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Meiocytes organize higher-order chromosome structures comprising arrays of
chromatin loops organized at their bases by linear axes. As meiotic prophase
progresses, the axes of homologous chromosomes align and synapse along their
lengths to form ladder-like structures called synaptonemal complexes (SCs). The
entire process of meiotic recombination, from initiation via programmed DNA
double-strand breaks (DSBs) to completion of DSB repair with crossover or non-
crossover outcomes, occurs in the context of chromosome axes and SCs. These
meiosis-specific chromosome structures provide specialized environments for the
regulation of DSB formation and crossing over. In this review, we summarize insights
into the importance of chromosome architecture in the regulation of meiotic
recombination, focusing on cohesin-mediated axis formation, DSB regulation via
tethered loop-axis complexes, inter-homolog template bias facilitated by axial
proteins, and crossover regulation in the context of the SCs. We also discuss
emerging evidence that the SUMO and the ubiquitin-proteasome system function
in the organization of chromosome structure and regulation of meiotic
recombination.
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Introduction

Homologous recombination during meiosis underlies biological diversity and ensures
proper chromosome segregation during the first division to create haploid gametes. During
meiotic prophase-I, chromosomes develop highly organized three-dimensional structures
where loops of chromatin emanate from structural axes that also interconnect sister
chromatids. Programmed DNA double-strand breaks (DSBs) at recombination hotspots,
which initiate meiotic recombination, are localized to DNA sequences found in chromatin
loops while many factors responsible for DSB formation reside on the axes, indicating that
tethering of DSB sites in loops to their corresponding chromosome axes–loop-axis tethering–is
a crucial step in the initiation of meiotic recombination (Blat et al., 2002; Panizza et al., 2011).
Following DSB formation, homolog search of the DSB ends for homologous chromosomes
leads to pairing of the structural axes of two homologous chromosomes and synapsis along their
lengths to form the synaptonemal complexes (SCs). The SCs are zipper-like structures where
the lateral/axial elements localized to each homolog sandwich the central region composed of
transverse filaments and a central element (Figure 1). Later steps of recombination such as the
formation of double-Holliday junctions and their resolution into crossover products, occur
within the context of the SCs. In this review, we present key findings about the regulation of
meiotic recombination in relation to chromosome architecture.
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Cohesin as a basis of axis-loop higher-
order chromosome structure

During the meiotic S-phase, cohesin complexes interconnect sister
chromatids and are assumed to establish the core unit of chromosome
axis via loop extrusion, likely with help of evolutionarily related axis
core proteins (budding yeast Red1, mammalian SYCP2/SYCP3, and
plant ASY3/ASY4; West et al., 2019; Figures 1A,B). The cohesin
complexes consist of two SMCs (structure maintenance of
chromosome), SMC1 and SMC3; and two non-SMC kleisin
subunits, SCC3/STAG and the α-kleisin RAD21/SCC1 (Nasmyth
and Haering, 2005). REC8 is a meiosis-specific α-kleisin subunit
that is well-conserved from yeast to mammals and is required for
the formation of chromosome axes and the SCs in budding yeast, C.
elegans, and mice (Klein et al., 1999; Pasierbek et al., 2001; Xu et al.,
2005). Recent Hi-C analysis of yeast meiosis revealed Rec8-dependent
intra-chromosome interactions between distal chromosomal loci and
high-frequency contacts between Rec8 binding sites (Muller et al.,
2018; Schalbetter et al., 2019), supporting a model in which
interactions between adjacent cohesin-binding sites assemble
structural axes. Deletion of the budding yeast REC8 gene causes
various defects in meiotic recombination; the redistribution and
reduction of DSBs, impaired choice of recombination template, and
persistence of joint molecule DNA intermediates (Kugou et al., 2009;
Kim et al., 2010), indicating important roles of cohesin-mediated
chromosome structures and/or the cohesin complexes themselves in

the regulation of recombination. Recent work in fission yeast
identified a rec8 separation-of-function mutant, rec8-F204S, that is
proficient for sister chromatid cohesion (SCC) but deficient for axis-
loop structure (Sakuno et al., 2022). This rec8mutant was defective in
meiotic recombination, revealing an essential role for Rec8-cohesin-
mediated axis-loop chromosome structure and not cohesion per se in
meiotic recombination.

