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The term apoptosis, as a way of programmed cell death, was coined a half century
ago and since its discovery the process has been extensively investigated. The
anatomy and physiology of the head are complex and thus apoptosis has mostly
been followed in separate structures, tissues or cell types. This review aims to provide
a comprehensive overview of recent knowledge concerning apoptosis-related
molecules involved in the development of structures of head with a particular
focus on caspases, cysteine proteases having a key position in apoptotic
pathways. Since many classical apoptosis-related molecules, including caspases,
are emerging in several non-apoptotic processes, these were also considered. The
largest organ of the head region is the brain and its development has been
extensively investigated, including the roles of apoptosis and related molecules.
Neurogenesis research also includes sensory organs such as the eye and ear, efferent
nervous system and associated muscles and glands. Caspases have been also
associated with normal function of the skin and hair follicles. Regarding
mineralised tissues within craniofacial morphogenesis, apoptosis in bones has
been of interest along with palate fusion and tooth development. Finally, the role
of apoptosis and caspases in angiogenesis, necessary for any tissue/organ
development and maintenance/homeostasis, are discussed. Additionally, this
review points to abnormalities of development resulting from improper
expression/activation of apoptosis-related molecules.

KEYWORDS

caspases, development, head, apoptotic, non-apoptotic

Introduction

The head represents the most complex part of the body, encompassing functionally,
structurally, and developmentally diverse components. The formation of the cranial region
starts during early embryonic periods with the establishment of pharyngeal arches that are
populated by neural crest cells. Craniofacial development requires integration of different
cellular processes including cell proliferation, differentiation, migration and cell death. The
accurate balance between the aforementioned processes, their localisation and precise timing
are required for the co-ordination of head development. Recent research, performed mostly in
mouse models, shows that caspases are multifunctional enzymes that make contributions to
various developmental processes. Abnormalities of craniofacial development resulting from
inappropriate expression/activation of caspases and related molecules are discussed in the
following chapters.
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Diverse members of the same family

The caspase family contains evolutionary-conserved proteases
involved in apoptotic intracellular machinery (Kumar, 2007;
Mazzoni and Falcone, 2008). The term “caspases” stands for
cysteine-dependent aspartate specific proteases and refers to their
ability to specifically recognise and cleave substrates (Stennicke and
Salvesen, 1999). The categorisation of caspases reflects their function
and structure as shown in Table 1. Persisting inconsistency in caspase
classification points to their multiple and unknown activities. In mice
there are three major groups of caspases: apoptotic initiators (caspase-
8, -9, -2), apoptotic executors (caspase-3, -6, -7), and inflammatory
caspases (caspase-1, -11, -12). Caspase-14 having neither relation with
apoptosis nor with inflammation, stands alone (Shalini et al., 2015).
Some studies exclude caspase-2 from apoptotic initiators to establish
an extra group associated with the cell cycle (Van Opdenbosch and
Lamkanfi, 2019). Indeed, caspase-2 was demonstrated to cleave
MDM2, a repressor of p53, in cells with supernumerary

centrosomes (Fava et al., 2017). Furthermore, inclusion of caspase-
12 in inflammatory caspases has also been questioned as well as the
engagement in ER-stress induced apoptosis (Lamkanfi et al., 2004).

Caspases are expressed as zymogenic monomers, except for pro-
caspase-9, which is a zymogen with a basal activity that is increased
when activated (Stennicke et al., 1999). A monomer contains pro-
domain, large and small subunits (Table 1). Long pro-domains are
characteristic for initiator and inflammatory caspases, whereas
executors only have the short one (Shalini et al., 2015) that affects
their activation process (Ramirez and Salvesen, 2018). Long pro-
domains of initiators carry either two death effector domains
(DED) or caspase-activation recruitment domain (CARD) that
promote recruitment and activation of these caspases in
multiprotein complexes. The process of dimerization-induced
autoactivation resides in the excision of the linker regions
separating the pro-domain from the large and small catalytic
subunits (Lamkanfi et al., 2002). In contrast, executioner caspases
lack an extended pro-domain and require cleavage by initiator

TABLE 1 Classical categorisation of caspases in mice as in Shalini et al. (2015). Detailed information of functions and molecular signalling and general phenotype of
caspase-deficient mice for each caspase is given by individual studies listed in the table.

Categorisation of caspases in mice

Caspase monomer Caspase reviewed in Caspase-deficient mice

Apoptotic initiators

Caspase-2 Brown-Suedel and Bouchier-Hayes (2020) Bergeron et al. (1998), Zhang et al. (2007)

Caspase-8 Mandal et al. (2020) Varfolomeev et al. (1998)

Caspase-9 Li et al. (2017), Avrutsky and Troy (2021) Kuida et al. (1998)

Apoptotic executors

Caspase-3 Asadi et al. (2022), Eskandari and Eaves (2022) Leonard et al. (2002), Lakhani et al. (2006)

Caspase-6 Wang et al. (2015) Uribe et al. (2012)

Caspase-7 Lamkanfi and Kanneganti (2010) Lakhani et al. (2006)

Inflammatory caspases

Caspase-1 Sollberger et al. (2014) Kuida et al. (1995)

Caspase-
11

Agnew et al. (2021) Wang et al. (1998b)

Caspase-
12

Dadley-Moore (2004) Nakagawa et al. (2000), Skeldon et al. (2016)

Others

Caspase-
14

Denecker et al. (2008) Denecker et al. (2007), Hoste et al. (2011)

CARD, caspase recruitment domain; DED, death effector domain; DD, death domain; LS, large subunit; SS, small subunit.
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caspases to reach the activated state (Ramirez and Salvesen, 2018).
Since inappropriate activation of caspases may be lethal, caspase
activity regulation is ensured by a variety of cellular factors. This
applies for posttranslational including phosphorylation, nitrosylation
or ubiquitination, modifications that mostly result in decrease of
caspase activation/activity. Phosphorylation is mediated by series of
caspase specific kinases working at numerous sites (Parrish et al.,
2013).

In general, apoptosis may be initiated by two distinct molecular
pathways: extrinsic and intrinsic (Figure 1). The extrinsic pathway is
triggered via death receptors (DRs) including a classical ligand-
receptor interaction, such as Fas-FasL. The intrinsic pathway, also
known as themitochondrial apoptotic pathway, is usually initiated in a
cell-autonomous manner, e.g., DNA damage, accumulation of
unfolded/misfolded proteins, lack of pro-survival factors such as
cytokines, hormones and growth factors, hypoxia, release of Ca2+,
reactive oxygen species (Elmore, 2007; D’Arcy, 2019). Findings
obtained from caspase-deficient animals showed that the intrinsic
apoptotic pathway is essential for mammalian development (Voss and
Strasser, 2020). The extrinsic pathway may also participate in
morphogenesis (Svandova et al., 2017) and both mechanisms are
often interconnected (Green and Llambi, 2015). Apoptotic pathways
are modulated by pro-survival and pro-apoptotic members of the Bcl-
2 protein family. The family consists of five pro-survival
members—Bcl-2, Bcl-B, Bcl-xl, Bcl-w, Mcl-1, and A1/BFL1—and
two pro-apoptotic subgroups. The pro-apoptotic BH3-only proteins
(Bim, Puma, Bid, Bik, Bad, Bmf, Noxa, and Hrk) are critical for the

initiation of apoptosis signalling via regulation of Bak and Bax
activation (Ren et al., 2010), whereas Bax/Bak involved in
mitochondrial outer membrane permeabilization (MOMP) are
essential for the effector phase of apoptosis (Kale et al., 2018). Bok
is a non-canonical pro-apoptotic protein controlled at the level of
protein stability by components of the endoplasmic
reticulum–associated degradation pathway (Carpio et al., 2015).
Bok has not been directly proven to be a pro-apoptotic effector
(Echeverry et al., 2013) and it is still unclear if Bok is able to
perform MOMP on its own.

