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Hepatocellular carcinoma (HCC) is amajor public health concern that is promoted by
obesity and associated liver complications. Onset and progression of HCC in obesity
is a multifactorial process involving complex interactions between themetabolic and
immune system, in which chronic liver damage resulting from metabolic and
inflammatory insults trigger carcinogenesis-promoting gene mutations and tumor
metabolism. Moreover, cell growth and proliferation of the cancerous cell, after
initiation, requires interactions between various immunological and metabolic
pathways that provide stress defense of the cancer cell as well as strategic cell
death escapemechanisms. The heterogenic nature of HCC in addition to the various
metabolic risk factors underlying HCCdevelopment have led researchers to focus on
examining metabolic pathways that may contribute to HCC development. In
obesity-linked HCC, oncogene-induced modifications and metabolic pathways
have been identified to support anabolic demands of the growing HCC cells and
combat the concomitant cell stress, coinciding with altered utilization of signaling
pathways and metabolic fuels involved in glucose metabolism, macromolecule
synthesis, stress defense, and redox homeostasis. In this review, we discuss
metabolic insults that can underlie the transition from steatosis to steatohepatitis
and from steatohepatitis to HCC as well as aberrantly regulated immunometabolic
pathways that enable cancer cells to survive and proliferate in the tumor
microenvironment. We also discuss therapeutic modalities targeted at HCC
prevention and regression. A full understanding of HCC-associated
immunometabolic changes in obesity may contribute to clinical treatments that
effectively target cancer metabolism.
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1 Obesity-linked non-alcoholic fatty liver disease and
hepatocellular carcinoma: A global and complex
problem

Hepatocellular carcinoma (HCC) is one of the most fatal cancers and there are limited
therapeutic options (Diehl and Day, 2017; Anstee et al., 2019; Geh et al., 2021; Sung et al., 2021).
According to the World Health Organization, HCC related death amounted to approximately
700,000 in 2018 and is expected to reach 1 million in 2030 (Samant et al., 2021). Several factors
cause HCC. Most commonly is chronic viral hepatitis, driven by hepatitis B virus (HBV) and
hepatitis C virus (HCV) infection. Other factors include alcoholic liver disease, metabolic liver
diseases such as hereditary hemochromatosis and Wilson’s disease (Gunjan et al., 2017;
Jayachandran et al., 2020), and exposure to toxins such as aflatoxin B1 (Cao et al., 2022).
Of rising concern is the impact of non-alcoholic fatty liver disease (NAFLD), which is expected
to become the most common cause (Ascha et al., 2010; Karagozian et al., 2014; Estes et al.,
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2018a; Estes et al., 2018b; Younossi et al., 2018; Ioannou, 2021a). As
NAFLD prevalence has reached 37% globally (Le et al., 2019), there is
urgent need for therapeutics that can uncouple mechanisms linking
NAFLD to HCC onset as well as delay HCC progression and promote
remission. However, such treatment strategies will need to consider
the metabolic context, as NAFLD has a strong association with obesity
but still approximately 40% of cases are non-obese and 20% are lean
(Ha et al., 2022). In obesity, there are immunometabolic alterations
(Hotamisligil, 2017; Dyck and Lynch, 2018; Lee et al., 2018) that can
impact NAFLD incidence and its progression to HCC, which are likely
distinct from pathogenic mechanisms in lean people with NAFLD.
Future research is needed to clarify similarities and differences. In this
review, we will discuss signatures of NAFLD-induced HCC, obesity-
linked stressors that contribute to NAFLD and HCC,
immunometabolic rewiring that promote HCC initiation and
growth, and agents under development to treat NAFLD and HCC.

1.1 Non-alcoholic fatty liver disease,
hepatocellular carcinoma, and obesity

NAFLD encompasses a spectrum of fatty liver diseases, with
simple steatosis being most common and a relatively benign
condition that has a low risk for HCC (Serfaty and Lemoine,
2008). In contrast, liver can progress to a more serious
pathology called non-alcoholic steatohepatitis (NASH), which
has the added distinguishing characteristic of liver inflammation
and fibrosis. NASH accounts for approximately 20% of NAFLD
cases and associated fibrosis is a turning point for adverse effects
(Ekstedt et al., 2015; Povsic et al., 2019); this link between advanced
fibrosis and HCC is also a common feature for HCV and alcoholic
fatty liver disease (Marot et al., 2017; Ioannou, 2021b; Shiha et al.,
2021). When compared to simple steatosis, annual HCC incidence
increases by more than 10-fold in people with NASH and even
higher when associated with cirrhosis (Negro, 2020; Grgurevic
et al., 2021).

Obesity is an independent risk factor for HCC initiation,
progression, and invasion (Nair et al., 2002; Calle and Kaaks, 2004;
Gan et al., 2018) and also impacts HCC in people with HCV (Minami
et al., 2021) and those with alcoholic fatty liver disease (Chiang and
McCullough, 2014). There is interest in determining how these
interactions contribute to HCC pathogenesis, progression, and
treatment (Joshi-Barve et al., 2015; Ntandja Wandji et al., 2020;
Bianco et al., 2021a). Larsson and Wolk (Larsson and Wolk, 2007)
found the risk of HCC increase by 17% in overweight people and 89%
in people with obesity, indicating severity of metabolic imbalance is
related to liver pathology. Several mechanisms have been identified
that may link obesity to cancers such as HCC via abnormal hormone
and cytokine action, exposure to metabolic toxicity, oxidative damage,
dysregulated cell cycle, and impaired immunity (Calle and Kaaks,
2004; Diehl and Day, 2017; Dyck and Lynch, 2018; Gan et al., 2018;
Anstee et al., 2019; Hou et al., 2020; Peiseler et al., 2022). The common
theme is chronic metabolic burdens that arise in obesity drive
persistently high levels of stress in hepatocytes and other types of
liver cells and alter immune responses of the developing and
established tumor (Buck et al., 2017; Diehl and Day, 2017;
Hotamisligil, 2017; Dyck and Lynch, 2018).