In mice, the topologically associating domains (TADs, comprising
~1 Mbp-intra-chromosomal interactions), characteristic of interphase
chromosomes, are diminished and intra-chromosomal interactions
around 2.5–4.5 Mbp became more evident during meiotic prophase-I,
consistent with the formation of axis-loop structures (Alavattam et al.,
2019;Wang Y. et al., 2019; Patel et al., 2019; Vara et al., 2019; Luo et al.,
2020; Zuo et al., 2021). REC8, SMC1β, STAG3, and RAD21L (a second
meiosis-specific α-kleisin; Figure 1A) are known meiosis-specific
cohesin subunits that localize to chromosome axes in mice as six
distinct complexes; three SMC1β-cohesin complexes (RAD21-
SMC1β-SMC3-STAG3, RAD21L-SMC1β-SMC3-STAG3, and
REC8-SMC1β-SMC3-STAG3) and three SMC1α-cohesin complexes
(RAD21-SMC1α-SMC3-STAG1/2, RAD21-SMC1α-SMC3-STAG3,
and RAD21L-SMC1α-SMC3-STAG3) (Revenkova et al., 2004;
Ishiguro et al., 2011; Lee and Hirano, 2011; Fukuda et al., 2014).
With the exception of Rad21L−/− females, all mice that are knockout
mutants for the meiosis-specific cohesin components are sterile, and
show defects in synapsis and compromised meiotic recombination
(Revenkova et al., 2004; Herran et al., 2011; Llano et al., 2012; Fukuda
et al., 2014). Axis lengths in meiocytes are shorter in all mutants, and
double mutant mice such as Smc1β−/− Rec8−/− show much shorter axis
lengths than the corresponding single mutants (Biswas et al., 2016;
Ward et al., 2016). These observations highlight the importance of the
multiple cohesin complexes in the organization of meiotic
chromosome axis structure in mice.

During meiosis, cohesin plays a dual role in sister chromatid
cohesion (SCC) and the formation of axis-loop structure. A recent
series of studies established the loop extrusion activity of SMC
complexes including the mitotic SCC1/RAD21-based cohesin
(RAD21-SMC1A-SMC3-STAG1), which requires the cohesin loader
complex SCC2/NIPBL-SCC4/MAU2 (Davidson et al., 2019; Kim et al.,
2019; Kaur et al., 2022). This loop extrusion seems to be distinct from
cohesin’s SCC activity (Davidson and Peters, 2021). It follows that
meiotic chromosome structure and cohesion may be mediated by two
independent ensembles of cohesin complexes. Importantly, several
organisms including vertebrates and nematodes contain two distinct
meiotic cohesins (Severson et al., 2009; Ishiguro et al., 2011; Lee and
Hirano, 2011; Severson and Meyer, 2014). In mice, the cohesins with
REC8 and RAD21L localize to non-overlapping sites along
chromosome axes (Ishiguro et al., 2011). Moreover, REC8, and
thus REC8-based cohesin, localizes to the chromosomes as early as
meiotic S-phase and persists until metaphase-II; whereas RAD21L-
cohesin appears on the chromosome later, in leptonema and
disappears earlier in late prophase-I (Herran et al., 2011; Lee and
Hirano, 2011; Ishiguro et al., 2014; Biswas et al., 2016). One simple
idea is that REC8-cohesin functions for SCC and RAD21L-cohesin
functions for loop extrusion and thus axis-loop formation. Future
studies are essential to evaluate the hypothesis.

WAPL and PDS5 are highly conserved cohesin regulators that
contribute to the association and dissociation of cohesin complexes
from chromosomes, and thereby modulate chromosome architecture
in somatic cells (Kueng et al., 2006; Tedeschi et al., 2013; Haarhuis