Caspases: Killing or life-giving?

Caspases, that were first ascribed a role in apoptosis and
inflammation (Poreba et al., 2013; Julien and Wells, 2017; D’Arcy,
2019; Van Opdenbosch and Lamkanfi, 2019; Kesavardhana et al.,
2020), are now considered as multifunctional enzymes integrating
lethal and non-lethal functions (Shalini et al., 2015). The most
significant developmental defects come from insufficient or
increased apoptosis that results in abnormal size of cell
populations. In the head, the apoptotic effects are associated with
the development of the nervous system, especially the brain, where
insufficient apoptosis leads to increased populations of neurons
leading to severe abnormalities (Kuida et al., 1996; Kuida et al.,
1998; Cecconi et al., 1998; Hakem et al., 1998; Yoshida et al.,
1998). Apoptotic caspase machinery including both, extrinsic and

FIGURE 1
General schema of apoptotic engagement of caspases. The extrinsic pathway is induced via death receptors (e.g., Fas). Stimulation of death receptors
results in activation of initiator caspase-8. The intrinsic pathway is usually initiated in a cell-autonomous manner (e.g., DNA damage, accumulation of
unfolded/misfolded proteins, lack of pro survival factors such as cytokines). Internal signals regulate mitochondrial outer membrane permeabilisation and
formation of apoptosome leading to activation of initiator caspase-9. Caspase-12 contributes to Ca2+ dependent apoptosis. Caspase-2 belongs to
initiators. Both pathways aim to activate caspase-3, the central executor caspase, or other executors caspase-6, -7. The extrinsic and intrinsic pathways are
often interconnected (e.g., Bid/tBid). Apoptosis is modulated by pro-survival and pro-apoptotic signals (BH3-only proteins). DRs, death receptors; ER,
endoplasmic reticulum.
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intrinsic pathways was previously defined including caspase
interaction partners, regulators or down-stream molecules (as
suggested above and overviewed in Figure 1). In contrast to
apoptotic functions of caspases, the non-lethal ones are poorly
understood but some possibilities have been suggested (Figure 2).
The mechanisms that finally determinate lethal vs. non-lethal
outcomes are still unknown but several theories have been
proposed. The subcellular localisation of caspases was speculated as
a promising solution (Prokhorova et al., 2018). The apoptotic
breakdown of the nucleus is regulated by central caspase-3 (Walsh
et al., 2008) which requires transport of caspase-3 into the nucleus
(Kamada et al., 2005). Indeed, nuclear localisation of activated
caspase-3 was identified in cells under apoptotic treatment
(Prokhorova et al., 2018). By contrast, in non-apoptotic events,
caspase activation is thought to be locally regulated in subcellular
compartments, which results in availability of specific substrates
(Nakajima and Kuranaga, 2017). Cytoplasmic localisation of
caspase-3 was identified in cytoplasm of intact cells (Svandova
et al., 2018). Sub-lethal caspase activation may be alternative way
of non-apoptotic engagement (Basu et al., 2012). This may be
connected with a phenomenon termed “minority MOMP” a
process in which only a fraction of a cell mitochondria undergo
permeabilisation. MOMP was initially identified as the mechanism
leading to rapid caspase activation and apoptosis (Tait and Green,
2010). Minority MOMP leads to limited caspase activation, which is
insufficient to trigger cell death. Instead, this caspase activity leads to
DNA damage that, in turn, promotes genomic instability (Ichim et al.,

2015). To prevent lethal caspase impact, caspase activity may be
compensated by anti-apoptotic proteins (Huesmann and Clayton,
2006; Grabow et al., 2018) ensuring temporal control of caspase
activity (Nakajima and Kuranaga, 2017). This is mediated by
inhibitor of apoptosis proteins (IAPs). The temporal activation may
be regulated by E3-ubiquitin ligase activity of IAPs promoting the
degradation of caspases by the ubiquitin-proteasome system
(Berthelet and Dubrez, 2013). Other mechanisms of caspase
activity include post-translational modifications of caspases, or
interaction with members of Bcl-2 protein family.

The non-lethal functions apply for various cell types and involve
diverse processes (Lamkanfi et al., 2007; Connolly et al., 2014; Shalini
et al., 2015) such as differentiation of skeletal myoblasts or osteoblasts,
secretion andmineralisation of the enamel (Fernando et al., 2002; Miura
et al., 2004; Matalova et al., 2013; Tisch et al., 2019). Abnormal cell
differentiation observed in caspase-deficient mice was associated with
abnormal gene expression. Based on the knowledge from caspase-
deficient mice and inhibition experiments, caspases were shown to
regulate the expression of genes engaged in various different pathways,
such as Runx2 (Miura et al., 2004), Alpl, Bglap, Phex (Kratochvílová
et al., 2020), Smad1, Msx1 (Svandova et al., 2014).

Caspases also regulate the course of the cell cycle and proliferation.
This is mediated by proteolytic degradation of cell-cycle components,
such as p21, p27, CDK11, or p105Rb (Connolly et al., 2020). Migration
belongs to other crucial non-lethal function of caspases, where
caspases cleave cytoskeleton components such as actin (Mashima
et al., 1997).

FIGURE 2
Putative schema suggesting non-lethal functions of caspases in intracellular signaling as proposed in Miura et al. (2004), Fujita et al. (2008), and Cusack
et al. (2013). Non-apoptotic functions of caspasesmay be induced via death receptors, surface receptors (e.g., NCAM) or internal events, such as deprivation of
trophic factors. This results in activation of various initiator caspases and potentially also executor caspases. The mechanisms regulating lethal vs. non-lethal
events may reside in caspase subcellular localisation, availability of different substrates, temporal caspase activation or sub-lethal caspase activation.
Functions of pro-caspases and proteolytic cleavage of non-caspase substrates is questionable. These regulations may result in proliferation, migration and
differentiation of cells.
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Substrates to be ruined

Almost 400 caspase substrates are known (Lüthi andMartin, 2007),
however, an exhaustive view of the specific roles of each member of the
caspase family is lacking (Nguyen et al., 2021). It is very likely that many
more caspase substrates remain to be identified but identification is
hindered by the difficulties of distinguishing functionally important
caspases substrates from proteolytic noise. The interpretation of the
observations is further complicated by in vitro conditions, where
recombinant caspases are used in high concentrations, and therefore
the outcomes may not be the same as in vivo. Caspases are not equal in
terms of their proteolytic ability. Initiator caspases appear to cleave few
substrates apart from their own precursors and other caspases
downstream while effector caspases have a broader spectrum of
targets. Also, within the individual groups there are differences in
caspase substrate preferences. Among executors, caspase-3 seems to
be more promiscuous compared to caspase-7 in terms of apoptotic
machinery (Porter and Jänicke, 1999; Slee et al., 2001).