1.2 Genetic, molecular, and metabolic
signatures of non-alcoholic fatty liver disease
and hepatocellular carcinoma

Similar to many cancers, tumor promoting mutations play a key
role. Prevalent small nucleotide polymorphic (SNP) risk alleles have
been found for patatin-like phospholipase domain containing 3
(PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2),
membrane bound O-acyltransferase domain containing 7
(MBOAT7), glucokinase regulator (GCKR), and 17ß-hydroxysteroid
dehydrogenase type 13 (HSD17B1), and interestingly, the products for
these genes impact liver metabolism, which may underlie promotion
of NAFLD and HCC (Liu et al., 2014a; Liu et al., 2014b; Singal et al.,
2014; Mancina et al., 2016; Thabet et al., 2016; Diehl and Day, 2017;
Seko et al., 2017; Seko et al., 2018; Anstee et al., 2019; Tang et al., 2019;
Bianco et al., 2021a; Bianco et al., 2021b; Geh et al., 2021).
PNPLA3 hydrolyzes triglycerides and retinyl esters,
TM6SF2 regulates lipoprotein export, and MBOAT7 is involved in
phospholipid remodeling, and these three molecules are now
recognized as important biomarkers (Geh et al., 2021).
Additionally, a group of recent studies sought to identify common
and distinct genetic variants that underlie HCC risk in HBV, HCC,
alcoholic fatty liver disease, and NASH (Schulze et al., 2015; Fujimoto
et al., 2016; Cancer Genome Atlas Research Network, 2017). This
includes large multi-platform analyses across a range of ethnicity, age,
and gender. The results reinforce a role for mutated cell cycle
regulators (e.g., TP53 and CCND1) and identify factors linked to
antioxidant defense (e.g., NFE2L2 and KEAP1), inflammation (e.g.,
IL6 and STAT3), and lipid metabolism (e.g., APOB and CPS1).
Moreover, Govaere et al. (2020) characterized the transcriptional
signatures and associated plasma biomarkers that correspond with
the progression of steatosis to early and late-stage NASH and liver
fibrosis, which led them to identify markers with potential diagnostic
and prognostic value and revealing a role for impaired sterol
homeostasis.

Metabolomic and lipidomic approaches comparing liver and
plasma of patients with steatosis, NASH, and cirrhosis has been
utilized to identify biomarkers for diagnosis and prognosis (Aranha
et al., 2008; Ferslew et al., 2015; Gorden et al., 2015; Mouzaki et al.,
2016; Puri et al., 2018; Masoodi et al., 2021). One finding that
emerged from liver lipidomic comparisons is that unesterified
(free) cholesterol is elevated in NASH compared to steatosis
(Puri et al., 2007; Caballero et al., 2009; Min et al., 2012).
Subsequent studies have shown elevated cholesterol can
crystalize within hepatocytes and surround cytoplasmic lipid
droplets and that this feature distinguishes NASH from simple
steatosis for humans and mice (Ioannou et al., 2013; Ioannou et al.,
2019). Also, mechanistic studies with rodents and cultured cells as
well as epidemiological studies show there is a link with increased
dietary cholesterol and reveal elevated free cholesterol in liver is not
just a biomarker but a causal factor for NASH pathogenesis (Musso
et al., 2013; Ioannou, 2016; Horn et al., 2022). Additionally, hepatic
oxidized phospholipid has been identified as a signature distinction
and causative factor for NASH (Sun et al., 2020). Development of
agents to counteract the accumulation of cholesterol and oxidized
phospholipid and alleviate the stress they impose on the liver may
have substantial therapeutic value.
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1.3 Preclinical models to study non-alcoholic
fatty liver disease and hepatocellular
carcinoma

The study of NASH driven HCC in a clinical setting is ideal but has
limitations for deciphering mechanisms of pathogenesis.
Complementary mouse models are an invaluable resource for this
purpose. That being said, it is recognized there is not any one mouse
model system that accurately reflects all aspects of NASH or HCC.
Instead, there are multiple models that capture certain elements of the
disease. These can be classified into three main categories: diet-
induced, carcinogen-induced, and genetic models.

Mice fed high fat diet (HFD) composed of 60% lard-based fat develop
hepatic steatosis associated with oxidative stress, insulin resistance and
inflammation (Brown et al., 2022). However, most experimental mice
strains fed this type of diet rarely progress to severe forms of NASH or
develop HCC, unless there is a genetic predisposition (Takahashi et al.,
2012; Nakagawa et al., 2014). Green et al. (2022) found the addition of high
glucose and fructose water to HFD promoted spontaneous induction of
NASH driven HCC after 54 weeks. Similarly, diet high in saturated fat,
cholesterol and sucrose promote weight gain, insulin resistance, liver injury
and inflammation that is comparable to the human disease phenotype
(Machado et al., 2015). While addition of cholesterol and fructose to high
fat intake seems key to progression of NASH and development of cancer,
the mechanisms underlying disease progression are still under
investigation (Ribas et al., 2021). In comparison, the methionine and
choline deficient diet (MCD) model is a rapid onset and robust dietary
model in which liver develops severe steatohepatitis due to defects in lipid
droplet and lipoprotein metabolism, but mice fed this diet lack typical
associated features ofNASH such as obesity and insulin resistance and thus
it has limited utility to understand chronic fatty liver stress that leads to
NASH (Haberl et al., 2020; Alshawsh et al., 2022). Alternatively, the Gubra
Amylin NASH inducing diet (40% kcal fat (of these 46% are saturated fatty
acids), 22% fructose, 10% sucrose, 2% cholesterol) has a phenotypical and
transcriptomic resemblance to clinically presented NASH and emerges
upon long term diet exposure (Hansen et al., 2020). However, it is not yet
known if this diet, on its own, promotes HCC.

Chemical carcinogens are used to cause HCC in mice. Though it is
difficult to understand how well this can phenocopy human HCC, it is
assumed the underlying mechanism is similar (i.e., ROS induced tumor
causing mutation) and the effect is robust and reproducible. Recent
studies used carcinogens added to steatosis or NASH diet.
Administering a single dose of diethylnitrosamine (DEN) in 1 week
old mice is capable of inducing spontaneous HCC (Umemura et al.,
2016), and this has also been combined with a high fat, choline deficient
diet model that bear partial resemblance to NASH inducedHCC (Kishida
et al., 2016). Likewise, streptozotocin can induce HCC, but with the
absence of weight gain due to insulin deficiency (Fujii et al., 2013). Once a
week low dose carbon tetrachloride (CCl4) for 24 weeks plus HFD is an
efficient model to induce liver fibrosis and HCC with resemblance to the
human HCC transcriptome profile (Tsuchida et al., 2018).

Genetically engineered models of HCC are also available. Liver
specific PTEN deletion mice is a widely used genetic model of NASH
induced HCC, in which the mice develop steatohepatitis and more than
half develop HCC by 74–78 weeks of age (Horie et al., 2004).
MicroRNA122 (miR-122) is highly enriched in liver and an
established suppressor of HCC and a mouse model with liver-
deletion of miR-122 locus has been generated to study its antitumor
function and potential to generate novel therapies (Nakao et al., 2014).

