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We present the use of conductive spray polymer ionization mass spectrometry

(CPSI-MS) combined with machine learning (ML) to rapidly gain the metabolic

fingerprint from 1 μl liquid extraction from the biopsied tissue of triple-negative

breast cancer (TNBC) in China. The 76 discriminative metabolite markers are

verified at the primary carcinoma site and can also be successfully tracked in the

serum. The Lasso classifier featured with 15- and 22-metabolites detected by

CPSI-MS achieve a sensitivity of 88.8% for rapid serum screening and a

specificity of 91.1% for tissue diagnosis, respectively. Finally, the expression

levels of their corresponding upstream enzymes and transporters have been

initially confirmed. In general, CPSI-MS/ML serves as a cost-effective tool for

the rapid screening, diagnosis, and precise characterization for the TNBC

metabolism reprogramming in the clinical practice.
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Introduction

Triple-negative breast cancer (TNBC) accounts for 15–20% of breast cancer and ranks

the most aggressive and lethal cancer featured as recurrence and distant metastasis

(Ahmad, A., 2019). TNBC patient has a poor prognosis in case of metastatic relapse, with

a median overall survival (OS) of less than 2 years (Schmid et al., 2020). To date, clinical

breast examination (CBE), and radiographic imaging, such as mammography, and

magnetic resonance imaging (MRI), are routinely applied in clinical practice for

screening, diagnosis, and prognosis assessment of TNBC patients. However, minor

molecular changes at the genotype and phenotype basis might be out of surveillance.

A highly sensitive and specific molecular screening approach is in urgent demand for early

intervention and remarkable improvement in the survival rate.

OPEN ACCESS

EDITED BY

Chunming Cheng,
The Ohio State University, United States

REVIEWED BY

Linlin Guo,
The Ohio State University, United States
Zhaojun Qiu,
The Ohio State University, United States
Yuya Wang,
Health Science Centre, Peking
University, China

*CORRESPONDENCE

Xiaowei Song,
songxw@fudan.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Cancer
Cell Biology,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 20 October 2022
ACCEPTED 22 November 2022
PUBLISHED 15 December 2022

CITATION

Song Y, Zhang Y, Xie S and Song X
(2022), Screening and diagnosis of triple
negative breast cancer based on rapid
metabolic fingerprinting by conductive
polymer spray ionization mass
spectrometry and machine learning.
Front. Cell Dev. Biol. 10:1075810.
doi: 10.3389/fcell.2022.1075810

COPYRIGHT

© 2022 Song, Zhang, Xie and Song. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 15 December 2022
DOI 10.3389/fcell.2022.1075810

https://www.frontiersin.org/articles/10.3389/fcell.2022.1075810/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1075810/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1075810/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1075810/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1075810/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1075810/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.1075810&domain=pdf&date_stamp=2022-12-15
mailto:songxw@fudan.edu.cn
https://doi.org/10.3389/fcell.2022.1075810
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.1075810


In past decades, the advent of omics technologies has

provided an opportunity to explore large volumes of data at

the molecular basis. It may help with a comprehensive

understanding of molecular alterations and the underlying

mechanisms during cancer development (Xiao et al., 2022;

Yang, L., et al., 2020). The molecule-based in vitro diagnosis

(IVD) has shown promise in the novel diagnostic method

development, heterogenic subtype classification, and optimal

therapy design (Bianchini, G., et al., 2022). Oncogenic changes

may cause metabolic reprogramming of cancer cells to support

their uncontrolled growth and help them adapt to the local

microenvironment. Metabolomics has been widely accepted in

capturing global metabolic changes (Nicholson and Lindon,

2008; Fiehn, O., 2002) and investigating TNBC oncogene

initiation (Levine and Puzio-kuter, 2010; Iurlaro, R., et al.,

2014), which may provide personalized diagnostic markers

(Huang, S., et al., 2016.) and treatment (Debik, J., et al.,

2019). Although extensive efforts have been made to identify

potential TNBC-associated metabolites from patient blood and

tissue (Günther, U.L., 2015; Li, L., et al., 2020; McCartney, A.,

et al., 2018), metabolomics-based screening and diagnosis have

not been put into the frontline of clinical practice yet. From the

methodological consideration, it is partially due to the lack of

low-cost and high-throughput analytical tools. A successful IVD

tool in clinics requires comprehensive considerations from

several aspects 1) characteristic markers that are measured

with high specificity and sensitivity, 2) suitable biological fluid

that is easily accessed, and 3) technical platform with affordable

cost, robust test performance, and rapid result feedback

(Banerjee, S., 2020).

In recent years, ambient ionization mass spectrometry

(AIMS) has gained wide attention in the clinical

metabolomics field because of its unique advantages in the

direct detection of metabolites and lipids from the

biospecimen under the atmospheric condition (Ferreira,

C.R., et al., 2016; Feider, C.L., et al., 2019; Narayanan

et al., 2020). Compared with the conventionally used

liquid or gas chromatography-tandem mass spectrometry

(LC-MS/MS, GC-MS) system, AIMS directly acquires

hundreds of metabolites and lipids from biological

specimens and thus save clinical practitioners lots of

efforts spent on labor-intensive sample preparation

(Takats, Z., et al., 2017). As one of the representative

AIMS methods, conductive polymer spray ionization mass

spectrometry (CPSI-MS) (Song, X., et al., 2018.) has been

developed and utilized to investigate the metabolic profile

from biological fluids. With aid of machine learning

technique, features in the salivary metabolic profile can be

automatically picked out and used to discriminate the oral

squamous carcinoma from the premalignant lesion, and

healthy control with high accuracy (Song, X., et al., 2020).