Caspase substrates are categorised as several groups, mostly in the
context of apoptotic machinery (Fischer et al., 2003; Lüthi and Martin,
2007) but the spectrum has gradually expanded. Caspase substrates
include proteins associated with apoptosis, cell adhesion, regulation of
the nuclear structure, formation of the cytoskeleton, physiology of
endoplasmic reticulum and Golgi apparatus, cell cycle, DNA synthesis,
cleavage and repair, etc. (Fischer et al., 2003). Fewer caspase substrates
are identified in non-apoptotic processes, this applies to Sema7a
during sensory neuron maturation (Ohsawa et al., 2010), Mst1/
STK4 (Fernando et al., 2002), Pax7 for the differentiation of
skeletal muscles (Dick et al., 2015) or βcat for cardiac muscle cells
(Abdul-Ghani et al., 2011).

Apoptotic functions of caspases during
development of the head

A normal rate of apoptosis is essential to fulfil morphogenetic
functions. In mammals, apoptotic cells are apparent already in the
morula (Fabian et al., 2007) and apoptosis later accompanies
morphogenesis of various head structures (Pampfer and Donnay,
1999) (Table 2).

The most significant impact of insufficient apoptosis was observed
during the formation of the nervous system. Apoptotic elimination of
neurons is required to adjust their number. At the beginning of neural
development, excessive numbers of neurons is generated including
many with incorrect connections to their targets. Later, some are
removed by caspase-mediated apoptosis (Volbracht et al., 2001).
Caspase-3, -9 and, Apaf-1, were shown to be essential for this
process. Mice lacking either of these factors showed severe
malformations resulting from an excessive number of neurons
(Kuida et al., 1996; Kuida et al., 1998; Cecconi et al., 1998; Hakem
et al., 1998; Yoshida et al., 1998; Honarpour et al., 2000). Notably,
caspase-3-deficient mice revealed inconsistent phenotypes related to
the genetic background (Leonard et al., 2002). Caspase-3−/− 129X1/SvJ
mice were severely affected by expansion of neural precursors and
exencephaly (Kuida et al., 1996; Woo et al., 1998). However, caspase-
3-deficient C57BL/6J mice showed minimal brain pathology (Leonard
et al., 2002) suggesting compensatory caspase activation or expression/
activation of other proteins depending on the specific genetic
background (Zheng et al., 2000; Leonard et al., 2002). Caspase-3-
deficient mice C57BL/6 displayed an increased activation of caspase-7
compared to 129X1/SvJ (Houde et al., 2004). The role of different
genetic backgrounds was identified also in non-caspase knock-out

FIGURE 3
Overall functions of caspases in formation of head.
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studies and suggested to influence the phenotypic analysis
(Montagutelli, 2000). Supplementary Table S1 summarises genetic
backgrounds in mice described in this review. Notably, caspase-2
seemsto work in a different manner to caspase-3, -9 and Apaf-1.
Caspase-2 deficiency caused a decreased number of facial neurons
suggesting a protective function in neural development. Other
abnormalities were not detected in the brain of caspase-2-deficient
mice (Bergeron et al., 1998). Caspase-8-deficient mice displayed neural
tube malformations. However, these alterations are probably
secondary effects as a consequence of failure in caspase-8-mediated
apoptosis allowing the survival of some cells committed to death
(Varfolomeev et al., 1998; Sakamaki et al., 2002). Mice lacking
inflammatory caspase-1, -11, -12 did not display any obvious
neuronal phenotype (Kuida et al., 1995; Li et al., 1995; Wang et al.,
1998b; Saleh et al., 2006; Kayagaki et al., 2011). Caspase-1 was only
shown to decrease hippocampal neurogenesis with ageing (Gemma
et al., 2007). Neither caspase-6 nor caspase-7 appear to be critical for
the central nervous system development (Houde et al., 2004; Lakhani
et al., 2006; Uribe et al., 2012). Regarding caspase regulation, ablation
of the pro-apoptotic gene Bax, which appears to be critical for post-
mitotic neuronal cell death (White et al., 1998), led to a selective
reduction in the elimination of neurons (Jung et al., 2008). Bcl-2-
deficient mice exhibited an important loss of motoneurons,
sympathetic neurons, and sensory neurons during early postnatal
life (Michaelidis et al., 1996). The importance of fine regulation of
neural apoptosis was enhanced in Mcl-1+/−Bcl-x+/−mice, where small
but excessive increase in developmental apoptosis resulted in a high

incidence of developmental abnormalities of head including
hydrocephalus (Grabow et al., 2018).

Defective apoptosis impacts development of other
neuroectoderm-derived structures including the retina. The
development of the retina in vertebrates is accompanied by a
physiological cell death (Vecino et al., 2004). The sequence of cell
death in the retina probably recapitulates the sequence of maturation
in the various layers and cell types, starting in the ganglion and
proceeding across the inner and outer nuclear layer (Beazley et al.,
1987). Caspase-9 was shown to be an initiator of the process (Laguna
et al., 2008) and central executor caspase-3 follows in the machinery.
In caspase-3-deficient mice (maintained on a mixed C57BL/6J-129sv
background), apoptosis was retarded in the inner nuclear layer of the
retina. The compensation implies a caspase-independent mechanism
together with a caspase-dependent mechanism mediating cell death.
The inhibition of one results in activation of the other (Zeiss et al.,
2004). The caspase-independent mechanism may include apoptosis-
inducing factors (Candé et al., 2002) or non-caspase proteases
(Guicciardi et al., 2001).

During lens development, primary and secondary lens fibres lose
their nuclei and organelles to form a transparent cytoplasm. In several
aspects this process resembles apoptosis, since it includes TUNEL-
positive degenerating nuclei stained, activated caspases, cleaved poly-
(ADP-ribose) polymerase (PARP) etc. (Appleby and Modak, 1977;
Bassnett and Mataic, 1997; Zandy et al., 2005). However, some
parameters are different from what is observed during apoptosis
incuding maintenance of phosphatidylserine within the inner leaflet

TABLE 2 Overview of caspase apoptotic functions during development of head.