Mice with liver-specific or whole body deletion of NFκB essential
modulator (NEMO), peroxisome proliferator activated receptor alpha
(PPARα), farnesoid x-activated receptor (FXR), acetyl CoA oxidase
(ACOX1) and methionine adenosyltransferase 1A (MAT1A) have also
been used as models of NASH driven HCC, but poorly resemble
clinically presented NASH (Nakagawa, 2015; Febbraio et al., 2019;
Mohs et al., 2021). In contrast, MUP-uPA transgenic mice, a model
of transient hepatocyte ER stress, when given a HFD develop a
surprisingly similar picture of NASH and more than 78% of HFD-
fed MUP-uPA mice develop tumors (Nakagawa et al., 2014). Also, the
recently established diet-induced animal model of non-alcoholic fatty
liver disease and hepatocellular cancer (DIAMOND) mice have
emerged as a model of HCC derived NASH. When fed high fat,
high carbohydrate, and 0.1% cholesterol diet plus a fructose-glucose
solution, 89% of DIAMOND mice develop HCC between 32 and
52 weeks of diet exposure, and this coincides with steatohepatitis
that has similar histological and biochemical features of human
NASH as well as similar lipogenic, inflammatory, and proapoptotic
signaling profiles (Asgharpour et al., 2016). Altogether, there is a large
arsenal of in vivo tools for preclinical investigation of NASH and HCC.

2 Immunometabolic drivers: Focus on
reactive oxygen species and cholesterol

Coordinated interactions between metabolism and immunity
control homeostasis. Disrupting this interaction underlie a cluster
of obesity-linked diseases, including NAFLD (Hotamisligil, 2017). In
obesity, there is increased risk of metabolic insults resulting from
insulin resistance, diabetes, gut dysbiosis, abnormal bile acid
metabolism, and hepatic lipid accumulation which can trigger
maladaptive immunological responses that cause further insult and
stimulate fibrosis-promoting actions by stellate cells (Ioannou, 2016;
Diehl and Day, 2017; Schwabe et al., 2020; Peiseler et al., 2022). Over
time, these insults can cause organelle dysfunction and gene mutations
that lead to HCC. It is not clear if one type of insult predominates
above all others across all populations, and the mechanistic role of
each is incompletely understood. For instance, while excess
triglyceride (TG) in liver is linked to steatosis and insulin
resistance, mechanistic studies suggest TG in lipid droplets has a
relatively benign effect on promoting stress that leads to NASH. Yet,
certain fatty acids as well as fatty acid-based products and
intermediates can promote or counteract liver stress depending on
its chemical nature, subcellular location, and whether it is being used
for energy or membrane structure (Gluchowski et al., 2017; Loomba
et al., 2021). Likewise, there is still more to understand regarding the
relationship between bile acids and microbial metabolic products with
NAFLD progression (Chavez-Talavera et al., 2017; Tilg et al., 2022).
Here, we focus on the role of hepatic oxidative stress, which is a
common feature of most NASH-linked metabolic insults, and the role
of hepatic cholesterol excess, which has emerged to be a potential key
turning point in triggering chronic liver inflammation.

2.1 Non-alcoholic fatty liver disease and
oxidative stress

Production of cellular energy [i.e., adenosine triphosphate (ATP)]
and building blocks that sustain life processes (i.e., proteins,
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membrane, DNA, etc.) depend on access to molecular components
and energy stored within chemical bonds of absorbed nutrients and
related intermediates. To gain such access, cells produce enzymes and
place these metabolites in subcellular environments that enable
chemical reactivity. A caveat is that this chemical reactivity also
poses a risk of producing reactive biproducts and that absorbed
food often contains xenobiotics that are more challenging to
manage. Overproduction of such agents result in generation of
reactive oxygen species (ROS). Hepatocytes and other liver cells
counteract this problem by clearing xenobiotics and associated
endotoxin when it enters portal circulation from the gut. In
obesity, chronic nutrient overload can overburden hepatocyte
defenses and in turn promote susceptibility to oxidative stress-
induced tumor causing mutations.

Hepatocytes employ defense mechanisms that are capable of
scavenging ROS and counteracting their damaging effect on cellular
constituents but also must preserve physiological amounts of ROS
required for signal transduction and proper cell functions.
Physiological levels of ROS has a role in pathways such as
proliferation and differentiation, combating pathogens, and
plasma membrane repair (Murakami and Motohashi, 2015; Horn
and Jaiswal, 2018; Sies and Jones, 2020; Lennicke and Cocheme,
2021). Although the oxidative stress response is pivotal in cell
homeostasis, chronic exposure prevents these protective
mechanisms from functioning adequately, leading to imbalance
between ROS and antioxidant molecule production (Mossenta
et al., 2020). The enhanced ROS production will chemically react
with and consequently cause DNA damage, lipid peroxidation, and
protein misfolding (Sosa et al., 2013; Bartolini et al., 2018). Over
time, persistence of these harmful effects, in addition to the failure of
the DNA repair mechanisms, can lead to genetic mutations,
especially in oncogenes and tumor suppressor genes (Guichard
et al., 2012) and consequently, cancer initiation.

In liver tissue, major sources of ROS are mitochondria,
microsome, and peroxisome, which can occur during free fatty
acid (FFA) oxidation (Uchida et al., 2020). To prevent excess
accumulation, FFA can be stored in TG and secreted in very
low-density lipoproteins, incorporated into phospholipid that
are then excreted into bile, or alternatively, oxidized to produce
energy (Alves-Bezerra and Cohen, 2017). During NAFLD, FFA
oxidation in dysfunctional mitochondrial promote ROS
accumulation and liver damage. A microsomal enzyme that
mediates ω-oxidation of FFA named CYP4A was found to be
abundant in plasma of patients with NAFLD, and accumulation
of CYP4A11 in HepG2 human hepatoma cells was associated with
buildup of ROS derived product malondialdehyde (MDA),
superoxide dismutase (SOD), inflammatory cytokines and liver
transaminases (Gao et al., 2020). This may suggest ROS
accumulation through CYP4A mediated FFA oxidation may
promote NASH progression.

2.2 Non-alcoholic fatty liver disease and
hepatic cholesterol

Cholesterol has unique properties that support membrane
homeostasis, but in excess can promote disease. There are several
genetic polymorphisms linked to NASH that are also associated with
altered cholesterol metabolism (Horn et al., 2022), which has driven

attention to the link between cholesterol and HCC development. Over
the last 15 years, it has been established that cholesterol accumulation
in liver is a major factor driving the progression of steatosis to NASH.
An initial finding was free cholesterol accumulates in liver of people
with NASH and not in those with simple steatosis (Puri et al., 2007;
Caballero et al., 2009; Min et al., 2012). Subsequent experimental
studies have demonstrated hepatic cholesterol accumulation triggers
NASH (Ioannou et al., 2013; Musso et al., 2013; Savard et al., 2013;
Ioannou, 2016; Ioannou et al., 2017; Hansen et al., 2020; Wang et al.,
2020; Ribas et al., 2021; Horn et al., 2022). Most of these studies
examined dietary cholesterol. However, cholesterol biosynthesis also
has an effect, as the genetic induction of the cholesterol synthesis
pathway was shown to result in accumulation of liver cholesterol,
NASH, and HCC development (Ribas et al., 2021). Moreover, high
expression of cholesterol synthesis enzyme 3β-hydroxysteroid-
Δ24 reductase (DHCR24) has been found in human HCC liver,
whereas inhibiting DHCR24 impeded tumor growth, invasion, and
metastasis both in liver cancer cell lines and in Hep3B xenografts (Wu
et al., 2020).