These features are selected by the machine learning model

FIGURE 1
Three stages of this TNBC tissue-serum joint metabolomics
workflow. (A)Marker discovery from biopsied tissue: 240 sampling
points collected from 40 pairs of TNBC and PNT tissues are tested
to discover the dysregulated metabolite markers by CPSI-MS
and DESI-MSI; (B)marker tracing in serum: A cohort composed of
139 HD and 242 TNBC serum is tested by CPSI-MS to trace and
cross validate the metabolites discovered in tissue metabolic
fingerprinting; (C) Pathway enrichment analysis to pick out the
potential enzymes and transporters involving in the TNBC tissue/
serum metabolite dysregulation; (D) Expression validation:
Through pathway enrichment analysis, upstream enzymes and
transporters that involved metabolite markers regulation are
located and validated on the TNBC tissue microarray and
immunohistochemistry (IHC). The corresponding metabolite
substrates and products are retrospectively examined and
confirmed by DESI-MSI.
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from the mathematical point other than the biological

interpretable aspect.

CPSI-MS is reported to have wide coverage of metabolite and

lipid species with a single test including polar species such as

carbohydrates, carboxylates, purines, pyrimidines, polyamines,

amino acids and hydrophobic species like fatty acids, acyl

carnitines, glycerides, glycerophospholipids, sphingolipids, etc.

(Li, C., et al., 2021; Yang, X. et al., 2022). This advantage in a wide

coverage of multiple species motivates us to explore whether

CPSI-MS could precisely gain onco-metabolites located in a

certain pathway or involved in certain biological function

associated to the TNBC cancer metabolism reprogramming.

In this way, the discriminative metabolite markers discovered

in serum and tissue can be traceable, and more importantly,

biological interpretable.

In this study, we employed CPSI-MS to systematically

characterize the distinct onco-metabolites of TNBC, for both

serum screening and tissues diagnosis. We followed a

workflow that contains four stages in the present study: 1)

the de novo discovery of the discriminative metabolites in

TNBC tissue; 2) track these TNBC-associated metabolites in

serum, and construct metabolite-based machine learning

models for rapid serum screening and tissue diagnosis

respectively; 3) pathway enrichment analysis to locate the

potential enzyme and transporter associated with the

dysregulated metabolites; 4) expression validation of

enzymes or transporters behind these discriminative

metabolites on the tissue microarray (Figure 1). In this

study, we show that the CPSI-MS serves as not only a

diagnostic tool by rapid metabolic fingerprinting but also a

powerful way to precisely decode functional metabolites for

the TNBC progression and fundamental understanding of its

metabolism reprogramming.

Methods and materials

Tissue and serum collection

The pairs of TNBC and its adjacent precancerous normal

tissue (PNT) were harvested in the department of general

surgery, Chinese PLA General Hospital after the tissue biopsy

and surgical resection from n = 40 stage I-IV TNBC patients

during the year of 2018–2022. The serum samples were also

collected from the n = 242 TNBC patients and n = 139 healthy

donor (HD) during the same period and places. TNBC cases were

confirmed with pathological diagnosis in the department of

pathology whereas the HC volunteers are visiting patients who

have the negative diagnosis results. The race, ages, and body

weight index were strictly matched between the two groups.

More details about patients’ clinical demographics were

presented in the Supplementary Material (Supplementary

Table S1).

CPSI-MS fingerprinting of TNBC tissue and
serum

The methanol-water (1:1, v/v) was used as the solvent that

extract metabolites and lipids from biopsied tissue cryosections.

For each tissue, three aliquots of solvent droplets were randomly

micro-pipetted on different regions and tested by CPSI-MS

separately for sake of tissue heterogeneity. A droplet of 5 μl

solvent was first spotted and stayed onto a cryosection surface for

30 s. Then it was aspirated back to the micropipette and

transferred onto the tip of conductive polymer substrate,

which was positioned towards the MS inlet at the distance of

13.0 mm. When the ±4.5 kV direct current high voltage was

applied on the conductive polymer tip to trigger the high electric

field-induced droplet spray ionization. This process carries the

metabolite ions into an LTQ Orbitrap Velos mass spectrometer

(Thermo Scientific, San Jose, CA, United States) for the data

collection. An untargeted metabolic fingerprinting was

conducted under both positive and negative modes within a

range of m/z 50–1,000. The MS capillary temperature was set at

275°C with the S-lens voltage set at 55 V. The micro-scan number

was set at 1 scan which lasted for 200 microseconds as maximum

injection time. The data acquisition period for each case lasts for

10 s to collect sufficient data. With respect to the serum

fingerprinting, every detail about CPSI-MS is same as that for

tissue analysis described above except directly loading the 1 μl

serum onto the tip to form a dried spot at the beginning.