Apoptotic engagement of caspases—summary

Brain Regulation of neural cells population by elimination of excessive neurons: casp-3, -9 and
Apaf-1, Bax

Kuida et al. (1996), Cecconi et al. (1998), Hakem et al. (1998), Jung
et al. (2008)

Protection of neurons: casp-2 Bergeron et al. (1998)

Neural tube formation: casp-8 Varfolomeev et al. (1998), Sakamaki et al. (2002)

Development of motoneurons, sympathetic and sensory neurons: Bcl-2 Michaelidis et al. (1996)

Eye Apoptosis in the inner nuclear layer of retina: casp-3 Zeiss et al. (2004)

Lens transparency: casp-3 Ishizaki et al. (1998), Zandy et al. (2005)

Inner ear Abnormal anatomy of inner ear: casp-3 Makishima et al. (2011)

Decreased apoptosis in the inner ear epithelium: casp-9, Apaf-1 Cecconi et al. (2004)

Skull Activation in apoptotic cells of mandible during prenatal development: casp-3, -7 and -8 Svandova et al. (2018)

Palatal shelves Fusion of palatal shelves ex vivo: General caspase activity Cuervo et al. (2002)

Lack of adherence in palatal shelves: Apaf-1 Honarpour et al. (2000)

Absence of MES disintegration: Apaf-1 Cecconi et al. (1998)

Teeth Apoptosis of cells in primary enamel knot: casp-3, -9 and, Apaf-1 Setkova et al. (2007)

Skeletal
muscles

Destruction of myonuclei and myofibers in aging tongue muscle: casp-3 Kletzien et al. (2018)

Skin Skin homeostasis: casp-8 Kovalenko et al. (2009)

Melanin synthesis: Bcl-2 Veis et al. (1993)

Salivary glands Temporarily restricted regulation of duct size in salivary glands ex vivo: General caspase
activity

Teshima et al. (2016b)

Apoptosis-related molecules are shown in bold font.
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of cytoplasmic membrane, and/or the elongation and preservation of
cells (Bassnett and Beebe, 1992; Bassnett and Mataic, 1997; Ishizaki
et al., 1998; Wride and Sanders, 1998; Dahm, 1999). Whether the
denucleation of cells resulting in maturation of lens fibres is apoptotic or
not remains unclear. Dahm (1999) or Sanders and Parker (2002)
suggested that lens fibre cell denucleation is an apoptotic-like event
lacking plasma membrane phenomena associated with apoptosis. This
could be associated either with the relatively early permeability changes
in the mitochondria and the consequent loss of activated caspase-9 or
other mitochondrial proteins. Alternatively this may involve the failure
of signalling molecules to migrate to the nuclei (Sanders and Parker,
2002). These authors used lens epithelial cultures to show that
pharmacologic inhibition of caspases-1, -2, -4, -6, and -9 significantly
reduced the incidence of nuclear degeneration, whereas inhibitors of
caspases-3 and -8 did not.

The survival of lens fibres was suggested to be involved within large
networks of gap junctions ensuring cellular communication. Caspase-3
was shown to be responsible for proteolytic cleavage of connexin, a gap
junction protein, associated with lens development (Yin et al., 2001).
Basu et al. (2012) described development of chick lens fibres as a process
of differentiation, where low levels of caspase-3 activation is regulated by
IGF-1R/NFκB signalling and caspase-3-deficient mice exhibited
cataracts (Zandy et al., 2005). However, further investigation showed
that neither caspase-3 nor other executors are required for the
elimination of organelles from lens fibres (Zandy et al., 2005).

In addition to caspases, other apoptosis-related factors have been
identified in the process of lens development. For instance, over-
expression of Bcl-2 in the chick lens results in morphological defects,
including disorganised lens fibres. In the equatorial region where cells
begin to differentiate, pro-apoptotic Bcl-2 family members (Bax and
Bcl-Xs) are expressed, which might be an initial signal for cell
differentiation (Sanders and Parker, 2003). Surprisingly, over-
expression of Bcl-2 was sufficient to induce cataracts, microphakia,
vacuolisation, fibre cell disorganisation, and inhibition of fibre cell
denucleation (Fromm and Overbeek, 1997).

Apoptosis was reported as a possible key event (although not the
only one) in eyelid spacing (Mohamed et al., 2003). Caspase activity
would be expected in the process however, no obvious alterations in
eyelids have been described in mice lacking the central caspase-3
(Zeiss et al., 2004). Therefore, alternative mechanisms of cell death or
alternative processes of morphogenesis are expected.

Among sensory organs, the inner ear is an example where a
balanced rate of apoptosis is believed to be crucial for correct
anatomy of vestibular system (Tafra et al., 2014). Caspase-3-
deficient mice showed inconsistent phenotypes with prevalent
decreased arc size of the anterior semicircular canal. Other severe
malformations included truncation or aplasia of the anterior
semicircular canal (Makishima et al., 2011). Furthermore, absence
of Apaf-1 led to a dramatic decrease in apoptosis in the epithelium of
the inner ear, severe morphogenetic defects and a significant size
reduction of the membranous labyrinth. Caspase-9-deficient mice
suffered from similar defects supporting the importance of the
Apaf-1-caspase-9-caspase-3 pathway. The aforementioned
phenotype is speculated to come from the reduction in the number
of apoptotic cells and thus of the passive release of functional factors
from the dying cells into the local environment (Cecconi et al., 2004).
Alternatively, persisting unwanted cells may release signals
incompatible with normal development. Parker et al. (2010)
suggested apoptotic function of caspase-3 also in auditory part of

the inner ear. Loss of hair cells and spiral ganglia was reported in
caspase-3-deficient mice (Takahashi et al., 2001). The phenotype of
caspase-3-deficient mice included hyperplasia of supporting cells of
organ of Corti. That probably results from abnormal cell elimination.
Hair cells degeneration was, however, associated with non-apoptotic
events (Morishita et al., 2001).

Apoptosis was observed to regulate the final shape and size of
skeletal muscles. In addition apoptosis was associated with atrophy of
skeletal muscles during ageing (Sandri and Carraro, 1999; Schwartz,
2018). Increasing rate of apoptosis was identified in ageing of extrinsic
tongue muscle and caspase-3 may be involved in this process (Kletzien
et al., 2018).

Development of the skull includes the differentiation of connective
tissues such as cartilage, bone or associated dental tissues. Apoptotic
removal of bone cells keeps a balance between the number of bone-
forming osteoblasts, bone resorbing osteoclasts, and mechanical
sensors known as osteocytes, which is crucial for bone formation
and physiology. Inappropriate apoptosis in bone may be responsible
for pathologies such as osteoporosis or rheumatoid arthritis (Hughes
and Boyce, 1997; Mollazadeh et al., 2015; Ru and Wang, 2020).
Caspase-3, -7, and -8 activation was associated with apoptosis in
mandibular bone cells (Svandova et al., 2018). Additionally, caspase-2
was reported to be involved in maintaining bone homeostasis by
modulating the levels of reactive oxygen species in osteoclast apoptosis
during ageing (Sharma et al., 2014).

Formation of the secondary palate requires direct contact and
fusion of the palatal shelves in the temporal structure medial epithelial
seam (MES). Incomplete fusion of the palatal shelves results in palatal
clefts, the most common congenital craniofacial deformity. Apoptosis
was shown to contribute to the disintegration of the MES. However,
the role of caspases in palatal development remains disputable. Organ
cultures demonstrated that the application of general caspase inhibitor
results in persistence of the MES and unfused palate shelves (Cuervo
et al., 2002). Furthermore, Apaf-1-deficient mice displayed a lack of
adherence in palatal shelves (Honarpour et al., 2000) or absence of
MES disintegration (Cecconi et al., 1998). Finally, treatment with a
blocking FasL antibody in organ culture prevented palatal fusion and
inhibited the expression of caspase-8 and -3 (Huang et al., 2011). By
contrast, Jin and Ding (2006) did not confirm a necessity for Apaf-1-
dependent apoptosis for normal palatal development as demonstrated
in Apaf-1-deficient mice. The discrepancies might result from
different genetic backgrounds. Notably, caspase-3 or caspase-9-
deficient mice did not show cleft palate (Kuida et al., 1996; Kuida
et al., 1998; Woo et al., 1998), which again reduces the importance of
apoptosis-related molecules in palate development. Therefore, some
alternative mechanisms such as cell trans-differentiation, migration or
some other still unknownmechanism are expected to take a part in the
process (Jin and Ding, 2006).