The mechanisms by which hepatic cholesterol excess promote
NASH and how this contributes to HCC are still under investigation.
Elevated liver cholesterol may alter membrane composition to trigger
membrane stress and alter lipid rafts (Fu et al., 2012), and it has been
shown to induce HCC-promoting and fibrosis associated signaling
pathways (Schwabe et al., 2020; Wang et al., 2020; Wang et al., 2022).
Another intriguing mechanism is that excess cholesterol is a risk factor
for cholesterol crystal formation, which can trigger NASH. Such
crystals have been shown to distinguish between steatosis and
NASH in humans and mice (Ioannou et al., 2013; Ioannou et al.,
2017; Ioannou et al., 2019), coincide with increased cholesterol, and
appear to nucleate at lipid droplets and stimulate NLR family pyrin
domain containing 3 (NLRP3) inflammasome activity. This may be a
critical step, as NLRP3 is known to sense cholesterol crystals and
experimental evidence indicates hepatocyte NLRP3 is required and
sufficient to drive liver inflammation and fibrosis (Wree et al., 2014a;
Wree et al., 2014b). Deciphering strategies to uncouple hepatic
cholesterol accumulation from liver stress and inflammasome
activation is likely to have important therapeutic value. However, it
is unclear why cholesterol accumulates and crystalizes in liver, and
whether hepatocytes are capable of re-solubilizing cholesterol crystals
after they form.

3 Immunometabolic adaptations In
hepatocellular carcinoma

Chronic hepatocyte injury drives the initiation of HCC from
NASH, and continual exposure to DNA damaging agents and
replacement of hepatocytes results in an established tumor
(Ringelhan et al., 2018; Hou et al., 2020; Li et al., 2021; Peiseler
et al., 2022). While immune responses are capable of identifying
and eliminating such cells, altered immune instruction and
dysfunction commonly observed in obesity and that can sustain
HCC growth has been identified in NASH. In parallel, the tumor
acquires altered metabolic needs and defense systems to sustain
survival. Here, we discuss alterations in the metabolic demands and
adaptations of the tumor as well as NASH-linked alterations to
liver immunity that contribute to the onset and progression
of HCC.
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3.1 Hepatocellular carcinoma rely on glucose
metabolism

Cancer cells require tremendous amounts of energy to fulfil their
metabolic needs (Hoxhaj and Manning, 2020). The most efficient and
accessible source of ATP is glucose. Metabolic conversion of glucose to
lactate, even in the presence of oxygen, is a distinguishing factor
between normal and cancerous cells (Warburg et al., 1927; Lunt and
Vander Heiden, 2011) and is referred to as aerobic glycolysis or the
Warburg effect. Although this feature has been known for nearly a
century the mechanisms and advantages underlying this metabolic
shift are still under investigation. In cancer cells, high demand for
energy andmacromolecules require a rapid but efficient means of ATP
production that correspondingly generate a source of carbon atoms
such as lactate and pyruvate that serve as substrates for synthesis of
products needed for cell anabolism and proliferation (Hoxhaj and
Manning, 2020).

Insulin resistance and consequential hyperglycemia commonly
arise in obesity (Hotamisligil, 2017; Lee et al., 2018; Loomba et al.,
2021), and liver tumors can take advantage of elevated glucose
accessibility. Glucose is imported via plasma membrane localized
glucose transporters. Tumor cancer cells express high levels of
glucose transporter 1 (GLUT1), due to enhanced lactate
accumulation and efflux as well as the cancer-associated hypoxic
microenvironment (Paltoglou and Roberts, 2005; Jiang, 2017). As a
result, GLUT1 is rate limiting for glucose import in cancerous tumors,
while virtually undetectable in non-tumor and benign tumor tissue
(Younes et al., 1995; Cooper et al., 2003; Amann et al., 2009).
Overexpression of GLUT1 appears crucial for HCC growth and
survival and this enhanced expression was associated with an
additional risk of cancer recurrence and worse prognosis in HCC
patients after hepatectomy (Chen et al., 2018a). GLUT1 deletion was
found to impair HCC proliferation and angiogenesis (Amann et al.,
2009). Another glucose importer expressed in HCC, and not in non-
cancerous hepatocytes, is the sodium-glucose cotransporter 2
(SGLT2), which in physiological conditions mediates absorption of
filtered glucose by renal proximal convoluted tubules. Interestingly,
pharmacological agents that inhibit SGLT2 such as Canagliflozin were
developed to block renal absorption of glucose and thus treat diabetes.
It turns out this agent may also be useful to treat HCC, as Canagliflozin
was shown to disrupt SGLT2-expressing liver cancers by reducing
glucose uptake, inhibiting glycolytic metabolism, and attenuating
proangiogenic activity (Kaji et al., 2018).

The phosphoinositide 3-kinase (PI3K)/AKT pathway plays a
major role in regulating glucose metabolism in HCC (Hoxhaj and
Manning, 2020). One mechanism is via suppressing thioredoxin-
interacting protein (TXNIP), which is a tumor suppressor that
regulates glucose flux (Parikh et al., 2007; Katturajan et al., 2022).
AKT inhibits TXNIP via phosphorylation, and this results in increased
expression and function of glucose transporters GLUT1 and GLUT4
(Waldhart et al., 2017). This may be critical for HCC progression as
downregulation of TXNIP and its impact on glucose metabolism has
been recognized as a hallmark in prostate, lung, and colorectal cancer
(Qu et al., 2018; Tang et al., 2020; Hu et al., 2021), and TXNIP
downregulation was evident in HBV-related HCCs and contributed to
cancer initiation (Zhang et al., 2021). In addition to regulating TXNIP,
the PI3K-AKT pathway can activate glycolytic enzymes through
phosphorylation and transcriptional activation (Hoxhaj and
Manning, 2020). One example is hexokinase 2 (HK2), which

phosphorylates glucose to prevent its efflux, and
phosphofructokinase 1 (PFK1), which controls a rate limiting step
in glycolysis by catalyzing the conversion of fructose 6 phosphate to
fructose 1,6 bisphosphate (Hue and Rider, 1987). HK2 was found to be
critical for cancer initiation in mouse and human (Patra et al., 2013;
Chen et al., 2014), and its expression level has prognostic value for
human breast cancer patients (Sato-Tadano et al., 2013). There is now
interest to inhibit HK2 in cancer cells and xenograft models (Zheng
et al., 2021). In normal physiology glucokinase (GCK) is the main liver
hexokinase, but HK2 expression predominates in HCC and is
distinctive to cancerous hepatocytes. Moreover, HK2 depletion was
shown to promote cancer cell death and stimulated oxidative
phosphorylation (Dewaal et al., 2018), revealing the importance of
enhanced HK2 expression and indicating blocking HK2 may have
important therapeutic impact for patients with HCC.

