed with PBS and
counterstained with Alexa Fluor-568 (Donkey anti-rabbit, Abcam™,
Canada, 1/2000 dilution) for 30 minutes at room temperature in the
dark and, afterwards, with Fluoroshield mounting medium (Abcam™,
Canada) containing blue-fluorescent Di Aminido Phenyl lndol
(DAPI). Immunofluorescence microscopy was performed on an
Olympus BX 60 microscope (CytoVision® 7.5. software, Leica
Biosystems). For each condition, six fields evenly distributed on the
coverslip were analysed. NETs were identified as elongated
extracellular DAPI-stained DNA fibers associated with
myeloperoxydase using FIJI software as described by Brinkmann
et al. and Arpinati et al. (Brinkmann et al., 2004; Arpinati et al., 2020).

NETs from vital NETosis were characterized by a positive DAPI
staining and citrullinated histone H3 (CitH3): MPO+, CitH3+
(Erpenbeck et al., 2016; Arpinati et al., 2020). NETs from non-vital
NETosis were deducted from the difference between total NETs
(DAPI+) and NETs from vital NETosis (MPO+, CitH3+). Image
analysis was performed blindly, without knowledge of the cell-
processing conditions.

Inhibition of vital or suicidal NETosis

The same experiments as described previously were performed
using diphenyleiodonium (DPI), a ROS pathway inhibitor before
stimulation, at 10 μg/L, 1 h, at 37°C and 5% CO2, to inhibit suicidal
NETOsis (O’Donnell et al., 1993; Douda et al., 2015).

As vital NETosis mainly passes through the TLR2 and four
pathway (Clark et al., 2007; Semeraro et al., 2011; Erpenbeck et al.,
2016; Muñoz-Caro et al., 2021), we also performed the same
experiments with anti-TLR2 and anti-TLR4 blocking antibodies
(ANTI-HU CD284 HTA125 and ANTI-HU CD282 TL2.1 FG, Life
Technologies SAS) at 5 μg/mL for 1 h at 37°C, 5% CO2.

The inhibitors were added to the culture medium in the wells with
purified neutrophils before stimulating with plasma.

For each experiment using DPI or blocking antibodies, a non-
stimulated well was prepared with dimethylsulfoxyde (DMSO), the
solvent present in inhibition reagents, as negative controls.

Statistical analysis

Statistics were analysed with the GraphPad statistical software
program (version 6.07. San Diego, United States) using a non-
parametric Wilcoxon test for paired data and the non-parametric
Mann-Whitney test for unpaired data. When multiple comparisons
were performed, a Bonferroni correction was applied. Quantitative
data were expressed as medians and interquartile ranges. Qualitative
data were expressed as absolute number and frequency (%). A
p-value <0.05 was considered statistically significant.

Results

Population

Twenty-six participants were analyzed in the study: 13 pregnant
women with PE in Group PE, 13 pregnant women without
complications in Group NP with maternal and gestational ages as
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matching variables (+/−2 years old and+/−1 week of gestation
respectively) using the propensity score method.

The flowchart is detailed in Figure 1. The characteristics of the
population are summarized in Table 1.

The percentage of NETs in preeclampsia is
greater than in normal pregnancy

We found a significant increase in the number of total NETs in
women with PE compared to women with normal pregnancies p =
0.03 (Figure 2A).

Vital NETosis and suicidal NETosis are present
in normal and preeclamptic pregnancies

Following these results showing the formation of NETs with
plasma from pregnant women with normal or preeclamptic
pregnancies, we evaluated the different types of NETosis
mechanisms implicated in these situations.

We first compared citrullinated NETs, corresponding to vital
NETosis, between normal and preeclamptic pregnancies. We did
not find any significant difference between the two groups (p =
0.96) (Figure 2B).

Then, interestingly, our results showed a significant
difference between the number of uncitrullinated NETs,
corresponding to non-vital NETosis, between women with
normal pregnancies compared to women who developed
preeclampsia, p = 0.019 (Figure 2C).

We therefore detected the presence of two different types of
NETosis in the two situations studied (pictures 2D and 2E). We

also observed that the greater part of NETosis in preeclampsia was
represented by non-vital NETosis.

Presence of ROS-dependent suicidal NETosis
in normal and complicated preeclampsia
pregnancy

Suicidal NETosis described in the literature involves the ROS
pathway. This NETosis will be called “ROS-dependent suicidal
NETosis” for the rest of our study. To characterize this NETosis in
our two groups, we first validated the model with a known activator of
suicidal NETosis, PMA, in presence or not of a specific ROS
inhibitor, DPI.

NETs from PMA induction were uncitrullinated NETs (p = 0.25)
(Figure 3A) and this NETosis was completely inhibited by DPI (p =
0.0039) (Figure 3B). NETs from ROS-dependent suicidal NETosis
may therefore be characterized by uncitrullinated NETs inhibited
by DPI.