Caspase-7 is activated during apoptosis that takes place in the
primary enamel knot (PEK), a signalling center involved in tooth
morphogenesis. Despite its activation, caspase-7 does not seem to be
crucial for the process (Matalova et al., 2012). In contrast, deficiency of
caspase-3, caspase-9, and Apaf-1, respectively, resulted in the
suppression of apoptotic elimination. Surprisingly, despite these
markers being abundantly present in PEK, their deficiency does
not affect the normal formation of dental structures (Matalova
et al., 2006; Setkova et al., 2007). An impact of caspase-3 deficiency
on epithelial formation and enamel structure was investigated using
different genetic backgrounds. At prenatal development, the location
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of the first molar tooth germ was found shifted posteriorly in the upper
jaw in Caspase-3 −/−/129X1/SvJ mice, which might be related to the
enlarged brain in these mice. Caspase-3 −/−on the B57BL/6 background
altered morphology of the first molar in both upper and lower jaws,
with the original PEK epithelium appearing disorganised (Matalova
et al., 2006). The variability of phenotypes may be related to the
specific pattern of redundant caspase activation. Despite the prenatal
differences of tooth organisation, no major alterations in adult molars
in both strains were described (Leonard et al., 2002).

Lumen formation is crucial for function of salivary glands. Inmice,
apoptosis was first apparent in epithelial stalks together with cleaved
caspase-3 immunodetection. Application of general caspase inhibitors
to ex vivo cultures resulted in wider ducts, and a defect in lumen
formation, compared with controls. In contrast, no such defect in
lumen formation was observed at later stages pointing to a
temporarily-restricted action of caspases on cell elimination
(Teshima et al., 2016b). Caspase-7 was evident earlier during
development, while caspase-6 was mainly concentrated within
more developed ducts. Therefore, their functions are rather
complementary. The prevailing expression of Bax and Bak to Bad
and Bid in developing human salivary glands again strengthens the
importance of intrinsic apoptotic pathway in developmental events
(Teshima et al., 2016a).

Apoptotic and inflammatory caspases were identified in skin
(Takahashi et al., 1998) and the hair buds. Prenatal development of
the hair buds was not associated with significant apoptosis (Vesela
et al., 2015). However, adult hair follicles undergo periodic hair cycling
(Cotsarelis, 2006). Soma et al. (1998) observed apoptotic cells in
human inner root sheaf and identified expression of caspase-1, -3,
-4 (analogue of caspase-11) and -7 during the hair growth (anagen). In
mice, at the stage of growth arrest (catagen) apoptosis has been shown
to occur in the inner root sheath and the lower part of the follicle,
apoptotic cells were associated with activation of caspases-3, -7, -12
(Vesela et al., 2015; Veselá and Matalová, 2015). Caspase-9 was shown
to regulate apoptosis in hair follicle stem cells (SCs). Caspase-9-
deficient hair follicle SCs displayed high levels of caspase-3.
Surprisingly, caspase-3 activation was not sufficient for SCs
elimination. SCs of hair follicle were retained in an apoptotic-
engaged state, during which they released mitogenic Wnt3.
Consequently, caspase-9-deficient mice accelerated wound repair
and hair follicle regeneration (Ankawa et al., 2021). The role of
caspase-3 in the context of SCs differentiation was described also
in embryonic stem cells (Fujita et al., 2008). Another factor regulating
hair follicle turn-over is Bcl2 (Stenn et al., 1994; Sotiropoulou et al.,
2010). Recently, it was shown to regulate homeostasis of hair follicle
stem cells (Geueke et al., 2021).

Non-apoptotic functions of caspases
during development of the head

Caspases have recently been found to be involved in processes
such as cell proliferation, adhesion, differentiation or migration.
Importantly, the same systems, where apoptotic engagement of
caspases was identified, are associated with their non-apoptotic
activation (Table 3).

Multiple non-apoptotic caspase functions were identified in the
nervous system (Nguyen et al., 2021). The importance of non-
apoptotic functions of caspase-3 was shown in the mouse primary

neuronal SCs, where a deficiency of caspase-3 resulted in abnormal
signals for cytoskeletal remodelling (Fernando et al., 2005).
Additionally, the presence of β-III tubulin-positive and GFAP-
positive cells was reduced in mouse neural stem cells when caspase
activity was inhibited (Aranha et al., 2009). In postnatal rat
cerebellum, caspase-3-positive cells were localised in the external
granule cell layer and did not correlate with apoptosis. In this
model, caspase-3 was suggested to be engaged in the reorganisation
of components of the cytoskeleton such as actin (Mashima et al.,
1997), fodrin (Martin et al., 1995; Greidinger et al., 1996), and spectrin
(Wang et al., 1998a). Caspase-3 was also suggested to accompany
neural mitosis or differentiation (Oomman et al., 2004). Furthermore,
caspase-3 expression was not limited to neural cells but was also
detected in differentiating Bergmann glia of the cerebellum (Oomman
et al., 2006). In chick, non-apoptotic engagement of caspase-3 was
identified in the auditory brainstem, where caspase-3 substrates were
found to be expressed in axons (Weghorst et al., 2020). In addition to
caspase-3, other caspases, such as caspase-2 and -9 are suspected to
participate in neural differentiation (Pistritto et al., 2012).

Caspases have been shown to be important for neural tube closure
(NTC). During this process the boundaries between the non-neural
ectoderm and the neuroepithelial layer are provided by cells
undergoing apoptosis suggesting a participation of caspases in the
process (Geelen and Langman, 1977; Weil et al., 1997). Caspase-3,
-9 and Apaf-1-deficient mice displayed NTC defects in the midbrain
and/or the hindbrain. Surprisingly, the closure proceeds normally in
other parts (Hakem et al., 1998; Kuida et al., 1998). The phenotype,
therefore, may not be a direct consequence of the suppression of
apoptosis but could be due to the abnormal persistence of certain
signal-secreting cells. Alternatively, caspases may also contribute to
the closure in a non-apoptotic manner. Experiments in early mouse
embryos showed that a general caspase inhibitor prevents cell
migration of non-neural ectodermal cells and normal NTC
(Shinotsuka et al., 2018).