FIGURE 1
Axis-loop chromosome structure and the synaptonemal complex
in mice (A) Surface spreads of mouse oocyte pachytene chromosomes
immunostained for RAD21L (green), SYCP3 (magenta), and DNA (DAPI;
blue). DNA is condensed on chromosome axes where cohesin
complexes and axis core proteins localize and spread as loops from axes.
RAD21L and SYCP3 are shown as a representative ofmeiotic cohesin and
axis core protein, respectively (B) Schematic representation of the
mouse synaptonemal complex. Cohesin complexes interconnect axes
of sister chromatids and lateral elements SYCP2 and SYCP3 and a
transverse filament protein SYCP1 form a ladder/zipper-like structure.
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et al., 2017; Wutz et al., 2017). In C. elegans, cytological analysis of
wapl-1 null mutants indicated minor defects in the repair of meiotic
DSBs (Crawley et al., 2016). Physical analysis of meiotic
recombination at a well-characterized DSB hotspot in budding
yeast revealed a subtle reduction in the levels of meiotic DSBs and
the homolog bias of DSB repair in rad61/wpl1 deletion mutants
(Challa et al., 2016; Hong et al., 2019). More severe defects were
seen in pds5 meiotic null mutants with an interhomolog bias defect
similar to that of a rec8 deletion mutant (Hong et al., 2019). Both
rad61/wpl1 and pds5 mutants showed shortened chromosome axes in
budding yeast (Challa et al., 2016; Yang et al., 2022) and in fission yeast
(Ding et al., 2006; Sakuno et al., 2022). Importantly, the budding yeast
pds5mutant forms SCs between sister chromatids instead of homologs
(Jin et al., 2009), which is reminiscent of the phenotypes seen in mouse
Rec8, Rad21L, Stag3, and Smc1β knockout mutant spermatocytes (Xu
et al., 2005; Ishiguro et al., 2011; Llano et al., 2012; Agostinho et al.,
2016). Recent studies also revealed that depletion of PDS5 (both
PDS5A and PDS5B) in mice leads to shortened chromosome axes,
which form normal SCs between homologs, but are compromised for
meiotic recombination (Viera et al., 2020). The prophase-I phenotypes
of Wapl mutant mice have not been reported yet.

Notably, budding yeast Pds5 interacts with the proteasome and the
shortened chromosome axis length of pds5mutants is rescued by reducing
levels of ubiquitin, suggesting that Pds5 regulates axis length via the
ubiquitin-proteasome system (Yang et al., 2022). Consistently, the
proteasome is indeed localized on chromosome axes in budding yeast,
C. elegans, and mice (Ahuja et al., 2017; Rao et al., 2017). Although
changes in chromosome structures resulting from mutation of PDS5
might indirectly affectmeiotic recombination inmice, physical interaction
between PDS5 and two RAD51 mediators, BRCA2 and the SWS1-
SWSAP1, has been reported. Moreover, DSB repair is defective in
PDS5 mutant somatic cells from fly and human (Brough et al., 2012;
Kusch, 2015; Couturier et al., 2016; Martino et al., 2019). These data
support more direct roles for PDS5 in meiotic recombination, either as a
component of cohesin or as an independent complex.

DSB formation in tethered loop-axis
complexes

Meiotic recombination is initiated by programmed DSBs formed
via an evolutionarily conserved topoisomerase VI-like protein, Spo11,
and its partners (Bergerat et al., 1997; Keeney et al., 1997; de Massy,
2013; Robert et al., 2016). DSB sites are located in chromatin loops

while Spo11 partners such as Rec114-Mer2-Mei4 in budding yeast,
Rec7-Rec15-Rec24 in fission yeast, and REC114-IHO1-MEI4 in mice
localize to chromosome axes where cohesin also localizes, suggesting
that tethered loop-axis complexes (TLACs) form during the initiation
of meiotic recombination to regulate both DSB formation and the
ensuing steps of meiotic recombination (Blat et al., 2002; Kumar et al.,
2010; Panizza et al., 2011; Miyoshi et al., 2012; Fowler et al., 2013; Ito
et al., 2014; Kumar et al., 2015; Stanzione et al., 2016); (Figure 2).