The inhibition by DPI of plasma-stimulated neutrophils from the
women in our two groups resulted in a significant decrease in total
NETs in the NP group (p = 0.006) and in the PE group (p = 0.001).
Moreover, the significant difference in total NETs initially observed
between normal and preeclamptic pregnancies (Figure 2A), was
maintained in presence of DPI, which meant that total NETs were
higher in Group PE than in Group NP (Figure 4A).

The same observation was made with uncitrullinated NETs. There
is a significant decrease in the percentage of uncitrullinated NETs
before and after inhibition in the NP and PE groups (p = 0.0012 and
p = 0.0005 respectively). Again, the significant difference in the
percentage of uncitrullinated NETs initially observed (Figure 2C)
was maintained in DPI condition (Figure 4B).

FIGURE 1
Participant flowchart.
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In contrast, this inhibition did not result in a significant decrease
in citrullinated NETs, either in Group NP (median without inhibition:
15.56% [12.52; 19.63], median with inhibition: 7.21% [1; 19.30], p =
0.15) or in Group PE (median without inhibition: 13.44% [9.63; 23.40],
median with inhibition: 16.01% [11.68; 20.93], p = 0.34) confirming
the link between ROS-dependent suicidal NETosis and uncitrullinated
NETs (Figure 4C).

Thus, we confirmed the presence of ROS-dependent suicidal
NETosis in normal pregnancy and in preeclampsia.

Confirmation of the presence of vital NETosis
in normal pregnancy and preeclampsia

To confirm the presence of vital NETosis in normal
pregnancy and in pregnancy complicated by preeclampsia, we
performed experiments using anti-TLR2 and anti-TLR4
blocking antibodies. Inhibition by anti-TLR2 and anti-TLR4
blocking antibodies led to a significant decrease in the
number of total NETs in the PE group (p =

0.0046 respectively) (Figure 5A). The NP group showed the
same trend but with no significance, due to the heterogeneity
of the values in presence of TLR antibodies (p = 0.043).

It also led to a significant decrease in citrullinated NETs, markers
of vital NETosis, in the NP and PE groups (p = 0.021 and p =
0.0005 respectively) (Figure 5B).

However, this inhibition did not lead to a significant decrease in
the number of uncitrullinated NETs either in the NP group (median
before inhibition: 12.80% [9.05; 18.23], median after inhibition: 8.13%
[6.55; 18.43], p = 0.74), or in the PE group (median before inhibition:
20.26% [14.87; 21.47], median after inhibition: 9.73% [4.79; 22.69], p =
0.11) (Figure 5C).

There was also no significant decrease after inhibition by anti-
TLR blocking antibodies in total NET rates between NP and PE
groups, p = 0.61 (Figure 5A), in citrullinated NET rates between
the two groups, p = 0.31 (Figure 5B) or in uncitrullinated NETs
p = 0.72 (Figure 5C).

These observations confirm the same induction of vital
NETosis in normal and preeclamptic pregnancies as previously
described.

TABLE 1 Population characteristics N: number; med: median (Q1, Q3): interquartile range; PE: preeclampsia. IUGR: intrauterine growth restriction. NP: pregnant women
with normal pregnancies.

NP PE p

Maternal characteristics

n 13 13

Age (years) med (Q1,Q3) 33 (24, 35) 31 (28, 38) 0.99

Active Smokers n (%) 4 (30.8%) 0 (0%) 0.096

Early-onset PE n (%) − 5 (38.5%)

Late-onset PE n (%) − 8 (61.6%)

Previous pregnancies n (%) 7 (53.8%) 10 (76.9%) 0.41

Previous complicated pregnancies n (%) 1 (7.7%) 4 (30.8%) 0.48

Type of previous pregnancy complications n (%)

PE 0 (0%) 2

IUGR 0 (0%) 1

Stillbirth 0 (0%) 2

Placental abruption 0 (0%) 0

Miscarriage 0 (0%) 2

Chronic hypertension n (%) 0 (0%) 2 (15.47%)

Pre-gestational diabetes n (%) 0 (0%) 1 (7.7%)

Type of pregnancy complications during the study n (%)

PE 0 (0%) 13 (100%)

Maternal weight before delivery (Kg) med (Q1,Q3) 65 (60, 81) 88 (80, 107) 0.021

Systolic blood pressure before delivery (mm Hg) med (Q1,Q3) 110 (110, 120) 158 (140, 162) <0.001
Diastolic blood pressure before delivery (mm Hg) med (Q1,Q3) 70 (60.8, 70) 90 (86.3, 96.3) 0.002

Complete Blood Count (CBC)