3.2 Adaptations to oxidative stress that
promote hepatocellular carcinoma

While persistently elevated ROS cause HCC-promoting mutations
necessary for cancer initiation, adaptations to oxidative stress have
also been implicated in cancer cell survival, growth, metastasis, and
chemotherapy resistance (Kumari et al., 2018). The master regulator of
oxidative stress responses, nuclear factor erythroid 2–related factor 2
(NRF2), appears to play an important role. NRF2 complexes with the
ROS-sensor kelch like ECH-associated protein-1 (KEAP1). When
ROS levels rise, NRF2 will dissociate from KEAP1 and translocate
into the nucleus to drive transcriptional programs that promote cell
survival. These functions relate to glutathione metabolism, ROS-
detoxification, bile acid and lipid metabolism, inflammation, and
autophagy (Kamisako et al., 2014; Chambel et al., 2015; Ahmed
et al., 2017; Bartolini et al., 2018; Yamamoto et al., 2018; Li et al.,
2020). Such action may protect against HCC initiation but after the
tumor has been established it appears HCC cells take advantage of this
property for growth and survival. This is supported by the fact that
NRF2 gain of function mutations have been associated with HCC
(Cancer Genome Atlas Research Network, 2017; Ngo et al., 2017),
chronic NRF2 activation causes hepatomegaly (Komatsu et al., 2010;
He et al., 2020), and upregulation of NRF2 has been observed as a
biomarker for HCC (Zhang et al., 2015; Bartolini et al., 2018; Mohs
et al., 2021).

Targeting oxidative stress in NASH to prevent HCC is a promising
venue. Using antioxidants like vitamin E and C as well as enhancing
internal antioxidant defenses may provide resistance to liver injury
(Ramos-Tovar and Muriel, 2020). Moreover, targeting NRF2 has been
shown to counteract liver toxicity (Camer et al., 2015; Chan et al.,
2021; Mohs et al., 2021). Opposingly, enhancing hepatocyte ROS
toxicity and promoting ROS induced cancer cell death has been a focus
(Wei et al., 2019; Kim et al., 2021). This is either by increasing ROS
production or inhibiting antioxidant defense mechanisms (Nogueira
and Hay, 2013). For example, use of a glutathione inhibitor augmented
the anti-tumor effect of multi-kinase inhibitors on liver cancer cells, an
effect potentially driven by augmenting ROS toxicity (Cucarull et al.,
2021). A plant-based alkaloid with anti-cancer effects named Copstin
was found to mediate autophagy and mitophagy in Hep3B cells by
inhibiting the PI3K/Akt/mTOR pathway, which consequently led to
ROS accumulation (Kim et al., 2021), and a synthetic chemical
preservative, propyl gallate (PG), has been shown to induce ROS
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production and cell death in HCC cells (Wei et al., 2019). Hence, when
it comes to ROS-targeting therapies for NASH and HCC, disease stage
is likely to be an important consideration for the design strategy.

3.3 Hepatocellular carcinoma and the of role
of autophagy

Autophagy is required by cells to maintain energy balance and
homeostasis. During this process, autophagosomes sequester cytosolic
content and mediate their transport to autolysosomes where the
substances are degraded into basic constituents, such as amino
acids, nucleic acids, sugars, and fatty acids (Schneider and Cuervo,
2014). Unselective bulk autophagy is enhanced during metabolic
emergencies such as in periods of starvation, allowing cells to use
their stored nutrients to fulfil their energy and nutrient needs. During
cell stress, a more selective - adaptor mediated - form of autophagy is
induced to permit selective recycling of faulty components and
organelles (Schneider and Cuervo, 2014; Moscat et al., 2016;
Poillet-Perez and White, 2019). Presumably, cancer cells need both
types of autophagy to maintain the nutrient requirements of these
rapidly growing cells and to remove and recycle abnormal organelles.
This process, among others, contributes to the immortalized nature of
cancer cells, allowing them to proliferate and survive the ongoing
insult-induced stress (Poillet-Perez et al., 2015; Poillet-Perez and
White, 2019).

In NAFLD, autophagy appears to have a protective effect against
lipid accumulation by enhancing lipid mobilization and lipophagy
(Schneider and Cuervo, 2014; Filali-Mouncef et al., 2022). For
instance, ERK1/2 stimulation was found to improve liver steatosis
via Atg7-dependent autophagy in leptin resistant db/db mice (Xiao
et al., 2016). Conversely, alterations in autophagic flux as observed by
high p62 (an autophagy adaptor protein) level and autophagosome
accumulation appear to contribute to HCC, although p62 can also
have autophagy independent effects (Taniguchi et al., 2016; Umemura
et al., 2016; Denk et al., 2019; Tan et al., 2021). Evidence thus far
indicate that autophagy contribute to HCC cancer initiation,
progression, and invasion (Chen et al., 2018b), and inhibition of
autophagy, either chemically or by Atg7 knockdown, has been
shown to suppress hepatocarcinogenesis in the activated RAS
signaling HCC murine model (Cho et al., 2021). It may be that
autophagy must be fine-tuned to meet the requirement of cellular
homeostasis (Marot et al., 2017; Ioannou, 2021b; Shiha et al., 2021),
but when initiated, cancer cells can use autophagy pathways to
maintain growth, proliferation, and survival.

3.4 Role of fatty acids in hepatocellular
carcinoma

The liver is a primary organ for lipid metabolism. A balance
between lipid uptake and synthesis, on one hand, and lipid transport
and catabolism, on the other, is required to prevent lipid overload and
hepatocyte damage (Alannan et al., 2020). Under normal condition,
hepatocytes derive most fatty acid content from external sources such
as adipose tissue lipolysis. But in liver cancer cells, de novo lipogenesis
is upregulated to address enhanced nutrient needs (Sangineto et al.,
2020). Acetyl-CoA is a substrate for the synthesis of glucose, lipid, and
protein and there has been interest on its role in cancer cell

metabolism (Alannan et al., 2020). For example, Acetyl-CoA
carboxylase (ACC) is an enzyme required for acetyl-CoA
carboxylation into malonyl-Co A and this activity is rate limiting
for lipogenesis. Interestingly, ACC activating mutations have been
associated with liver carcinogenesis (Nakagawa et al., 2018) and ACC
inhibition can protect against DEN-induced HCC in mice (Lally et al.,
2019). Also, lipogenesis has been shown to support HCC survival in
glucose deprived conditions, and high ACC alpha expression has
prognostic value for patients with HCC (Wang et al., 2016). Another
important lipogenic enzyme is fatty acid synthase (FASN), which
catalyzes the conversion of acetyl-CoA to fatty acid. The drug
metformin has been shown to protect against liver cancer by
inhibiting FASN in DEN-induced and AKT-overexpression models
of HCC (Bhalla et al., 2012; Zhang et al., 2019). In addition to
providing nutritional needs, newly synthesized saturated and
monounsaturated fatty acids may protect against oxidative damage
associated with metabolism of polyunsaturated fatty acids and as a
result protect cancer cells from membrane damage (Rysman et al.,
2010).