Molecular mechanisms of TLAC formation have been studied in
yeasts. Spp1 in budding yeast and Mde2 in fission yeast are identified
as proteins important for the formation of TLACs (Miyoshi et al.,
2012; Acquaviva et al., 2013; Sommermeyer et al., 2013; Adam et al.,
2018). In budding yeast, DSB hotspots are preferentially located in
promoter regions within chromatin loops (Pan et al., 2011; Ito et al.,
2014). Spp1, a component of the COMPASS/Set1 complex that
catalyzes histone H3K4 trimethylation, is thought to recognize
H3K4 trimethylation marks around DSB hotspots via its PHD
domain, and connect these sites to chromosome axes by interacting
with axis-associated Mer2. Spp1 is likely to mediate TLAC formation
independently from the role in the COMPASS/Set1 complex (Karanyi
et al., 2018). Although Spp1-mediated TLACs contribute to DSB
formation, meiotic cells are equipped with another layer of
regulation for meiotic DSB formation, since spp1 mutants still form
relatively high levels of DSBs (Acquaviva et al., 2013; Sommermeyer
et al., 2013; Zhang et al., 2020). Given that Mer2 itself has an ability to
directly bind to nucleosomes and the association of Mer2 to
chromosome axes is regulated by its interacting axis-associated
protein Hop1, the Hop1-Mer2 may contribute to TLAC formation
both via and independently of Spp1 (Panizza et al., 2011; Rousova
et al., 2021). In fission yeast, where most DSB hotspots are in long
intergenic regions (Fowler et al., 2014), DSB hotspots are marked by
another epigenetic mark, H3K9 acetylation, and the
H3K4 trimethylation mark is dispensable for meiotic DSB
formation (Yamada et al., 2013). Mde2 expresses only after the
meiotic S-phase and is thought to bridge Rec12Spo11-containing
subcomplex at DSB hotspots and an axis-located subcomplex
containing Rec15Mer2 (budding yeast homologs in superscript)
(Miyoshi et al., 2012). Importantly, fission yeast Hop1 also
physically interacts with Rec15Mer2 and promotes chromosomal
localization of Rec15Mer2, suggesting significant contribution of
Hop1 to TLAC formation in both yeasts (Kariyazono et al., 2019).

Whether or not the mechanism of TLAC formation is conserved
remains unclear. In mice, PRDM9, a germ cell-specific
H3K4 trimethylation transferase with a zinc-finger array domain,
recognizes specific DNA sequences, deposits H3K4me3 and
H3K36me3 marks, and directs DSB formation at its binding sites
(Baudat et al., 2010; Diagouraga et al., 2018). Recent ChIP-seq analysis
for meiotic cohesin components REC8 and RAD21L revealed their
localization to promoter regions (Vara et al., 2019) and no overlap of
meiotic cohesin binding sites with DMC1 (the meiosis-specific
RAD51 homolog) and PRDM9 binding sites (Jin et al., 2021).
CXXC1 is an ortholog of budding yeast Spp1, and the physical
interaction of CXXC1 with PRDM9 and IHO1, an axis-associated
protein considered to be the ortholog of budding yeast Mer2,
suggested a similar mechanism of TLAC formation between
budding yeast and mouse (Imai et al., 2017; Parvanov et al., 2017).
However, depletion of CXXC1 in mouse germ cells caused no or small
defects in DSB formation and the early steps of DSB repair (Tian et al.,
2018; Jiang et al., 2020), suggesting that factor(s) other than

FIGURE 2
Tethered loop-axis complex (TLAC) formation to regulate DSB
formation in budding yeast. Schematic representation of the budding
yeast TLAC. Spo11 partner Rec114-Mer2-Mei4 complex localizes to
chromosome axes where Rec8 cohesin and an axial element
Red1 reside, and Spp1, a component of the Set1/COMPASS complex,
tethers Spo11-bound DSB hotspots within loops to chromosome axes
via the interaction with Mer2.
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CXXC1 plays a critical role in TLAC formation and meiotic DSB
formation in mice. A mammalian ortholog of fission yeast Mde2 has
not been identified yet.

Inter-homolog bias controlled by axial
proteins

DSB formation is followed by nuclease-mediated 5′-strand
resection to form long single-stranded tails. Invasion of the
resected DSB end into a template homologous duplex DNA forms
a nascent D (displacement)-loop structure. At this stage, D-loop
intermediates are thought to differentiate into crossover and non-
crossover pathways (Hunter, 2015). The majority are matured as non-
crossovers via DNA synthesis to extend the invading end, dissociation
of the D-loop, and annealing of the displaced strand to seal the DSB
(synthesis-dependent strand annealing) (Allers and Lichten, 2001;
Hunter and Kleckner, 2001). Along the crossover pathways, D-loops
differentiate into metastable D-loops called Single-End Invasions
(SEIs) which then form double-Holliday junctions (dHJs) via DNA
synthesis and capture of the second DSB end. dHJs are specifically
resolved into crossover products. These events also occur in the
context of meiotic chromosome axes and SCs. A prominent feature
of meiotic recombination is that homology search and strand
exchange are biased to occur between homologous chromosomes
(inter-homolog) rather than between sister chromatids (inter-
sister). This biased template choice is regulated by components of
the axial/lateral elements of the SC and axis-associated proteins.