The average intensity of each metabolite ion was normalized

with the average total ion current (TIC) of each sample. The

target discriminative metabolite’s concentration in serum was

quantitatively estimated by comparing its normalized intensity

with that generated by the commercially available metabolite

standard spiked into the serum. Quality control (QC) samples

were prepared by pooling equal volumes of serum samples,

20 from TNBC and 20 from healthy donor (HD) group. QC

samples were analyzed throughout the run to evaluate the

systematic fluctuation. TNBC and HD serum were

alternatively arranged for test run with the QC samples evenly

inserted into the entire sequence every 30 samples.

Metabolomics data processing

Batch of raw files were first converted to cdf format using the

Xcalibur software (Thermo Fisher Scientific, San Jose, CA,

United States). Then the batch of cdf files were imported into

MATLAB 2020a for further data preprocessing using the in-built

functions and self-programmed scripts. Briefly, each sample’s

average mass spectrum was constructed based on 10 continuous

scans in the corresponding time window. The metabolite ion’s

exact m/z value within ±0.005 Da mass tolerance will be defined

as a mass bin for peak intensity extraction. Finally, a data matrix

composed of peak intensities from all samples was constructed
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for univariate analysis, multivariate analysis, and machine

learning model development. After TIC normalization, the

matrix went through natural logarithm transform and then

was centered at zero with standard deviation scaled at one,

ruling out the magnitude’s biasing influence on the

classification modeling.

Statistical analysis and machine learning

Univariate analysis was first implemented to search for

significantly changed metabolite ions among TNBC, and HD

groups using Student’s t-test. The p values were adjusted with the

false discovery rate (FDR) using Benjamini-Hochberg method.

An ion was picked out if the fold change was over 2.0 or less than

0.5 (FDR <0.05). For multivariate analysis, SIMCA-P (Umetrics,

Umea, Sweden) was used for partial least squares discriminant

analysis (PLS-DA) of metabolic profiles. Variables with

importance in projection (VIP) larger than 1.0 were

considered to make a high contribution in pattern recognition

of different groups. Data visualization was carried out using

Prism (GraphPad Software, United States) such as heatmap,

receiver operating characteristic curve (ROC), scatter plot,

volcano graph, etc. Lasso regression was employed to develop

the machine learning model using the in-built “lasso” function in

the MATLAB 2021a (Mathworks, Natick, MA, United States).

The 10-manifold cross-validation was carried out by randomly

splitting the 240 tissue points or 381 serum samples into a

training set and a test set with a ratio of 9:1 for every round

of validation.

Validation of targeted metabolites in
tissues by DESI-MSI

For tissue imaging, a commercial 2D DESI system (Prosolia,

Indianapolis, United States) was employed in both positive and

negative ion scan modes. High voltage of ±5.0 kV was provided

by the commercial mass spectrometer and applied onto the

sprayer head to generate the electrospray for desorbing and

ionizing the components within the cryosection tissue.

Methanol-water (7:3, v/v) was used as the spray solvent with

the flow rate set at 2.0 μl/min under nebulizer gas pressure of

120 psi. The impact angle between sprayer head and substrate

was set at 55°. The height of sprayer tip and the distance from tip

to transport tube were all set at 4.5 mm. The MS acquisition was

implemented under the same parameter in CPSI-MS experiment

described above. For tissue scanning, the raster speed was set at

0.2 mm/s and the width between two scans was 0.2 mm.

Massimager (Chemmind Technologies Co., Ltd., Beijing,

China) and a self-programmed MATLAB (Mathworks, Natick,

MA, United States) script was used for target ion image

reconstruction.

Identification of metabolite markers

The ions of interest in were first searched through HMDB

(http://hmdb.ca, accessed on 2022/11/10) and Metlin (https://

xcmsonline.scripps.edu, accessed on 2022/11/10) with the mass

tolerance set at 5.0 ppm. The type of adduct ions were limited to

[M + H]+, [M + Na]+, [M + K]+, [M-H2O + H]+, [M+2Na-H]+,

[M+2K-H]+, and [M + NH4]
+ under positive mode. The negative

ion’s adduct type included [M-H]-, [M + Na-2H]−, [M + K-2H]−,

and [M + Cl]−. Apart from the exact m/z value, the isotope peak

distribution was also considered to rule out the less possible

formula in the candidate metabolite list. For all the provided

compounds, only those candidates with a reported presence in

humans were given consideration. For some frequently detected

ions such as hypoxanthine, carnitine, spermidine, arginine, etc.,

we directly give credit to these metabolite assignments because

they had been repeatedly identified according to previous studies.

For those unknown significantly changed ions, MS/MS

experiments were implemented to match the CID

fragmentation pattern either with given standards or recorded

MS/MS spectra in HMDB and Metlin.

Bioinformatics analysis

After tentative identification, the metabolites of interest were

put into the open-source platform MetaboAnalyst (www.

metaboanalyst.ca, accessed on 2022/11/10) to search for these

altered metabolic pathways. Pathway enrichment analysis was

also implemented by RaMP (Zhang, B., et al., 2018.) cross

different databases including Kyoto Encyclopedia of Genes

and Genomes (KEGG, www.kegg.jp, accessed on 2022/11/10),

and Reactome (www.reactome.org, accessed on 2022/11/10).