The role of fatty acid oxidation (FAO) is unclear. FAO is generally
suppressed in HCC (Hu et al., 2020), likely since cancer cells are more
dependent on aerobic glycolysis for energy needs. Interestingly,
overexpression of carnitine/acylcarnitine transporter (CACT), a
mitochondrial membrane protein responsible for the transport of
acylcarnitine into mitochondrial matrix for oxidation, in a HCC cell
line and human HCC tumor tissue has been shown to suppress cancer
growth and migration due to increased FAO (Yuan et al., 2021).
Growing HCC cells have reduced FAO levels and this may be linked to
hypoxic challenges faced by cancer cell in the growing tumor (Eales
et al., 2016). However, there may be exceptions, as increased FAO was
identified to coincide with catenin beta-1 (CTNNB1)-mutated HCC.
In this case, translocated mutant ß-catenin activates the ß-catenin
transcriptional functions in the nucleus to promote cancer formation,
which would normally promote cell proliferation and differentiation
(Rebouissou et al., 2016; Senni et al., 2019), and this HCC appear to
thrive on FAO rather than glycolysis (Senni et al., 2019). The
mechanism by which this occurs may be informative for
understanding distinct HCC subtypes.

3.5 Immunological environment in
hepatocellular carcinoma

Liver has a unique structure, with its proximity to portal
circulation coming from the gut, which requires a similarly unique
immune system. This immune system precludes gut derived microbes
and microbial compounds such as lipopolysaccharide from reaching
systemic circulation. For that to occur without evoking a systemic
immune response, liver immune cells have some degree of
immunotolerance (Protzer et al., 2012; Jenne and Kubes, 2013).
The liver has approximately 80% of resident macrophage
population, called Kupffer cells (KCs), in the body and a large
population of natural killer cells (NK cells), natural killer T cells
(NKT cells), in addition to resident T lymphocytes that constitute
innate immunity. Moreover, liver can recruit infiltrating T
lymphocytes and B lymphocytes (Ringelhan et al., 2018).
Interestingly, metabolic conditions instruct immunological
responses (Buck et al., 2017; Dyck and Lynch, 2018) and a growing
body of work shows metabolic context associated with obesity
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promotes hyperactivation of certain immune responses and defects in
other immune responses in liver, which in turn contribute to the
pathogenesis and progression of NASH and HCC (Ringelhan et al.,
2018; Hou et al., 2020; Peiseler et al., 2022).

There is an incomplete understanding of how immune cell types in
liver interact with each other and with hepatocytes to promote or
guard against tumor development. This is a complex scenario that is
context and timing dependent. That being said, it has been shown in
NASH-linked HCC that immunosurveillance is impaired, the
proportion of monocyte-derived macrophage versus KCs is
increased, cancer promoting inflammation is enhanced, and T cells
capable of eliminating the tumor are dysfunctional (Ringelhan et al.,
2018; Hou et al., 2020; Li et al., 2021; Barreby et al., 2022). In chronic
liver inflammation such as in NASH, KCs are depleted and replaced by
monocyte-derived macrophage (Reid et al., 2016; Kazankov et al.,
2019). This shift has been shown to underlie insulin resistance as well
as liver steatosis, inflammation, and fibrosis through release of
inflammatory and non-inflammatory factors (Clementi et al., 2009;
Stienstra et al., 2010; Papackova et al., 2012; Han et al., 2013; Morinaga
et al., 2015; Morgantini et al., 2019; Ramachandran et al., 2020;
Daemen et al., 2021). Cytokines that influence resistance to cancer
onset include interleukin 10 and 11, whereas cancer promoting
cytokines include tumor necrosis factor alpha and interleukin 6
(Ringelhan et al., 2018; Widjaja et al., 2019; Peiseler et al., 2022).
Critical transcriptional effectors of the cytokine signaling cascade are
signal transducer and activator of transcription 3 and NFκB
(Ringelhan et al., 2018; Taniguchi and Karin, 2018; Hou et al.,
2020; Li et al., 2021; Peiseler et al., 2022).

Interestingly, obesity-linked metabolic derangements can alter the
transcription profile of liver macrophage even before they develop a
pro-inflammatory state (Morgantini et al., 2019; Barreby et al., 2022).
Likewise, the function and composition of other hepatic immune cell
types can also be altered in this metabolic condition to impact
progression of NASH to HCC (Ringelhan et al., 2018; Hou et al.,
2020; Li et al., 2021), reinforcing that environment has a major
influence on immune cell function (Buck et al., 2017; Dyck and
Lynch, 2018). The tumor immune microenvironment in HCC has
been under intense investigation, which has revealed T cell exhaustion
coincides with cancer and distinct roles for various types of
macrophages, T cells, and B cells that depend on whether cells are
intra-tumoral or peri-tumoral and associated metabolic landscape
such as nutrient and oxygen concentration (Ringelhan et al., 2018;
Hou et al., 2020; Li et al., 2021). In mice and humans, NAFLD has been
associated with a decrease in CD4+ T cells, but not CD8+ T cells (Ma
et al., 2016). Using mice, this study showed CD4+ T cell loss resulted
from increased mitochondrial ROS generated via fatty acid oxidation,
and that blockage of ROS-induced CD4+ T cell loss can suppress
NAFLD-linked HCC. Additionally, liver in human NASH and a
mouse model of choline deficient plus high fat diet-induced NASH
were both found to contain elevated levels of activated intrahepatic
CD8+ T cells and NKT cells (Wolf et al., 2014). In mice, these activated
cells were shown to cooperatively trigger liver damage to induce HCC.
Interestingly, a subsequent study showed immunoglobulin A (IgA+)
B cells that accumulate in human NASH and in multiple mouse
models of NASH are able to suppress cytotoxic effects of the
intrahepatic CD8+ T cells on the HCC tumor (Shalapour et al.,
2017). Interestingly, tumor repressing effects of these cells were
restored by treatment with the promising new therapy PD-L1
blockade. Hence, despite the complexity, a growing understanding

of how metabolic state influences immune responses may reveal a
novel means of eliminating established NASH-linked HCC tumors.

4 Therapeutic interventions for non-
alcoholic fatty liver disease and
hepatocellular carcinoma

There is a growing need to prevent HCC and improve outcomes
after HCC incidence. To prevent NASH-associated HCC,
pharmacological therapies for NASH are under extensive
investigations. Treatment of major risk factors of HCC is
considered a vital preventive measure. The treatment agents evolve
around three components of NASH: steatosis, fibrosis, and
inflammation. Although there are no therapies yet approved for
NASH, many have shown promising results in preclinical and
clinical studies. A summary of available treatments targeting NASH
and HCC and how this fit within the stage of disease progression are
shown in Figure 1 and Table 1.