Finally, caspases were identified in the regulation of axonal
development including axon branching, pruning (axon retraction),
guiding (axon navigation) and the formation of synapses. Most of
these studies were however carried out in non-mammalian animal
models. Activation of caspase-3 has been transiently observed in
axons, particularly at their branching points (Campbell and
Okamoto, 2013; Katow et al., 2017). The mechanisms by which
caspase-3 regulates growth cone formation and axon branching are
still elusive. Actin polymerization is necessary to drive advancement of
neuronal growth cones (Dent et al., 2011) preceding synaptogenic
events. Since caspase-3 recognises cytoskeletal compartments such as
actin (Mashima et al., 1997) it may be a possible mechanism. Axon
pruning is a process that eliminates collateral extensions or small
terminus arborisation with improper connectivity at the axon
terminus. Selective pruning of axons is critical for plasticity in the
adult nervous system (Low and Cheng, 2006). Whereas neuronal cell
death occurs early during neural development, axon pruning
continues to be selectively removed at least through adolescence in
humans (Sakai, 2020). Axon-selective degeneration requires caspase-9
(Cusack et al., 2013) and caspase-3 (Simon et al., 2012). Suppression of
caspase-3 activation in Bax/Bak double knock-outs led to a less
tailored postnatal network of neuron branches in the spinal cord
and impaired the development of skilled movements in adult mice (Gu
et al., 2017). Notably, axon pruning does not require Apaf-1 (Cusack
et al., 2013) but is dependent on caspase-6 (Nikolaev et al., 2009;
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Simon et al., 2012; Cusack et al., 2013). In this context, caspase-6 is not
essential for neuronal death (Cusack et al., 2013). Caspase signalling is
suspected to regulate axon guidance and differentiation. As such
Apaf-1/caspase-9 signaling caused the cleavage of Sema7A, crucial for
proper axon projection, which results in a decreased level of its active
form in olfactory sensory neurons. Consequently, mice deficient for
Apaf-1 or caspase-9 exhibit misrouted axons (Ohsawa et al., 2010).
Caspases were further investigated in the context of the processes of
learning and memory. Caspase-3 plays an important role, as shown in
zebrafinch (Huesmann and Clayton, 2006). Caspase-3 is also involved
in synaptic plasticity (D’Amelio et al., 2012), notably in long-term
depression (LTD), a process during which the efficiency of synaptic
transmission is reduced for hours. As a counterpart to long-term
potentiation (LTP), it is also important for adapting neural networks
to physiological activity requirements.

Apaf-1-deficient mice displayed retinal thickening (Honarpour
et al., 2000). Caspase-3–deficient animals suffer from marginal
microphthalmia, peripapillary retinal dysplasia and delayed
regression of vitreal vasculature. It is questionable whether some of
these abnormalitiesmight result fromnon-apoptotic mechanisms (Zeiss
et al., 2004). Investigation of rat lens proposes a putative role of caspase-
3 in turnover of lens proteins caused by incident light (Talebizadeh et al.,
2015). The development of retina is also impacted by genetic alterations
of the Bcl-2 superfamily and anti-apoptotic proteins (e.g., Mosinger
Ogilvie et al., 1998; Strettoi and Volpini, 2002).

In the auditory region of the inner ear, non-apoptotic functions of
caspases have also been identified. Caspase-3−/− mice were shown to
exhibit a marked degeneration of the spiral ganglion neurons and a
loss of inner and outer hair cells in the cochlea with ageing. The
degenerated neurons did not exhibit characteristics of apoptosis. This

observation suggests a role of caspase-3 in the survival of ganglia and
hair cells (Morishita et al., 2001).

Caspase-3 is indispensable for the transition of skeletal myoblasts
into myotubes and expression of muscle-specific proteins. In vitro
analysis showed that skeletal muscle differentiation is accompanied by
a significant increase in caspase-3 activity. Furthermore, the increasing
trend (not as large as for caspase-3) was evident also for caspase-8
(Fernando et al., 2002). Caspase-3 was further associated with
catabolic degradation of muscle proteins (Du et al., 2004). In vitro
investigation of C2C12 myoblasts showed that caspase-9 is required
for caspase-3 activation and cell fusion. Reduction of caspase-9 levels
prevented caspase-3 activation. By contrast, the processing of other
apoptotic initiator caspases was not detected (Murray et al., 2008).
General caspase activity was demonstrated in the regulation of
muscular regeneration (Moresi et al., 2009). Later studies identified
that caspase-3 limits satellite cell self-renewal via inactivation of Pax7
(Dick et al., 2015). Satellite cells are responsible for the developmental
growth and the regeneration of muscles.

Deficiency of caspase-3 resulted in delayed skeletal development of
bones of the skull including the ossification defects of calvarial bones.
However, it is possible that the enlarged brain in caspase-3−/− may
contribute to the phenotype. Nevertheless, the delayed ossification of
the skull may also result from a significant decrease in expression of
Runx2/Cbfa1 in caspase-3−/− and caspase-3+/– detected in pre-
osteoblasts derived from mouse calvariae (Miura et al., 2004).

In contrast to caspase-3-deficient mice, caspase-7 deficiency did
not result in any observable change in the size of the skull when
compared with the normal littermates. Analysis of caspase-7−/− adult
mandibular bone revealed that the bone mineral density (BMD) was
comparable to that of wild-type animals. However, in caspase-7−/−

TABLE 3 Overview of caspase non-lethal functions during development of head.

Non-lethal engagement of caspases—summary

Brain Regulation of neural differentiation: casp-2,-3,-9 Fernando et al. (2005), Aranha et al. (2009), Pistritto et al. (2012)

Reorganisation of cells during neural tube closure ex vivo: General caspase activity Shinotsuka et al. (2018)

Axon branching: casp-3, -9 Campbell and Okamoto (2013), Katow et al. (2017)

Axon pruning: casp-3,-6, -9 Cusack et al. (2013)

Axon guidance: casp-9, Apaf-1 Ohsawa et al. (2010)

Eye Vascularisation of retina: casp-8 Tisch et al. (2019)

Proper thickness of retina: Apaf-1 Honarpour et al. (2000)

Proper development of retina and lens: Bcl-2 superfamily Mosinger Ogilvie et al. (1998), Sanders and Parker (2003)

Inner ear Development of spinal ganglion and hair cells: casp-3 Morishita et al. (2001), Takahashi et al. (2001)

Skull Ossification of the skull: casp-3 Miura et al. (2004)

Bone volume of mandible: casp-7, Fas/FasL Svandova et al. (2014), Svandova et al. (2019)

Teeth Mineralization of enamel: casp-7 Matalova et al. (2012), Matalova et al. (2013)

Skeletal muscles Differentiation of skeletal muscles: casp-3, -8 Fernando et al., 2002

Skin Terminal differentiation of keratinocytes: casp-14 Lippens et al. (2000)

Regulation of mast cells population: casp-7 Vesela et al., 2015

Blood vessels Proliferation, sprouting and migration of endothelial cells: casp-8 Varfolomeev et al. (1998)