In budding yeast deletion mutants of axis-associated proteins
Red1, Hop1, and the associated recombination-checkpoint kinase
Mek1, DSBs are repaired primarily via inter-sister recombination
(Kim et al., 2010; Lao and Hunter, 2010). The Hop1-Red1-
Mek1 pathway, along with other factors that promote inter-
homolog recombination (Zierhut et al., 2004), may mediate inter-
homolog bias by inhibiting inter-sister recombination, promoting
inter-homolog recombination, and/or by impeding the progression
of recombination until homologs have been engaged (Lao and Hunter,
2010). Further mutant analysis suggested that meiotic cohesin
Rec8 promotes inter-sister bias, which is counteracted by Red1 and
Mek1/Mre4 (Kim et al., 2010). Mek1 is a meiosis-specific, axis-
associated kinase that phosphorylates various targets including
Rad54 and Hed1. The phosphorylation of both Rad54 and
Hed1 suppresses Rad51-mediated inter-sister recombination, which
partly explains the involvement of Mek1 in the suppression of inter-
sister recombination (Niu et al., 2007; Niu et al., 2009; Callender et al.,
2016; Kniewel et al., 2017). Importantly, the meiotic Rad51 homolog,
Dmc1, bears an ability to promote inter-homolog bias (Brown and
Bishop, 2014). However, the exact mechanism of inter-homolog bias
and the relationship between Mek1-mediated phosphorylation and
Rec8-cohesin remain to be resolved.

Hop1 is a conserved HORMA domain-containing protein that
specifically localizes to unsynapsed axes and is locally depleted from
sites of synapsis (Smith and Roeder, 1997), distinct from its binding
partner Red1 and the cohesin complexes that appear to be constitutive
components of chromosome axes before and after SC formation.
Removal of Hop1 from synapsed axes is mediated by an
evolutionarily conserved AAA+ ATPase Pch2, and yeast pch2Δ
mutants show increased inter-sister recombination, suggesting that

Pch2 also contributes to inter-homolog bias via the Hop1-Red1-
Mek1 axis (Borner et al., 2008; Zanders et al., 2011). In mice, the
two HORMA domain-containing proteins HORMAD1 and
HORMAD2 also preferentially localize to unsynapsed axes
(Wojtasz et al., 2009). In the absence of the HORMADs, the repair
of radiation-induced exogenous DSBs was accelerated in Spo11-and
Dmc1-deficient meiocytes in which inter-sister recombination is
preferred, suggesting that, like budding yeast Hop1, mouse
HORMADs may impede inter-sister recombination (Shin et al.,
2013; Rinaldi et al., 2017; Carofiglio et al., 2018). The removal of
HORMADs from synapsed axes is mediated by the Pch2 homolog
TRIP13 (Wojtasz et al., 2009; Roig et al., 2010; Ye et al., 2017). In
Trip13 mutant meiocytes, unrepaired DSBs persist (Li and Schimenti,
2007; Roig et al., 2010; Rinaldi et al., 2017), supporting the idea that
HORMADs suppress inter-sister DSB repair.

Synaptonemal complexes and crossing
over

Synaptonemal Complexes (SCs) are tripartite protein structures
where the two lateral/axial elements of homologous chromosomes are
connected along their lengths by a central region comprising tightly-
packed transverse filaments and a central element. The dependency of
SC formation on DSBs and recombination differs among species, with
recombination-dependent synapsis in most analyzed fungi, plants,
and mammals where SC formation tends to initiate at sites of
recombination (SC also initiates at centromeres in budding yeast).
By contrast, DSBs are dispensable for the SC formation in Drosophila
and C. elegans in which synapsis initiates at centromeres and terminal
pairing centers, respectively (MacQueen et al., 2005; Takeo et al.,
2011). Despite these differences, SCs have a common function in the
formation and/or regulation of crossing over in all organisms (with
known exceptions being Schizosaccharomyces pombe and Aspergillus
nidulans that have no typical SC structure).