4.1 Agents that reduce insulin resistance

Insulin resistance can be a cause and a consequence of hepatocyte
lipid accumulation (Loomba et al., 2021). Insulin resistance enhances
adipose tissue lipolysis and FFA influx to liver, which consequently
stimulate liver lipogenesis and triglyceride accumulation. In contrast,
intermediate lipid accumulation in liver can impair hepatocyte insulin
signaling and lipid metabolism (Finck, 2018). The thiazolidinediones
(TZDs) pioglitazone and rosiglitazone are insulin sensitizing drugs
used in the treatment of type II diabetes mellitus. Their action is
primarily mediated through peroxisome proliferator-activated
receptor-γ (PPARγ) with a resultant enhancement in adipose
insulin sensitivity and reduction in free fatty acid transport to liver
(Palavicini et al., 2021). TZDs has been shown to improve insulin
sensitivity and liver fat accumulation in preclinical animal models of
NASH (Kalavalapalli et al., 2018; Tahara and Takasu, 2019) and to be
an effective therapy in patients with NASH (Della Pepa et al., 2021;
Panunzi et al., 2021). The glucagon like peptide 1 (GLP1) based agent,
Semaglutide is another anti-diabetic drug with promising result in
clinical trials for NASH (Flint et al., 2021; Newsome et al., 2021).
Semaglutide was shown to improve NASH associated steatosis and
NASH resolution but did not affect liver fibrosis, which is consistent
with studies using preclinical models (Ding et al., 2006; Valdecantos
et al., 2017). In addition, TZDs and GLP1 receptor agonists have been
shown to reduce hepatocarcinogenesis, cell proliferation and invasion
in animal models and cancer cell lines (Yang et al., 2015; Li et al., 2019;
Kojima et al., 2020). More clinical trials are underway (Vuppalanchi
et al., 2021).

4.2 Agents that alter lipid metabolism

Firsocostat is an ACC inhibitor. In liver, Firsocostat decreases
steatosis in NASH by inhibiting de novo lipogenesis, enhancing lipid
oxidation, reducing lipotoxicity, and impairing hepatic stellate cell
(HSC) activity (Bates et al., 2020). It has been shown to reduce
steatosis and fibrosis markers in preclinical models and clinical
trials (Alkhouri et al., 2020). Stearoyl-CoA desaturase 1 (SCD1) is
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another enzyme involved in fatty acid synthesis that is being targeted
to treat NASH. Aramchol is an SCD1 inhibitor used in clinical trials in
patients with NASH that was shown to reduce liver fat content in
patients after 3 months of daily treatment (Safadi et al., 2014). Other
evidence showed Aramchol improved histological markers of NASH
associated inflammation and fibrosis in the methionine and choline
deficient dietary model of NASH in mice (Iruarrizaga-Lejarreta et al.,
2017).

In addition to directly targeting metabolic enzymes, there has been
interest in targeting master regulators of lipid metabolic programs. For
this purpose, agonists for thyroid hormone receptor ß (THRβ) have
emerged as a category of drugs for NASH. Activating liver THRβ has
been shown to improve lipid profile, bile acid synthesis and lipid
oxidation (Sinha et al., 2019). Mice treated with a selective THRβ
agonist named Resmetirom have lower liver size, fat content, and
improved markers of liver damage and fibrosis (Kannt et al., 2021).
Similar fat lowering effect was shown in a recent phase II clinical trial
using the same drug (Harrison et al., 2019).

As discussed in Section 2.2 increased hepatic cholesterol, altered
cholesterol metabolism, and the precipitation of pro-inflammatory
intrahepatic cholesterol crystals are a hallmark of NASH. Thus,
counteracting therapeutic agents may alleviate NASH and prevent
HCC. Clinical trials investigating the statin class of drugs, which
inhibit cholesterol synthesis and reduce circulating low density
lipoprotein, support this possibility. Patients in the GREACE study
who were treated with atorvastatin showed improved liver function
(Athyros et al., 2010), and atorvastatin was found to alleviate NAFLD
in a prospective open label study on non-diabetic patients (Athyros
et al., 2006), with similar results observed in patients treated with
rouvastatin (Kargiotis et al., 2015). However, beneficial effects of
statins appear to be ineffective in people with the high-risk allele
for PNPLA3 (Dongiovanni et al., 2015), indicating patients may need
genotype stratification before a statin can be prescribed to treat
NAFLD. Moreover, a recent pre-clinical study showed that a non-
statin type of cholesterol-targeting therapy can actually be detrimental
for liver health (Ioannou et al., 2022), revealing that the mechanism of

drug action will be an important determinant for identifying the most
effective therapeutic approach.

4.3 Agents that target PPARs in liver

PPARs are nuclear receptors that regulatemultiple processes including
glucose and lipid metabolism and inflammation. PPAR agonists are under
investigation to treat NASH as well as HCC. PPARδ and PPARγ
pharmacological and genetic enhancement attenuated hepatic steatosis
by inducing autophagy dependent hepatic lipolysis and ß-oxidation in
mouse livers and primary mouse hepatocytes (Tong et al., 2019) and
improving insulin sensitivity (Heikkinen et al., 2007). Lanifibranor is a
pan-PPAR agonist in clinical trial forNASH treatment. Patients with active
NASH given Lanifibranor showed a significant reduction in steatosis and
fibrosis when compared to placebo group and had improved liver enzymes
and lipid profile (Francque et al., 2021). PPAR β/δ are also connected with
hepatocarcinogenesis and PPAR β/δ agonists show promising results in
preclinical models of HCC (Balandaram et al., 2016; Shen et al., 2020).
Similar results have been found for the fibrate type drug, fenofibrate
(Mahmoudi et al., 2022a; Mahmoudi et al., 2022b). Therefore, modulation
of PPARmay turn out to be effective for preventing and for treating HCC.

4.4 Agents that target liver inflammation and
fibrosis

As a main target of NASH therapeutic agents, inflammatory
responses occurring in liver after any chronic injury are currently
under investigations, with CC-chemokine receptors (CCRs) serving as
a high value target (Lefere et al., 2020). CCR stimulation causes
macrophage infiltration and HSC activation (Vuppalanchi et al.,
2021), which then is a trigger for pathogenesis of liver fibrosis.
HSCs interact with hepatocytes to either maintain normal liver
phenotype, promote hepatocyte regeneration in an acute liver
injury setting, or promote fibrosis in cases of chronic liver injury

FIGURE 1
A schematic of therapeutic strategies to target NASH and HCC at different stages of disease progression. This figure was created with Biorender.com.
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and inflammation such as in NASH (Cai et al., 2020). Cenicriviroc is a
dual CCR2/CCR5 antagonist that has been investigated extensively in
preclinical models of NASH and shown to diminish liver macrophage
infiltration, inflammation, and fibrosis (Lefebvre et al., 2016; Krenkel

et al., 2018), which is consistent with the effect of deleting CCR2 (Miura
et al., 2012). In a randomized clinical trial on patients with NASH,
Cenicriviroc reduced fibrosis but not inflammatory scores (Friedman
et al., 2018). Moreover, a CCR2 antagonist has been shown to inhibit

TABLE 1 Therapeutic interventions for NASH and HCC.