Apoptosis-related molecules are shown in bold font.
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mandibles, the bone volume was significantly decreased compared
with wild types, which correlates with significant decrease inMsx1 and
Smad1 expression, both involved in bone formation (Svandova et al.,
2014). Smad1 is one of the key players in the Bone morphogenetic
protein (BMP) pathway and induces bone formation (Nohe et al.,
2004), which might explain the decreased bone volume in young adult
mice. The potential of caspases to regulate osteogenic expression was
also studied in calvarial MC3T3-E1 cells. A sequence of in vitro
experiments with caspase inhibitors showed downregulation of
osteocalcin (Ocn) and Phex. The inhibition of individual caspases
indicated that caspase-8 is a major contributor to the decrease in Ocn
and Phex expression. Caspase-2 and-6 inhibition decreased expression
of Ocn and caspase-6 inhibition decreased Phex expression
(Kratochvílová et al., 2020). In vitro modulation of osteoblast
differentiation via caspase-2, -3, -8 was observed (Mogi and Togari,
2003). Furthermore, caspase-12 was shown to regulate the expression
of alkaline phosphatase, osteocalcin and Phex in vitro and was
activated in osteoblasts of mandibular bone in vivo. The increasing
expression of caspase-12 during development of mandibular bone,
when the original mesenchymal condensation turns into vascularised
bone, suggests a role in osteoblast differentiation (Vesela et al., 2020).
Impacted bone formation was recorded also in the case of caspase
upstream factors such as FasL, a regulator of the extrinsic apoptotic
pathway. FasL-deficient mice displayed abnormal expression of
Mmp2 and Sost in prenatal mandible, both factors are important
regulators of bone formation. Furthermore, FasL-deficient mandibles
showed age-dependent phenotype, when 6-day old mice had
decreased and 24-day old mice increased bone volumes (Svandova
et al., 2019). Non-apoptotic effects of FasL was shown also in osteocyte
lineage IDG-SW3, where stimulation of these cells resulted in
abnormal expression of osteogenic genes with the most
downregulated gene being sclerostin (Kratochvilova et al., 2021).

Caspase activation during tooth development was further
identified in non-apoptotic odontoblasts (in crown and root) and
ameloblasts. Caspase-3-deficient first molars did not show any
significant alterations when compared with controls (Matalova
et al., 2006; Setkova et al., 2007). This contrasts with the situation
observed in the caspase-7−/−mice where incisors displayed delayed
mineralisation or hypomineralisation of the enamel. Notably,
caspase-7 has a different localisation in the epithelial cells on the
lingual side of rodent incisor where enamel is not secreted
(caspase-7 negative) and the labial side of continuously renewing
ameloblasts (caspase-7 positive). The activation of caspase-7 in the
cervical loop suggested a possible role of caspase-7 in fate of dental
cells engaged in the formation of extracellular matrices and
mineralisation (Matalova et al., 2013). Caspase-12, also investigated
during odontogenesis, was activated in differentiating ameloblasts and
odontoblasts, although its exact function is not yet known (Vesela
et al., 2020).

During skin development, caspase-14, which is believed to have
functions unrelated to apoptosis (Hu et al., 1998), was shown to be
crucial for the terminal differentiation of keratinocytes (Lippens et al.,
2000). Caspase-14 is expressed in the differentiating suprabasal
keratinocytes (Lippens et al., 2004; Hoste et al., 2011). However,
based on its expression, it probably participates in skin barrier
formation (Hu et al., 1998). One of the essential functions of
caspase-14 is the processing of profilaggrin, a protein essential for
moisturisation of the stratum corneum (Hoste et al., 2011) resulting in
increased trans-epidemal water loss and sensitivity to UVB radiation

(Denecker et al., 2007). Caspase-7 was suggested to regulate the
number of mast cells localised in the dermis (Vesela et al., 2015).
The non-apoptotic pathway might include a proteolytic cleavage of IL-
33, an activator of mast cells (Sabatino et al., 2012; Saluja et al., 2014)
and also a substrate of caspase-7 (Lüthi et al., 2009).

Caspases-1, -12, -7, -14 were present in developing hair germs in
non-apoptotic cells and therefore non-apoptotic functions have been
suggested (Vesela et al., 2015). Caspase-14 was diffusely present in
cornifying cells of the outer root sheath, in the companion layer, and in
the inner root sheath (Alibardi et al., 2005). Caspase-1 was shown to
impact cell proliferation in different niches of the skin (Lee et al.,
2015). Additionally, hair growth in caspase-2-deficient mice was
impaired (Zhang et al., 2007).

Caspase-8-deficient mice showed abnormal formation of blood
vessels (Varfolomeev et al., 1998). Loss of caspase-8 in endothelial
cells results in decreased proliferation, sprouting and network
formation. Loss of caspase-8 caused hyperactivation of
p38 MAPK within the receptor-interacting serine/threonine
protein kinase 3 (RIPK3) pathway and destabilisation of
endothelial cadherin (VE-cadherin) (Tisch et al., 2019).
Caspases have been shown to be involved in degradation of
extracellular matrix (Cowan et al., 2005) which may be applied
also in remodelling of blood vessels. Such an activation is expected
for caspase-3 (Cohen, 1997), -2, and -7 (Cowan et al., 2005).

Concordance between knockout
animals

Regarding the apoptotic processes, there are several similarities in
mice lacking apoptosis-related factors. As indicated above, the trio of
knockout mice caspase-3, -9 and Apaf-1 was shown to be essential for
several events; elimination of the excessive number of neurons (Kuida
et al., 1996; Kuida et al., 1998; Cecconi et al., 1998; Hakem et al., 1998;
Yoshida et al., 1998; Honarpour et al., 2000), apoptosis in the
epithelium of the inner ear (Cecconi et al., 2004), removal of PEK
cells (Matalova et al., 2006; Setkova et al., 2007). Notably, for non-
apoptotic events similar group of molecules was not identified. This
may suggest more variable pathways for non-apoptotic processes in
contrast to apoptotic pathways. We may also speculate about less/
more conserved mechanisms when compared these two groups.

Evolutionary conserved functions of
caspases in development of head
structures

Caspases and caspase-like proteins are highly evolutionary
conserved enzymes identified in vertebrates, insects, nematodes, or
yeast. Their evolutionary conserved functions are not surprising in
development of the head. This applies to the nervous system, where
(Hakem et al., 1998; Kuida et al., 1998), caspase-9 was shown regulate
size of neuron population in chick (Tafreshi et al., 2006). Caspase-9
was identified also in the developing nervous system in zebrafish
(Spead et al., 2018). Caspase activity (either drICE or dcp-1) was also
identified to be essential for neuronal death in Drosophila (Akagawa
et al., 2015). Caspases were identified to participate in neural tube
closure in both mice (Hakem et al., 1998; Kuida et al., 1998) and chick
embryos (Weil et al., 1997). Furthermore, there is a potential link
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TABLE 4 Overview of participation of caspases and their functions in development of the head region/structures.

Caspase-1

•Decreased hippocampal neurogenesis in aging Gemma et al. (2007)

•Impact on cell proliferation in different niches of the skin Lee et al. (2015)

•Localised in apoptotic cells of hair follicles Soma et al. (1998)

Caspase-2

•Neural differentiation Pistritto et al. (2012)

•Protection of neurons Bergeron et al. (1998)

•Differentiation of skeletal muscles Boonstra et al. (2018), Dehkordi et al. (2020)

•Osteoblast differentiation Mogi and Togari (2003)

•Regulation of osteoclast apoptosis in aging Sharma et al. (2014)

•Stimulation of osteogenic expression in calvarial osteoblasts Kratochvílová et al. (2020)

•Regulation of hair growth Zhang et al. (2007)

Caspase-3

•Major actor of neuronal apoptosis Kuida et al. (1996)

•Neural stem cell differentiation Fernando et al. (2005)

•Reorganisation of neural cytoskeleton Mashima et al. (1997)

•Regulation of glial cells population Lossi et al. (2018)

•Differentiation of glial cells Oomman et al. (2006)

•Regulation of synaptic plasticity Chan and Mattson (1999)