The ZMM proteins are a group of meiosis-specific proteins that
facilitate crossing over by promoting/stabilizing the crossover-
pathway joint-molecule intermediates, SEIs and dHJs, and
promoting the crossover-specific resolution of dHJs via MutLγ.
Initially identified in budding yeast, the ZMMs comprise eight
members that define five structures or activities: Zip1SYCP1 is the
transverse filament components of SCs but also functions locally at
recombination sites; Zip2SHOC1-Spo16 is related to XPF-ERCC1 and
thought to bind and stabilize recombination intermediates; Zip4TEX11

is a long TPR-repeat protein that appears to bridge chromosome axes
and recombination complexes by forming the ZZS complex with
Zip2SHOC1-Spo16; Zip3RNF212 is inferred to be an E3-ligase for
SUMO modification that promotes the localization of other ZMMs
to recombination sites; Msh4-Msh5 (MutSγ), homologous to DNA
mismatch-repair factorMutS, binds and stabilizes joint molecules; and
Mer3HFM1 is a DNA helicase that stabilizes joint molecules and
regulates the length of recombination-associated DNA synthesis
(mammalian homologs in superscript) (Lynn et al., 2007; De Muyt
et al., 2018; Arora and Corbett, 2019). In budding yeast, all ZMM
proteins are also required for SC formation, with Zip2-Spo16-
Zip4 and Zip3 being defined as synapsis initiation complexes
(SICs) that assemble at synapsis initiation sites, which mature into
crossover sites, indicating a close link between SC initiation and
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crossing over at least in budding yeast and similarly in Sordaria
macrospora (Chua and Roeder, 1998; Agarwal and Roeder, 2000;
Borner et al., 2004; Fung et al., 2004; Tsubouchi et al., 2006;
Shinohara et al., 2008; Zhang et al., 2014a). In mice, the number of
ZMM-associated recombination sites, detected as cytological foci, is in
large excess relative to SC-initiation sites and crossovers. Meiocytes
frommouse zmm knockouts forHfm1, Msh4,Msh5, Shoc1, Spo16, and
Tex11 show defects in synapsis and crossover formation, as seen in
budding yeast. The exception is mouse knockout mutant for the ZIP3
homolog Rnf212, in which synapsis occurs efficiently but crossing over
fails (de Vries et al., 1999; Kneitz et al., 2000; Yang et al., 2008;
Guiraldelli et al., 2013; Reynolds et al., 2013; Zhang Q. et al., 2018;
Guiraldelli et al., 2018; Zhang et al., 2019).

Like the budding yeast zip1Δ mutant, knockout mutation of
components of the SC central region, SYCP1, SYCE1, SYCE2,
SYCE3, TEX12, and SIX6OS1, in mice abolishes both synapsis and
crossing over (de Vries et al., 2005; Bolcun-Filas et al., 2007; Hamer
et al., 2008; Bolcun-Filas et al., 2009; Schramm et al., 2011; Gomez
et al., 2016). In C. elegans, mutation of components of the SC central
region (SYP-1, SYP-2, SYP-3, and SYP-4) also causes a severe
reduction or loss of crossovers (MacQueen et al., 2002; Colaiacovo
et al., 2003; Smolikov et al., 2007a; Smolikov et al., 2007b; Smolikov
et al., 2009), indicating a coupling between SC formation and crossing
over in most organisms. A notable exception is Arabidopsis thaliana,
in which meiocytes lacking the SC central element ZYP1 are defective
for synapsis but form elevated numbers of crossovers (Capilla-Perez
et al., 2021). Similarly, the absence of the central element proteins
Ecm11 and Gmc2 in budding yeast causes defective SC formation but
increased crossing over (Voelkel-Meiman et al., 2016; Lee et al., 2021).
These observations suggest that full synapsis and the SC central region
are not essential for crossing over per se, but may function to control a
proper number of crossovers.

Despite the close link between SC formation and crossing over in
most species, uncoupling of the two events is implicated in a meiosis-
specific depletion mutant of a component of SCF (Skp1-Cullin-F box)
E3 ubiquitin ligase, Cdc53. The budding yeast cdc53 mutant is largely
proficient in crossover formation, but is severely defective for the
elongation of SCs and shows the abnormal accumulation of ZMM
proteins (Zhu et al., 2021). Moreover, when Cdc53 depletion is
combined with the pch2 deletion mutation, lacking the AAA+
ATPase that removes Hop1HORMAD1 from synapsed axes, the
formation of full-length SCs is restored, but now DSB repair and
crossing over are stalled. This uncoupling is unexpected since most
yeast mutants defective for meiotic DSB repair also impair SC
elongation. A possible explanation is that SCF is part of a
regulatory surveillance mechanism that couples SC elongation and
DSB repair in meiotic cells.