Enzymes and transporters (only confined to the top

10 enriched pathways) that were significantly different

between tumor and normal were picked out in the protein

level. After finding these enzymes and transporters, the breast

cancer dataset in the cancer genome atlas (TCGA-PAAD) and

the GSE15471 datasets in the gene expression omnibus (GEO)

(Badea, L., et al., 2008) were reviewed to access their expression

differences between tumor and normal in the mRNA level. The

statistic process was conducted under an open-source platform,

gene expression profiling interactive analysis (GEPIA, cancer-

pku.cn, accessed on 2022/11/10) (Tang, Z., et al., 2019).

Histopathologic evaluation

Apart from the cryosections for CPSI-MS and DESI-MSI

analysis, duplicates of parallel sections were processed with

standard H&E staining for histopathological evaluation under

optical microscopy. Besides, tissue microarray (TMA) test was

also carried out for verifying the enzyme and transporter
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FIGURE 2
TNBC tissuemetabolic fingerprinting,machine learning-basedmolecular diagnosis and in situ validation byDESI-MSI. (A)Diagram illustration of
the droplet-extraction-based CPSI-MS data collection for the biopsied tissue. Metabolites derived of three different sampling points are collected
from each tissue. (B) The stepwise statistical pipeline for finally preserving the metabolites that have significant changes in TNBC compared to PNT
specimens. (C) The volcano plot highlighted those metabolite ions that have significance (FDR <0.05) in fold change over 2.0 or less than 0.5 in
TNBCs compared to PNTs. (D) Heatmap visualizes the relative expression level of the 40 representative characteristic metabolites in TNBCs and
PNTs. (E) Plot of all 240 tissue points scores predicted by the Lasso classifier. (F) ROC curves for evaluating the Lassomodel’s diagnostic performance
on training and test set. (G) Diagram illustration of the employed DESI-MSI setup for visualizing metabolite’s distribution across a paired TNBC/PNT
tissue cryosections. (H) Images of representative metabolites that are significantly changed in TNBCs compared to PNTs.
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discovered by the pathway enrichment analysis. TMAs

containing 43 well preserved formalin-fixed and embedded

blocks of 43 patients with paired cancer and paired adjacent

tissue were constructed. In our study, each TMA contained

90 spots measured 1.5 mm in diameter. Spot selection was

independently checked and selected by two pathologists. Two

cores per tumor were selected to eliminate the sample error. Anti-

PISD (16401-1-AP,1–300) was obtained from Proteintech

company (Shanghai, China). Anti-PDZD11 (ab121210, 1–100)

was obtained from Abcam company (Shanghai, China).

Results

TNBC tissue fingerprinting

To decipher the features of metabolic profiles in the local

microenvironment, we collected biopsied TNBC tissues and

precancerous normal tissue (PNT) from n = 40 stage I-IV

TNBC patients who were prior to treatment. A 15 μm-thick

frozen section was used for histopathological evaluation. After

hematoxylin and eosin (H&E) staining, slides were annotated by

two independent pathologists to define the areas of TNBCs and

PNTs. Supplementary Table S1 summarizes clinical

characteristics, including gender, age at diagnosis, tumor

grade, lymph node involvement, and staging.

Three different sampling points (spot diameter around

2.0 mm) from each biopsied tissue cryosections were

randomly selected for the rapid CPSI-MS fingerprinting.

Briefly, a droplet of 5 μl water-methanol (1:1, v/v) solution

was first loaded onto the dried tissue cryosection for 10 s’s

extraction and then transferred to the tip of conductive

polymer tip for following CPSI-MS analysis (Figure 2A). The

similar process was also conducted on the later serum

metabolomics study. Finally, CPSI-MS simultaneously

obtained the relative abundance of 3,829 metabolite ions in

the range m/z 50–1,000 under both positive and negative

modes from each sample. According to the molecular weight

distribution ranges of the metabolite species, identified

metabolites includes carbohydrates, amino acids, carboxylic

acids, polyamines, fatty acids (FA), nucleotides, nucleosides,

acylcarnitines (AC), lyso-phosphoglycerolipids, diglyceride

(DG), glycerophospholipids (GPL) (Supplementary Figure S1).

Partial least square-discriminant analysis (PLS-DA) was

implemented to visualize the case distribution in the feature

space from the high-dimension metabolic profile. The PLS-DA

score plot showed that sample points from TNBCs and PNTs

were well separated into two clusters (Supplementary Figure S2),

highlighting the diverse metabolic patterns between tumor and

normal tissues. To discover TNBC-specific metabolites, several

criteria were adopted to conduct a stepwise variable selection

(Figure 2B). First, variable importance on projection (VIP) was

employed as the metric, preserving 1,151 ions that were highly

contributive to the sample grouping (VIP >1.0). Thereafter,
695 out of 1,151 ions were found to be significantly different

between the TNBC and PNT cryosections (FDR <0.05, student’s
t-test). For a further selection of the most informative