Leukocytes med (Q1,Q3) 12.3 (10.0, 13.3) 14.6 (9.9, 16.4) 0.62

Neutrophils med (Q1,Q3) 9. 9.3 (7.2, 9.8) 11.5 (5.1, 13.0) 0.86

Platelets med (Q1,Q3) 221 (185, 274) 181 (158, 258) 0.231

Haemoglobin med (Q1,Q3) 12.5 (11.5, 13.0) 11.5 (11.3, 12.2) 0.22

Perinatal outcomes

Gestational age at delivery med (Q1,Q3) 39 (37, 39) 36 (34, 37) 0.008

Caesarean delivery n (%) 2 (15.4%) 8 (61.5%) 0.044

Neonate weight (g) med (Q1,Q3) 3150 (2860, 3356) 2340 (1740, 2500) 0.0035

Admissions to neonatal intensive care n (%) 0 (0%) 3 (23.1%) 0.22
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Discussion

The major new finding of this study is that both vital and non-vital
NETosis are present in normal and preeclamptic pregnancies and that
the higher proportion of NETosis observed in preeclampsia is
characterized by non-vital NETosis.

Several studies have shown that NETosis process occurs during
pregnancy and is more significant when pregnancy is complicated by
preeclampsia (Gupta et al., 2005; Sur Chowdhury et al., 2016; Hu et al.,
2018; Bouvier et al., 2020; Bouvier et al., 2021). In our study, we first
confirmed these two data.

Two main mechanisms of NETosis have been described: vital
NETosis and non-vital-NETosis whose main component is
represented by suicidal NETosis with no data concerning
pregnancy. Therefore, we showed, by immunofluorescent labelling,
that both types of NETs, citrullinated from vital and uncitrullinated
from non-vital NETosis, were involved in pregnancy and
preeclampsia. This labelling also allowed us to identify that the
higher proportion of NETosis observed in preeclampsia was
characterized by non-vital NETosis. As immunofluorescent
labelling to characterize the type of NETosis can be critical due to
the subjectivity of the operator (Vayne et al., 2017), we worked under
blinded conditions, without knowledge of the cell processing
conditions and reinforced our observations by using inhibitors of

the different metabolic pathways (anti-TLR2 and TLR4 blocking
antibodies for vital NETosis and DPI for suicidal NETosis), before
the stimulation with plasma (O’Donnell et al., 1993; Clark et al., 2007;
Semeraro et al., 2011; Douda et al., 2015; Erpenbeck et al., 2016;
Muñoz-Caro et al., 2021). These inhibitions confirmed the presence of
vital and non-vital NETosis, including ROS-dependent suicidal
NETosis, in both normal and complicated pregnancies. It also
reaffirmed the greater proportion of non-vital NETosis that causes
the increase in NETosis in the latest. This observation is in agreement
with previous data showing that this pathology is at the origin of an
increase in IL-8, a release of cytokines and reactive oxygen species as
well as an increase in G-CSF which allows the translocation of
neutrophil elastase into the nucleus. These different mechanisms
participate in the process of suicidal NETosis (Hahn et al., 2012;
Giaglis et al., 2016; Konečná et al., 2018).

However, it is interesting to note that the use of reactive oxygen
species inhibitors upstream of stimulation did not result in complete
inhibition of non-vital NETosis induced by plasma from women with
normal or complicated pregnancies whereas it completely inhibited
ROS-dependent suicidal NETosis induced by PMA. This observation
highlights that suicidal ROS-dependent NETosis is not the only
component of non-vital NETosis and suggests that at least a third
metabolic pathway may be involved. Indeed, recent studies have
described a suicidal ROS-independent NETosis pathway called

FIGURE 2
Percentage of total NETs (A), citrullinated NETs (B) and uncitrullinated NETs (C) formed after stimulation of healthy volunteer neutrophils with plasma
from pregnant women delivering a normal pregnancy (NP) and plasma fromwomen delivering with preeclampsia (PE). (A) Total NETs fromNP, 26.54% [25.48;
34.70]; from PE 32.79% [30.17; 42.70]. (B) Citrullinated NETs from NP, 15.56% [12.52; 19.63]; from PE, 15.23% [9.97; 24.20]. (C) Uncitrullinated NETs from NP,
12.80% [9.05; 18.23]; from PE, 20.26% [14.87; 21.47]. Results are represented with their medians and interquartile ranges [Q1; Q3] *p < 0.05. Photos taken
by fluorescence microscopy with the Olympus BX 60 microscope (Cytovision® 7.5. software, Leica Biosystems), magnification ×20. (D) DAPI (blue filter)
marking DNA and anti-myeloperoxidase antibody (green filter) marking the granular content of neutrophils. Visualization of total NETs. (E) Addition of anti-
Histone citrullinated antibody (orange filter) labelling histone hypercitrullination induced by vital NETosis. Differentiation of NETs from vital NETosis (orange)
from NETs from suicide NETosis (green).
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non-canonical NETosis (Burgener and Schroder, 2020). This pathway
involves inflammasome activation of caspase-4/11 leading to
gasdermin D (GSDMD) cleavage resulting in the formation of