Targets Class Drugs Preclinical NASH Clinical NASH Preclinical HCC Clinical HCC

Insulin resistance Thiazolidinediones Pioglitazone
Rosiglitazone

Kalavalapalli et al.
(2018); Tahara and
Takasu, (2019)

Della Pepa et al. (2021);
Panunzi et al. (2021)

Li et al. (2019) Yang et al. (2015)

Glucagon like peptide
1based agents

Semaglutide

Ding et al. (2006);
Valdecantos et al. (2017)

Flint et al. (2021);
Newsome et al. (2021)

Kojima et al. (2020)

Lipid metabolism Acetyl-CoA carboxylase
inhibitors

Firsocostat

Alkhouri et al. (2020)
Alkhouri et al. (2020)

Stearoyl-coa desaturase 1
inhibitors

Aramchol

Iruarrizaga-Lejarreta et
al. (2017)

Safadi et al. (2014)

Thyroid hormone receptor ß
agonists

Resmetirom

Kannt et al. (2021) Harrison et al. (2019)

Statins Atorvastatin
Rouvastatin

Athyros et al. (2006);
Athyros et al. (2010);
Kargiotis et al. (2015)

PPARs in liver PPAR agonists Lanifibranor

Tong et al. 2019 Francque et al. (2021) Balandaram et al.
(2016); Shen et al.
(2020)

Fibrates Fenofibrate

Mahmoudi et al.
(2022a); Mahmoudi et
al. (2022b)

Mahmoudi et al. (2022a)

Liver inflammation
and fibrosis

CC-chemokine receptors 2
and CC-chemokine
receptors 5 antagonists

Cenicriviroc

Miura et al. (2012);
Lefebvre et al. (2016);
Krenkel et al. (2018)

Friedman et al. (2018) Li et al. (2017)

Galectin 3 inhibitors Belapectin

Iacobini et al. (2011) Chalasani et al. (2020)

Farnesoid X receptor
agonists

Obeticholic acid
Cilofexor
Tropifexor Hernandez et al. (2019);

Schwabl et al. (2021);
Zhao et al. (2022)

Neuschwander-Tetri et
al. (2015); Patel et al.
(2020)

Antiproliferative
-Antiangiogenic

Tyrosine kinase inhibitors Sorafenib
Lenvatinib
Regorafenib
Cabozantinib

Llovet et al. (2008);
Bruix et al. (2017);
Kudo et al. (2018);
Zhu et al. (2019)

Programmed death-1 (PD-
1) receptor antagonists

Nivolumab

Chiew Woon et al.
(2020)

VEGFR2 antagonists Ramucirumab

Zhu et al. (2019)
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tumor growth, reduce tumor size and prevent recurrence after resection
in a liver cancer experimental model (Li et al., 2017).

Galectin 3 (Gal3) is a ubiquitously expressed protein secreted
frommacrophages that can activate fibroblasts to induce fibrogenesis
via transforming growth factor ß-dependent pathway (Al Attar et al.,
2021). Gal3 deficient mice are protected against NASH (Iacobini
et al., 2011). However, an inhibitor of Gal3 called Belapectin was
used in patients with NASH and cirrhosis and showed no significant
effect on histological scores of fibrosis or on hepatic vein pressure
gradient in patients suffering from portal hypertension (Chalasani
et al., 2020).

Farnesoid X receptor (FXR) is a bile acid activated nuclear
receptor located mainly in liver and intestines, with a regulatory
role in lipid and glucose metabolism. FXR may also influence liver
fibrosis (Vuppalanchi et al., 2021; Zhao et al., 2022). In a phase II
clinical trial, an FXR agonist called Obeticholic acid (OCA) was
found to reduce liver fibrosis in 45% of patients with non-cirrhotic
NASH (Neuschwander-Tetri et al., 2015). Cilofexor and Tropifexor
are also FXR agonists that have demonstrated antifibrotic effect in
animal models and are under investigation for their safety in
clinical trials (Hernandez et al., 2019; Schwabl et al., 2021; Zhao
et al., 2022).

4.5 Approved drugs for hepatocellular
carcinoma in clinical use

In addition to preventing HCC by ameliorating NASH, there
is more agents needed to treat the cancer after onset. In patients
with HCC, surgical resection and local ablation are the main lines
of treatment in early locally confined tumors. Liver transplantation
is a favorable option, especially in cases with microinvasions, as
this has a lower rate of recurrence. Locally administrated chemo-
and radio-therapeutic drugs are two options provided in advanced
non-resectable tumors (Wege et al., 2019; Ayoub et al., 2022).
Systemic pharmacological agents that are currently approved
for use by the Food and Drug Administration (FDA) are
mainly targeting cell proliferation, angiogenesis, and tumor
immunity.

The first approved systemic pharmacological option for HCC
treatment is Sorafenib, a tyrosine kinase inhibitor with anti-
proliferative and anti-angiogenic effect. Sorafenib improved the
overall survival rate in patients diagnosed with advanced HCC
versus placebo group (Llovet et al., 2008). Several other multi-
kinase inhibitors such as Lenvatinib, Regorafenib, and
Cabozantinib are now also approved and shown efficacy in
improving overall survival (Bruix et al., 2017; Abou-Alfa et al.,
2018; Kudo et al., 2018). Another class of agent is Nivolumab, a
checkpoint inhibitor that targets programmed death-1 (PD-1)
receptor by blocking its natural ligands and consequently
activating T cell antitumor capacities and cytokine production
(Chiew Woon et al., 2020). Also, Ramucirumab is a human
IgG2 monoclonal antibody that inhibits ligand activation of
VEGFR2. Ramucirumab has shown improved overall survival
with better tolerability in patients with advanced HCC and
persistently elevated α-feto protein after sorafenib intake (Zhu
et al., 2019).

Overall, the advances in systemic treatment of NASH and HCC,
especially those targeting liver cell metabolism add new hope
for patients and require more attention in research to improve
their efficacy in the prevention of NASH induced HCC
development.

5 Conclusion

We discuss various immunometabolic factors contributing to
NASH and HCC, and how this relates to cancer growth and
survival. HCC cells are able to change their metabolism and stress
adaptive capacity to fit the new anabolic requirements and tumor
microenvironment. Likewise, the immune cell environment is altered
in the metabolic state of obesity in a manner that supports tumor
growth, and the associated metabolic burdens trigger chronic
hepatocyte insults that in turn establish tumor initiation. Hence, in
the metabolic context of obesity-linked NASH, strategies to prevent
HCC and promote HCC regression require consideration of how these
factors differ from other known causes of HCC, such as HBV and
aflatoxin B1. There is urgency to acquire this knowledge given the
accelerating incidence of obesity-linked fatty liver disease around the
world.
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