metabolites, we narrowed the scope to 626 ions, with the fold

change (FC) greater than 2.0 or less than 0.5 (TNBCs versus

PNTs). After searching human metabolome databases and

Metlin, 222 ions were putatively annotated, among which

76 metabolites were unambiguously identified (Supplementary

Table S2). The top 10 up- and down-regulated small metabolites

are highlighted by the volcano plot (Figure 2C). Representative

small metabolites that significantly changed in TNBCs are shown

by the heatmap (Figure 2D). The down-regulated species

included asparagine (Asn), sphingosine 1-phosphate (S1P),

S-adenosylhomocysteine (SAH), cytidine, thymidine,

glutamine (Gln), and fatty acids (e.g. FA8:0, FA16:0, FA18:1,

FA18:2, FA18:3), whereas the up-regulated species included

glutamate (Glu), proline (Pro), leucine (Leu), citrulline,

hypoxanthine (Hypo), serine phosphate (Ser-P), and acyl

carnitines (e.g. carnitine C2:0, C4:0, C16:0, C18:0, C18:1).

Among these metabolites, glutamine has been extensively

reported as a conditionally essential nutrient for many cancer

cells, which is termed as “glutamine addiction.” Glutamine has

been reported to serves as a supplement for energy fueling in

TNBC by incorporating into the Krebs cycle through

glutaminolysis into glutamate and thereafter deamination into

2-ketoglutarate (Quek, L.E., et al., 2022). There were higher levels

of arginine (m/z 175.1190, [M + H]+) and lysine (m/z 147.1128,

[M + H]+) in TNBCs. These amino acids are precursors for

polyamines (Casero, R.A., et al., 2018). While most polyamines

(spermine, spermidine, cadaverine) except putrescine (m/z

89.1073, [M + H]+) were downregulated, their acetylated

forms (N-acetyl spermidine, N, N-diacetyl spermidine, N,

N-diacetyl spermine, N-acetyl putrescine, and N-acetyl

cadaverine) tended to be upregulate in TNBCs. The

imbalanced status between acetylation and deacetylation forms

may indicate that the strong interaction between polyamines and

negatively charged biomolecules (DNA, and RNA) had been

greatly decoupled in TNBCs, again suggesting abnormal

transcription and translation activities. It is also worth noting

that the N, N-dimethyl arginine (m/z 203.1503, [M + H]+), and

N, N, N-trimethyl lysine (m/z 189.1597, [M + H]+), as the

catabolic products of arginine and lysine residues of

methylated histones (Hamamoto and Nakamura, 2016), also

showed a high abundance in the TNBCs, suggesting an

aberrant RNA transcriptional activity in TNBC.

Machine learning modelling for TNBC
tissue diagnosis

To complement with the histopathology-based diagnosis, we

introduced the Lasso model to assess the probability of judging
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whether each CPSI-MS sample is from cancerous or normal

tissue. Metabolomics-based modeling was conducted on a

training set composed of 150 tissue sample points with

histopathological confirmation (n = 75 PNT and n =

75 TNBC tissue points from n = 25 patients). Another n =

90 sample points (n = 45 PNT and n = 45 TNBC tissue points

from n = 15 patients) were used as the test set for evaluating the

performance of the pretrained Lasso model on unseen cases. The

76 metabolites previously discovered by metabolic profiling and

in situ validation were included as the initial input variable for

training. Lasso classifier was employed because it embeds feature

selection into the training process by tuning the weight

coefficient of each input variable. Only the variable

contributive for classification was assigned with non-zero weight.

As a result, the Lasso classifier’s performance reached the

highest accuracy on the test set when only preserving 22 out of

the 76 variables. Supplementary Table S3 lists selected metabolite

markers and corresponding weight coefficients. Given the Lasso

prediction score at 0.62 as the threshold, most of the cross-

validation samples in TNBC and PNT groups were well

distinguished in the score plot (Figure 2E). The confusion

matrix showed the classification result given by the optimal

Lasso model, which achieved the overall agreement (accuracy)

of 93.3% on the test set. The receiver operating characteristic

(ROC) curve was introduced to evaluate the optimal diagnostic

performance of this Lasso classifier, which achieved on the test

set an area under curve (AUC) value of 0.96 (95% confidence

interval: 0.93–1.00). Given the cut-off point defined as the highest

true positive rate together with the lowest false positive rate on

the ROC curve, the best sensitivity and specificity of the

diagnostic performance were 95.6% and 91.1%, respectively

(Figure 2F). These results suggest that TNBC-specific

metabolomics profiles exhibit excellent performance in

distinguishing tumor tissues from normal tissues. Hence, the

CPSI-MS data acquisition combined with the 22-metabolite

Lasso model serve as a potential IVD strategy complementary

with tissue biopsy and molecular pathology.