GSDMD-p30 pores. These pores target the neutrophil membranes
to mediate the permeabilization of these membranes, ultimately
inducing their rupture. The presence of nuclear GSDMD-p30 pores

FIGURE 3
Comparison of total NETs (25.85% [22.83; 36.07]) and uncitrullinated NETs (25.65% [22.75; 35.06]) after induction by PMA p = 0.25 (A). Comparison of
uncitrullinated NETs after induction by PMA without inhibition by DPI (25.65% [22.75; 35.06]) and with inhibition by DPI (0.00% [0.00; 1.53]) p = 0.003 (B).
Results are represented with their medians and interquartile ranges [Q1; Q3]. PMA: phorbol-12-myristate-13-acetate. DPI: diphenyleiodonium.**p < 0.01.

FIGURE 4
Comparisons of the percentages of total NETs (A) and uncitrullinated NETs (B) formed after stimulation of healthy volunteer neutrophils with plasma
from women delivering normal pregnancies (NP) or preeclampsia (PE) with and without inhibition by DPI. (A) NP without DPI 26.54% [25.48; 34.70]; NP with
DPI 17.12% [5.86; 24.08]. PE without DPI 32.57% [29.99; 38.01]; PE with DPI 23.08% [22.44; 31.03]. (B) NP without DPI 12.80% [9.05; 18.23], NP with DPI 5.76%
[1.98; 8.60]. PE without DPI 20.49% [14.58; 21.58]; PE with DPI 10.54% [7.83; 11.87]. (C)NPwithout DPI 15.56% [12.52; 19.63], NP with DPI 7.21% [1; 19.30].
PE without DPI 13.44% [9.63; 23.40]; PE with DPI 16.01% [11.68; 20.93]. DPI-: without inhibition by DPI; DPI+: with inhibition by DPI. Results are represented
with their medians and interquartile ranges [Q1; Q3]. DPI: diphenyleiodonium. The Bonferroni correction with a cut-off at 0.025 was applied to take into
account the multiplicity of tests. *p < 0.025, **p < 0.01, ***p < 0.001.
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allows caspase-11 to access chromatin where it exerts a function, like
neutrophil elastase, to degrade histones and allow chromatin
relaxation (Burgener and Schroder, 2020). Although this pathway
was initially described following infection by gram-negative bacteria
via lipopolysaccharide (LPS), the metabolic pathway of caspase-4/
11 and GSDMD is also described in many pathologies with an
inflammatory component, notably diabetes (Cheng et al., 2021) but
also pulmonary arterial hypertension (Wu et al., 2022) or
atherosclerosis (Jiang et al., 2021). As pregnancy, whether normal
or complicated by preeclampsia, has an inflammatory component, this
newly-described pathway could explain that suicidal ROS-dependent
NETosis was not the only component of non-vital NETosis in our
cohort and required further investigations during pregnancy.

Inhibition by anti-TLR2 and TLR4 blocking antibodies did not
lead to a total inhibition of vital NETosis either. This is surely because
this metabolic pathway can be activated by other stimuli such as the
complement system or activated platelets (Yipp et al., 2012; Burgener
and Schroder, 2020). A similar experiment using PAD4 inhibitors
simultaneously with targeted inhibition of different stimuli, might
make it possible to characterize the role of vital NETosis in normal
pregnancy and preeclampsia more precisely.

One limitation to our study is due to the fact that plasma was
collected from women at the end of their pregnancies. This induces a
potential bias due to the high inflammatory state observed at this
period. It would be interesting to repeat the study using plasma from
different periods of pregnancy. This exploration would make it
possible to study the evolution of NETosis during pregnancy and
to evaluate the various metabolic pathways ahead of the appearance of
clinical signs of placenta-mediated pregnancy complications. Another
limitation is the fact that we did not characterize Netosis induction
mechanism(s). Several factors, such as inflammatory cytokines,

microvesicles or sex hormones may induce NETosis and are
expressed differentially in Preeclampsia (Hahn et al., 2019). It is
highly likely that some of these may preferentially induce a specific
type of NETosis.

Our study has also several strengths. It is the first one which
interested in the different metabolic pathways of NETosis involved in
normal pregnancy and preeclampsia. Our study describes for the first
time, the important part of non-vital NETosis in the pathophysiology
of preeclampsia.

To conclude, our results showed that pregnant women who
develop PE have an increase in non-vital NETosis whose main
component is represented by suicidal NETosis. Non-vital
NETosis might be part of the link between the risk of
thrombosis and pregnancy complications. Further explorations
are required, including the effect of treatments on the generation
of NETs from non-vital NETosis.
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