Crossover patterning on synaptonemal
complexes

Crossovers, in concert with cohesion between sister chromatids,
create connections between homologs called chiasmata that enable
stable bipolar orientation of homologs on the meiosis-I spindle and
consequently accurate disjunction at the first meiotic division. The
number and position of crossovers, and thus chiasmata, are strictly
controlled: each pair of homologous chromosomes (a bivalent) obtains
at least one crossover (the obligate crossover or crossover assurance)

and when multiple crossovers form between a bivalent they are evenly
spaced (crossover interference). Crossover homeostasis can maintain
crossover numbers at the expense of non-crossovers to buffer against
variation in DSB numbers and inter-homolog bias (Martini et al.,
2006; Cole et al., 2012; Lao et al., 2013). In addition, the phenomenon
of crossover covariation describes the observation that within
individual nuclei, crossover frequencies covary across different
chromosomes, which may have adaptative advantages by balancing
the cost-benefit ratio of crossing over (Wang S. et al., 2019). The
precise mechanisms of these crossover control processes remain
unresolved.

In budding yeast, crossover interference has been analyzed
genetically by analyzing the segregation patterns of linked gene
alleles and spore autonomous fluorescent makers in tetrads (Cao
et al., 1990; Sym and Roeder, 1994; Shinohara et al., 2003; Thacker
et al., 2011; Lao et al., 2013); and in prophase-I nuclei by analyzing the
distribution of crossover-specific Zip2 and Zip3 immunostaining foci
along SCs (Fung et al., 2004; Zhang et al., 2014b). Zip3 foci are evenly
spaced, implying the establishment of interference patterning at or
before the time of Zip3 loading, which depends on DSB formation
(Zhang et al., 2014b). Mutant analysis revealed that the SUMO-
targeted ubiquitin ligase (STUbL), Slx5/8 and SUMOylation of
Top2 and axis protein Red1 are required for crossover interference
(Zhang et al., 2014c). These and other observations support the
proposal of Kleckner and colleagues that crossover interference is
mediated by the imposition and relief of mechanical stress along
meiotic chromosome axes (the beam-film model; Kleckner et al., 2004;
Zhang et al., 2014b).

ZHP-3 is a C. elegans RING-domain protein related to Zip3 and is
essential for crossover formation (Jantsch et al., 2004). ZHP-3
functions with three paralogs (ZHP-1,2,4) inferred to act as two
heterodimeric complexes ZHP-1/2 and ZHP-3/4 (Zhang L. et al.,
2018). ZHP-3 localizes along SCs in two phases; first as multiple foci
along each SC before becoming restricted to a single crossover-specific
focus in late pachynema (Bhalla et al., 2008). In C. elegans, robust
crossover assurance and absolute interference ensures that each pair of
homologous chromosomes obtains exactly one crossover. In vivo
imaging using Fluorescence Recovery After Photobleaching (FRAP)
technology revealed the dynamic properties of the SC central region
and a switch from a dynamic to a stable state as pachytene progresses,
the timing of which coincides with crossover designation
(Pattabiraman et al., 2017). Other in vivo imaging studies support
the idea that the SC has liquid crystalline properties, suggesting that
the diffusion of the ZHP complexes within the SC might govern
crossover patterning via a diffusion-mediated or coarsening or
condensation process (Rog et al., 2017; Stauffer et al., 2019; Zhang
et al., 2021).

Diffusion-mediated coarsening as a mechanism for crossover
patterning is also suggested from analysis in Arabidopsis. Both
plants and Sordaria encode a sole RING-domain crossover factor
called HEI10 (without Zip3RNF212 orthologs). The localization pattern
of HEI10 is also dynamic: forming multiple discrete foci along the SCs
in early pachynema, which then reduce in number until most foci have
disappeared while a few sites accumulate HEI10 and mature into
crossover sites marked by MutLγ (Chelysheva et al., 2012; Wang et al.,
2012; De Muyt et al., 2014). Analysis of HEI10-focus patterning in
several different contexts via super-resolution structure-illumination
microscopy (SIM) imaging of fixed cells combined with modeling by
computational simulation is compatible with diffusion-mediated
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coarsening of HEI10 foci as a mechanism for crossover patterning
(Morgan et al., 2021).