DESI-MSI validation of TNBC-associated
metabolites

Desorption electrospray ionization mass spectrometry

imaging (DESI-MSI) was employed in complement with

CPSI-MS for validation of various metabolites distribution

across the TNBC and PNT regions. The TNBC cryosection

paired with its PNT regions were prepared for study cases

(Figure 2G). We successfully visualized and matched the

spatial distribution of the CPSI-MS-identified 76 metabolites

across the TNBC and the PNT regions (representative images

shown in Figure 2H). DESI-MSI indicated a dysregulation in

energy metabolism. The decrease of glucose (m/z 219.0265, [M +

K]+) in TNBCs and increase of lactate (m/z 89.0242, [M-H]-) in

PNTs is consistent with the Warburg effect (Vander Heiden,

M.G., et al., 2009). As for other Krebs cycle-related metabolites,

their relative abundance varied across various tissue regions with

inconsistent trends. The energy fueling was also indicated by

increased production of acylcarnitine (e.g., carnitine C2:0,

carnitine 4:0, and carnitine C18:1) and overconsumption of

free fatty acids (e.g., linoleic acid, arachidonic acid, caprylic

acid, and oleic acid) via β-oxidation.

TNBC-associated metabolites tracking in
serum

To enhance the diagnostic value of the putative TNBC-

specific metabolic markers, we conducted tissue-serum joint

analysis and inter-specimen cross-validation, followed by

untargeted metabolomics analysis. First, we carried out

independent serum metabolomics investigation by CPSI-MS

analysis under full scan modes ranging in m/z 50–1,000. The

study prospectively recruited n = 242 stage I-IV TNBC patients

and n = 139 healthy donors (HD) (Figure 3A).

Using the stepwise statistical screening as described above,

the serum analysis identified 76 differentially enriched

metabolites in the sera of TNBC patients compared with that

in the HD group (student’s t-test, FDR <0.05, Supplementary

Table S4). Then, a joint analysis was conducted to elucidate the

differential metabolomic molecules co-existing in the tumor

tissues and sera. The relative abundances of the 76 target

metabolites that were significantly changed in the TNBC

tissues were cross interrogated in metabolomic profiling of

sera. There were 30 metabolites showing the same trends of

fold changes in serum compared with those in the tissue

metabolomics (FC > 2 or <0.5) (Figures 3B,C; Supplementary

Table S5). There were 21 (70%) out of the 30 metabolites which

had the commercially available standards which we utilized to

implement quantitative estimation and confirmed 18 metabolites

(Supplementary Table S6). Among them, 10 upregulated and

8 downregulated metabolites were identified in the serum of

TNBC patients compared with those in the HD group (p < 0.05,

representative 10 metabolites are shown in Figure 3D; the rest

was shown in Supplementary Figure S3).

We also used these 18 small metabolites as the initial input

variables to develop another Lasso classifier for the purpose of

rapid TNBC screening using an additional cohort of n =

381 TNBC cases. Through 5-fold cross-validation, the Lasso

classifier achieved an average of 89.2% accuracy on the

training set (n = 318) versus 88.9% accuracy on the test set

(n = 63). Excluding metabolites assigned with zero weights, there

were 15 metabolites that were conserved in the serum metabolite

classifier panel (Supplementary Table S7). As shown in the Lasso

score plot for all 381 cases, most serum samples from the TNBC

group could be differentiated from the HDs serum samples

(Figure 3E). The histogram plot of the Lasso scores also
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revealed that the training and test sets shared the close normal

distributions (Figure 3F), indicating that the Lasso classifier have

the robust prediction ability on those unseen cases. The 15-

metabolite Lasso classifier could reach an AUC of 0.96 (95% CI:

0.92–1.00) on the test set, with the 85.4% of sensitivity and 91.3%

of specificity at the best cut-off point on the ROC curve

(Figure 3G), suggesting the potential clinical value for rapid

serum screening.

Expression validation of associated
enzymes and transporters

To further determine biological consequence and metabolic

network using the 76 metabolites identified in TNBC tissues by

CPSI-MS and DESI-MSI, pathway enrichment analysis (PEA)

was conducted on MetaboAnalyst (Pang, Z., et al., 2021) to

predict the relevant metabolic pathways during TNBC

FIGURE 3
Results of serum validation for metabolite markers discovered in tissue. (A) Diagram of recruited cohort of healthy donor (HD), TNBC patients,
CPSI-MS screening for serum metabolomics, and machine learning process; (B) Venn graphs display the number of metabolites that are finally
selected as serum screening markers and used for quantitative estimation; (C) Heatmap visualization indicate the consistent tendencies of these
characteristic metabolites in tissue and serum; (D) The quantitative comparison of representative 10 metabolite markers in serum; (E) The
scores predicted by Lasso classifier on the 381 TNBC and HD serum samples; (F) Histograms display the distribution of HD and TNBC samples in the
training and test sets; (G) ROC curve for assessing the performances of the metabolite markers-based Lasso model for TNBC screening. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4
Bioinformatic analysis and expression validation for the dysregulated enzymes and transporters. (A) The enriched metabolic pathways by
searching in the Metaboanalyst; (B) Rank of influenced biological functions that enzymes, and transporters are involved; (C) The enriched enzymes
and transporters by searching in KEGG and Reactome; (D) Diagram illustrates the subcellular locations and functions of the PDZD, PISD, TYMP, and
SLC1A5; (E) Box plots of PISD, PDZD11, TYMP, and SLC1A5 across TNBC and PNT regions; (F) Distribution across the PNT (left) and TNBC (right)
formetabolite substrates and products corresponding to TYMP (Uridine, Uracil), PDZD11 (Cytidine, Inosine), PISD (PS(34:1) and PE (34:1)), and SLC1A5
(Glutamine, Alanine). ****p < 0.0001.
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development and progression. We found that these differentially