•Modulation of memory Dash et al. (2000), Huesmann and Clayton (2006), Zhuravin et al. (2015)

•Axon branching and arborisation Campbell and Okamoto (2013)

•Axon pruning Gu et al. (2017), Cusack et al. (2013)

•Apoptosis in the inner nuclear layer of retina Zeiss et al. (2004)

•Protein turnover of lens cell fibres Talebizadeh et al. (2015)

•Proteolytic cleavage of Cx45.6 associated with lens development Yin et al. (2001)

•Regulation of lens transparency Zandy et al. (2005)

•Normal development and function of the cochlear vestibule Makishima et al. (2011)

•Survival of ganglion cells and hair cells Morishita et al. (2001)

•Elimination of supporting cell in organ of Corti Takahashi et al. (2001)

•Putative role in apoptosis of aging myocytes of extrinsic tongue muscle Kletzien et al. (2018)

•Differentiation of rhabdomyocytes; transition of myoblasts into myotubes Fernando et al. (2002)

•Catabolic degradation of muscular proteins Du et al. (2004)

•Reduction of satellite cells self-renewal Dick et al. (2015)

•Apoptotic elimination of bone-related cells in mandibular bone Svandova et al. (2018)

•Bone ossification Miura et al. (2004)

•Osteoblast differentiation Mogi and Togari (2003)

•Participation in the fusion of the palatal shelves Huang et al. (2011)

•Apoptosis in primary enamel knot Matalova et al. (2006)

•Apoptosis accompanying formation of salivary glands Teshima et al. (2016b)

(Continued on following page)
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TABLE 4 (Continued) Overview of participation of caspases and their functions in development of the head region/structures.

•Apoptosis in prenatal skin Vesela et al. (2015)

•Apoptosis of hair follicle Soma et al. (1998), Vesela et al. (2015)

•Degradation of extracellular matrix during blood vessel remodelling Cohen (1997), Cowan et al. (2005)

Caspase-6

•Participation in axon pruning Nikolaev et al. (2009), Cusack et al. (2013)

•Induction of Phex expression in calvarial osteoblasts Kratochvílová et al. (2020)

•Putative contribution in formation of ducts of salivary glands Teshima et al. (2016b)

Caspase-7

•Caspase-3 redundancy in neuronal apoptosis Houde et al. (2004)

•Regulation of osteogenic process in mandible Svandova et al. (2014)

•Apoptotic elimination of bone-related cells in mandibular bone Svandova et al. (2018)

•Putative participation in apoptosis of PEK Matalova et al. (2012)

•Mineralisation of incisor enamel Matalova et al. (2013)

•Potential participation in apoptosis during formation of salivary glands Teshima et al. (2016a)

•Non-apoptotic regulation of mast cells population in dermis Vesela et al. (2015)

•Potential participation in apoptosis during development of hair follicles Vesela et al. (2015)

•Degradation of extracellular matrix during blood vessel remodelling Cowan et al. (2005)

Caspase-8

•Apoptosis in formation neural tube Varfolomeev et al. (1998), Sakamaki et al. (2002)

•Potential role in differentiation of skeletal myoblasts Fernando et al. (2002)

•Potential engagement in palatal fusion Huang et al. (2011)

•Osteoblast differentiation Mogi and Togari (2003)

•Apoptotic elimination of bone-related cells in mandibular bone Svandova et al. (2018)

•Regulation of osteogenic expression Kratochvílová et al. (2020)

•Skin homeostasis Kovalenko et al. (2009)

•Formation of blood vessels Varfolomeev et al. (1998)

Caspase-9

•Neuronal apoptosis Hakem et al. (1998), Kuida et al. (1998)

•Putative role in neural differentiation Pistritto et al. (2012)

•Axon-selective degeneration Cusack et al. (2013)

•Putative role in axon guidance Ohsawa et al. (2010)

•Participation in neural tube closure Geelen and Langman (1977), Weil et al. (1997), Hakem et al. (1998), Kuida et al. (1998)

•Apoptosis in development of retina Laguna et al. (2008)

•Participation in elimination of nucleus from lens fibres Sanders and Parker (2002)

•Apoptosis in vestibular organs Cecconi et al. (2004)

•Fusion of myoblasts Murray et al. (2008)

•Regulation of apoptosis in primary enamel knot Setkova et al. (2007)

•Apoptosis of hair follicle stem cells, regulation of hair follicle regeneration Ankawa et al. (2021)

(Continued on following page)
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betweenmutations in caspase-3, -9 and Apaf-1 and neural tube closure
defects in humans (Nguyen et al., 2021).

Caspase engagement in development of the eye was detected in
vertebrates (Beazley et al., 1987) but also in the compound eye of
Drosophila, where apoptosis was speculated to be essential for eye
maturation (Meier et al., 2000; Brachmann and Cagan, 2003). Caspase
dependent cell death and activation of caspase-3 was observed in chick
retina (Mayordomo et al., 2003), caspase-3 deficient zebrafish showed
degeneration of retina (Yamashita et al., 2008). In mice, caspase
activation was shown to participate in regulation of lens
transparency (Zandy et al., 2005). Similar effects were suggested to
occur in chicken (Sanders and Parker, 2003). Although, caspase-3-
deficient mice exhibited cataracts (Zandy et al., 2005), caspase-3
deficient lens in zebrafish remains normal (Yamashita et al., 2008).

Other evolutionary similarities in usage of caspases applies to
salivary glands. Caspases regulate shaping of salivary glands in
mammals (Teshima et al., 2016b). In Drosophila, the salivary gland
is sculpted by caspase-mediated programmed cell death (Takemoto
et al., 2007).

Concluding remarks

This review emphasized the importance of classical and
emerging functions of caspases in development of head
structures. Participation of caspases and their functions in
development of the head is summarised in Table 4 and Figure 3.
Caspases being assigned as apoptotic are recently considered as
factors with multiple roles in many organs (Shalini et al., 2015).
Their functional spectrum includes the switch between lethal and
non-lethal fate of cells. The mechanisms however remain elusive.
The regulation of apoptotic vs. non-apoptotic pathways may reside
in the subcellular localisation of caspases (Prokhorova et al., 2018),
availability of specific substrates (Nakajima and Kuranaga, 2017),
compensation by anti-apoptotic proteins (Huesmann and Clayton,
2006; Grabow et al., 2018), or various levels of activation (Basu et al.,
2012). Additionally, the mechanism/s might be specific in individual
tissues/cell types.

Thus, despite apoptosis and related molecules being investigated
for half a century, the understanding of the relevant networks and their

specific roles is far from complete. The expanding spectrum of
functions of caspases opens many challenging questions to be
addressed in the future.
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TABLE 4 (Continued) Overview of participation of caspases and their functions in development of the head region/structures.

Caspase-12

•Regulation of osteogenic expression, unspecified role in differentiation of osteoblasts Vesela et al. (2020)

•Potential function in ameloblasts and odontoblasts Vesela et al. (2020)

•Unspecified role in development of hair follicles Veselá and Matalová (2015)

Caspase-14

•Terminal differentiation of keratinocytes Lippens et al. (2000)

•Skin barrier formation Hu et al. (1998), Hoste et al. (2011)
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