Mammals encode both Zip3 homolog RNF212 and HEI10, both
of which are essential for crossover regulation in mice (Ward et al.,
2007; Strong and Schimenti, 2010; Reynolds et al., 2013; Qiao et al.,
2014). RNF212 shows dynamic localization along SCs similar to
that of HEI10 in Arabidopsis and Sordaria, forming numerous
discrete foci during early pachynema, which become restricted to
crossover sites as pachytene progresses. By contrast, mouse
HEI10 localizes only to crossover sites during mid-late
pachynema and is not detected along SCs at earlier stages
(Figure 3). It is suggested that RNF212-dependent SUMOylation
stabilizes ZMM factors to confer crossover-competency to
recombination sites, and HEI10-dependent ubiquitination
subsequently licenses crossover/non-crossover differentiation by
recruiting proteasomes to SCs to degrade as yet unknown factors
(Rao et al., 2017). Importantly, the dosage of Rnf212 and Hei10
affects crossover rate in humans and mice, as seen for Arabidopsis
Hei10 (Kong et al., 2008; Chowdhury et al., 2009; Fledel-Alon et al.,
2011; Kong et al., 2014; Ziolkowski et al., 2017). This similarity in
the dosage effect on crossover numbers is consistent with the
possibility that crossover patterning in mammals may also

involve the diffusion-mediated accumulation of RNF212 and
HEI10 at crossover sites.

Discussion (perspective)

Meiotic chromosomes organize into specialized structures that
help strictly regulate the number and position of meiotic DSBs, the
choice of recombination template, and the differentiation of
crossovers and non-crossovers to ultimately ensure the completion
of DSB repair and accurate chromosome segregation. A diversity of
approaches and model species are providing major insights into this
molecular basis of the chromosome structure-recombination
interface. However, major questions still remain to be addressed,
including: Do cohesins and associated factors have direct functions
in the regulation of meiotic recombination? Which factor(s) are
responsible for TLAC formation in other organisms than yeasts,
and how is TLAC formation coupled to DSB formation? How is
inter-homolog bias established? What mechanisms underlie crossover
patterning in mammals in which both Zip3/RNF212-family and
HEI10-family RING-domain proteins are present? Recently,
structural analysis of axis core proteins, Hop1/HORMADs, DSB

FIGURE 3
Chromosomal localization of RNF212 and HEI10 in mice. Successive stages of mouse pachytene spermatocytes immunostained for RNF212 (green),
HEI10 (magenta), and SYCP3 (blue), HEI10 and SYCP3. RNF212 forms numerous discrete foci along the entire SCs (marked by SYCP3) in early pachynema
before HEI10 foci emerge (top), loses most of foci but accumulates at HEI10-bound crossover sites in mid pachynema (middle), and eventually is restricted to
crossover sites in late pachynema (bottom).
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proteins and associated proteins, and SC components is providing
mechanistic insights into their functions (West et al., 2018; Boekhout
et al., 2019; West et al., 2019; Sanchez-Saez et al., 2020; Claeys
Bouuaert et al., 2021; Dunce et al., 2021; Rousova et al., 2021; Nore
et al., 2022). Further mutant analysis based on protein structure will be
a key to answer these unaddressed questions.

As presented above, SUMO, ubiquitin, and proteasome are
involved in the regulation of chromosome axis length and
crossover interference in budding yeast, and presumptive SUMO
and ubiquitin ligases, RNF212 and HEI10, are essential for
crossover regulation in mice, highlighting central roles for the
SUMO and ubiquitin-proteasome systems in meiotic chromosome
organization and the regulation of meiotic recombination. Indeed,
SUMO is enriched on chromosome axes and SCs in budding yeast,
Sordaria, mice, and humans, and ubiquitin and proteasome have been
localized to chromosome axes in budding yeast, C. elegans, and mice
(Voelkel-Meiman et al., 2013; Klug et al., 2013; Brown et al., 2008; De
Muyt et al., 2014; Ahuja et al., 2017; Rao et al., 2017; Figure 4).
Numerous meiotic factors, including cohesin and recombination

proteins, undergo SUMOylation in budding yeast (Bhagwat et al.,
2021), and the SCF ubiquitin ligase, which regulates SC elongation in
conjunction to Pch2TRIP13 in budding yeast (Zhu et al., 2021), localizes
to synapsed chromosome axes and targets HORMAD1 in mouse
(Guan et al., 2020; Guan et al., 2022). Future analysis will further
elucidate molecular roles of SUMO and the ubiquitin-proteasome
system in the regulation of meiotic recombination in conjunction with
chromosome architecture.
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