enriched metabolites in TNBC tissues were involved in

distinctive metabolic pathways (Figure 4A). Specifically,

taurine and hypotaurine metabolism (e.g., cysteate, taurine,

and hypotaurine), glycerophospholipid metabolism (e.g., PE,

PC, lysoPC, DG, PCho, PS, GPCho, GPEA, and G3P),

histidine metabolism (e.g., glutamate, urocanate, histidine,

methylhistamine, histamine, and aspartate), glutamate and

glutamine metabolism (e.g., glutamate, glutamine, and

ketoglutarate), linoleate metabolism (linoleate and

phosphatidylcholine), cysteine and methionine metabolism

(e.g., serine, methionine, cysteate, and phosphoserine),

aromatic amino acid biosynthesis (e.g., phenylalanine and

tyrosine), and arginine-related metabolites (e.g., arginine,

citrulline, aspartate, and ornithine) were commonly enriched

both in TNBC tissues and serums (Supplementary Figure S4;

Supplementary Tables S8,S9).

Thereafter, the PEA was further conducted by searching all

TNBC-associated metabolite markers and influenced functions

in Kyoto Encyclopedia of Genes and Genomes (KEGG, www.

kegg.jp), and Reactome (www.reactome.org). The most

influenced biological functions that enzymes, and transporters

involved the protein digestion and transport of various nutrients

(Figure 4B). Totally, there were 56 enzymes or proteins

predicated to have different extents of suppression or

activation. Among these, four metabolic enzymes and

transporters ranked at the top of the candidate list highlighted

with statistical significances (p < 0.05, Figure 4C). The

phosphatidylserine decarboxylase (PISD) was down-regulated

whereas PDZ domain-containing protein 11 (PDZD11),

thymidine phosphorylase (TYMP), and solute carrier family

1 member 5 (SLC1A5) were upregulated. PDZD11 and

SLC1A5 are mainly involved in the transport of water-soluble

amino acids, vitamins, free purines and pyrimidines, nucleotides,

and nucleosides (Scalise, M., et al., 2018; Zhou, Y., et al., 2020).

PISD is mainly responsible for the conversion of PS to

phosphatidylethanolamine (PE) (Thomas, H.E., et al., 2018;

Ma, Y., et al., 2020), which has been reported to play a

tumor-suppressing role (Humphries, B.A., et al., 2020). TYMP

catalyzes thymidine/deoxyuridine to thymine/uracil, respectively

(Goto, T., et al., 2012) (Figure 4D). It was previously reported that

TYMP-dependent thymidine catabolism contributes to cancer

cells’ survival in low nutrient conditions (Toi, M., et al., 2005).

Consistently, immunohistochemistry (IHC) analysis using tissue

microarray that included n = 92 TNBC primary cancer

specimens confirmed this result, showing that the expression

of PISD was decreased, whereas the expressions of SLC1A5,

TYMP, and PDZD11 were significantly increased in TNBC

tissues compared with PNTs (Figure 4E).

We also conducted a retrospective DESI-MSI investigation

on the expression levels of metabolite substrates and products

specific to the four enzymes or transporters above. From both

CPSI-MS and DESI-MSI analysis, we observed that glutamine

and alanine were significantly lower in TNBC. SLC1A5 mainly

mediates the transmembrane exchange of extracellular glutamine

for cytosolic alanine. Therefore, this result supported the up-

regulation of SLC1A5 in the TNBC cell to raise the turnover and

utilization of glutamine and alanine. PISD catalyzes the

conversion of PS into PE. Taking PS (34:1) and PE (34:1) as

an example, DESI-MSI showed that the relative abundance of PE,

and PS were enriched in TNBC regions. Besides, the lower

abundances of uridine, uracil, cytidine, and inosine in TNBA

region may indicate the over-consumption and utilization of the

nucleotides (Figure 4F), further confirming the increased

expression of PDZD11 and TYMP.

Discussion

CPSI-MS has been proved to be a promising technique to

acquire the fingerprinting about metabolites and lipids within a

few seconds time scale, which only consumes a trace amount of

biofluid (≤1 μl) or biotissue (<1 mg). In this study, only one

working day was required to complete collecting 40 pairs of

biopsied TNBC tissues and 381 serum samples presented in this

work. The speed, accuracy, sensitivity, and selectivity of CPSI-

MS/machine learning make this approach highly advantageous

in clinics for high-throughput, large-scale IVD from a trace

amount of biospecimen.

CPSI-MS and DESI-MSI complement each other for

different phases of clinical TNBC examination according to

their principles and technical characteristics. CPSI-MS only

consumes a trace amount of biofluid (1 μl) or biotissue

(<10 mg) for rapid metabolic profiling within a few seconds,

hence is suitable for high-throughput and rapid screening. DESI-

MSI enables a more in-depth analysis of spatially resolved

metabolomics. It does not require tissue fixation, and it has a

relatively high spatial resolution (~100 μm). Hence, we proposed

the combination of CPSI and DESI-MSI to complement with

each other used in the different stages of clinical scenarios

(Figure 5).

One individual’s serum metabolic fingerprint only reflects

the general metabolism, which may be influenced by multiple

factors such as personal physiological condition, cancer

progression, or external perturbation such as diet, smoking,

surgery therapy, or drug treatment. Under this situation, a

single metabolite marker presented in the serum metabolic

fingerprint may have poorer indicative performance.

Combining a panel of characteristic metabolites helps to

reduce the false negative rate and increase the chance of

positive detection. Nonetheless, rapid serum metabolic

fingerprinting is recommended for serving the TNBC

screening among the susceptible female population. In

comparison, the tissue metabolic fingerprint provides a

relatively reliable and specific indication of the existence of

the carcinoma region. As the downstream molecular products,
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the cancer tissue’s metabolic fingerprint contains these

dysregulated metabolite markers that have a strong

connection with upstream oncogenes. Therefore, the

metabolite markers deciphered from the tissue metabolic

fingerprint show more convincing proof of TNBC occurrence,

advancing, and understanding its distinctive metabolism

reprogramming strategy compared to the normal tissue cells.

Additionally, the chemotherapy or surgical removal of the TNBC

tissue may help to alleviate the metabolism burden imposed by

cancer, the levels of TNBC metabolite markers in tissue or serum

will also be tuned back to a certain extent. Thus, the metabolic

fingerprint may also have the potential for prognosis and

individual surveillance in the clinic.

Previously, the conventional AIMS-based molecular

diagnosis heavily relies on machine learning model to pick

out the best combination of the MS peaks as input features for

disease prediction. These peaks are selected from the point of

mathematical significance other than the biological basis. In

this study, CPSI-MS yields a more comprehensive coverage of

varied small metabolite species along with lipids. Several

functional metabolite markers were successfully deciphered

to be associated with TNBC progression and traceable both at

the tissue and serum levels. The further expression and

function validation about upstream enzymes and

transporters gave the discovered metabolites a more valid

support as the possible markers.

FIGURE 5
Recommended scenarios for CPSI-MS in clinical application for TNBC screening and diagnosis. (A) The high-risk population screening
conducted by CPSI-MS only consumes 1 μL serum collected fromeach clinical recipient and takes less than 1 min to completemetabolic profile data
acquisition; (B) the metabolic profiling and rapid TNBC diagnosis conducted by CPSI-MS only consumes trace amount of biopsied tissue (less than
1 mg) from these highly suspicious patients; (C) more precise diagnosis and spatially resolved metabolic profiling is conducted by DESI-MSI
accompanied with molecular pathology on these patients who receive surgical resection of the TNBC tissue.

Frontiers in Cell and Developmental Biology frontiersin.org11

Song et al. 10.3389/fcell.2022.1075810

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1075810


Through this study, we summarized and draw a scheme to

illustrate the featured TNBC metabolism (Figure 6): 1) active

nutrient scavenging and biomass transportation. This pattern was

characterized by enriched pathways that highlight functional

changes in protein digestion and uptake, SLC transporter

disorder, nucleotide and pyrimidine salvage, and vitamin

transport. This is supported by elevated expression of

SLC1A5 and PDZD11, as well as their downstream changes in

amino acids (e.g. glutamine, alanine), nucleosides (e.g., guanosine,

inosine, xanthosine), nucleotides (AMP, UMP, and uracil), purines

(adenine, hypoxanthine, xanthine, and uric acid), pyrimidines

(cytidine, thymidine, and uridine); 2) excessive energy fueling

through anaerobic glycolysis and fatty acid oxidation (FAO), as

indicated by the down-regulation of glucose, FA, and upregulation

of lactate and AC; 3) construction of bilayer membrane components

to support cancer cell replication, characterized by the

downregulation of PISD and its downstream products PC, PE,

PS, and SM, as well as the massive usage of the polar head

FIGURE 6
Schematic illustration of the up-regulated and down-regulated metabolites as well as their involved metabolism pathways for adapting the
tumor cell’s proliferation and transcription regulation. All metabolites presented in the scheme are discovered by serum and tissue untargeted
metabolomics analysis by the CPSI-MS.
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groups (e.g,. GPCho, GPEA, and G3P); 4) abnormal DNA

replication, transcription, and RNA translation, indicated by the

upregulation of various amino acids, purines, pyrimidines, and the

dysregulation of dimethyl arginine and trimethyl lysine, as the

breakdown products from histones (Di Lorenzo and Bedford,

2011); 5) aberrant signaling regulation, indicated by increased

ratio of acetylated and deacetylated forms of polyamines, as well

as decreased DG and increased ceramides, which are related to cell

proliferation (Ogretmen, B., 2018; Casero, R.A., et al., 2018).

Rapid CPSI-MS fingerprinting conveniently translates the

functional metabolite information from trace tissue and serum for

TNBC prediction. The functional metabolite markers-based machine

learning model was developed to gain insight into the spatially

resolved metabolism status during the tissue biopsy and assist the

pathological diagnosis. Our systematic investigation confirmed that

the CPSI-MS/ML serves as is a robust approach for rapid screening,

diagnosis and precise metabolic characterization for the TNBC.
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