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In vitro investigation on human development, disease modeling, and drug

discovery has been empowered by human induced pluripotent stem cell

(hiPSC) technologies that form the foundation of precision medicine. Race

and sex genetic backgrounds have become a major focus of many diseases

modeling and drug response evaluation in the pharmaceutical industry.

Here, we gathered data from major stem cell repositories to analyze the

diversity with respect to ethnicity, sex, and disease types; and we also

analyzed public datasets to unravel transcriptomics differences between

samples of different ethnicities and sexes. We found a lack of diversity

despite the large sample size of human induced pluripotent stem cells. In

the ethnic comparison, the White group made up the majority of the

banked hiPSCs. Similarly, for the organ/disease type and sex

comparisons, the neural and male hiPSCs accounted for the majority of

currently available hiPSCs. Bulk RNA-seq and single-cell transcriptomic

analysis coupled with Machine Learning and Network Analysis revealed

panels of gene features differently expressed in healthy hiPSCs and human

induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of

different races and sexes. The data highlights the current ethnic and sex

inequality in stem cell research and demonstrates the molecular biological

diversity of hiPSCs and cardiomyocytes from different races and genders.

We postulate that future efforts in stem cell biology, regenerative and

precision medicine should be guided towards an inclusive, diverse

repository reflecting the prevalence of diseases across racial and ethnic

groups and the sexes, important for both common and rare disease

modeling, drug screening, and cell therapeutics.
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Introduction

The advent and rapid development of induced pluripotent

stem cell (iPSC) fields have reshaped biological research and

greatly enhanced toolkits for disease modeling, regenerative and

precision medicine, biomedical engineering, and drug discovery.

The conversion of somatic cells into iPSC state is accompanied by

epigenetic remodeling, including DNA and chromatin

modifications (Milagre et al., 2017), and reprogramming of

microRNAs (Polo et al., 2012) and long non-coding RNAs

(Kim et al., 2015), after which iPSCs shall closely resemble

embryonic stem cells (ESCs). With fewer ethical concerns about

ESC derivation and application, human iPSCs (hiPSCs) are now

preferredmodels in numerous studies on basic biological functions

such as differentiation and development, as well as disease

modeling, precision/personalized regenerative medicine, and

drug discovery. Nonetheless, genetic diversity of races and sexes

poses natural challenges to hiPSC development and therapeutic

implication (Lu and Zhao, 2013; Milagre et al., 2017; Doss and

Sachinidis, 2019). Moreover, decreased diversity in samples

suggests that the diversity of patients receiving clinical care is

lost during the recruitment of clinic subjects into research

(Kingswood et al., 2017).

There is an urgent need to understand the genetic basis for

ethnic differences in cardiac, metabolism, and other functions

and how it affects disease susceptibility among different ethnic

groups in order to inform population-specific recommendations

and personalized interventions for related disorders. Genetic

disorders such as cardiovascular, diabetes, and neural diseases

should have a diverse patient constituency. In this study, we

analyzed the states of diversity in hiPSC repositories and

dissected transcriptomics profiles in hiPSC and hiPSC-derived

cardiomyocytes in different races and sexes. This study provides

important information for the future development of diverse,

inclusive iPSC lines and repository systems for disease modeling,

drug screening, cell therapeutics, and precision medicine.

Methods

Study design

In this study, we gathered the data on sex and racial

distribution of all primary hiPSC samples across normal

(healthy) conditions and twelve main disorders from seven

repositories: Boston University iPSC Bank, Cedar Sinai Medical,

Corriel Institute, FujiFilm Cellular Dynamics-California Institute

for Regenerative Medicine (CIRM), European Bank for Induced

pluripotent Stem Cells (EBiSC), Mount Sinai Medical Center Stem

Cell Repository, New York Stem Cell Foundation (NYSCF)

Repository. Repository data from the providers were curated to

remove duplicated cell lines based on the overlapping reference

across the repositories, then unified for the essential entries such as

sex, race/ethnicity, and disease type in the merged dataset. hiPSCs

without race and sex information were assigned to “Other” and

“No Report,” respectively.

The population difference among racial/ethnic groups is of

our primary interest. Racial/ethnic designation includes the

following groups: White, Black/African American, American

Indian/Alaska Native, Asian, Hispanic or Latino, Native

Hawaiian or Other Pacific Islander (NHPI), Mixed, and

Other. In the adjusted analyses of examining population

differences, the following covariates were included: sex and

comorbid conditions (cardiovascular, pancreas, lung, liver,

neural disease, cancer, or others). This study adheres to the

guidelines of the University of Hawaiʻi at Mānoa Institutional

Review Board. Data were collected until 1 May 2022.

Study population

This study included 5,120 samples from seven databases of

hiPSC.

For bulk RNA-seq and single-cell RNA-seq analysis, we used

sample information and data fromMount Sinai Medical Center’s

hiPSC repository, which is relatively balanced in the race and

gender compositions (Supplementary Table S1) (Schaniel et al.,

2021).

Transcriptomic signature analysis

We utilized the bulk and single-cell RNA-seq (scRNA-seq)

datasets of healthy hiPSCs and hiPSC-CMs from the previous

study covering 40 hiPSCs with relatively balanced races and

ethnicity (Supplementary Figure S1) (Schaniel et al., 2021). The

related Gene Expression Omnibus (GEO) accession numbers are:

GSE156384—bulk RNA-seq of duplicated samples of the

40 hiPSCs; GSE174773—bulk RNA-seq of hiPSC-CMs

including 3 male (2 White and 1 Hispanic) and 3 female lines

(2 White and 1 Asian); and GSE175761—scRNA-seq of CMs

derived from 2 female and 2 male in White hiPSC lines.

Supplementary Table S1 shows the sample information for

these bulk- or single-cell RNA-seq data, and Supplementary

Figure S1B depicts the general workflow of bioinformatics

analysis.

Differential gene expression (DEG) of selected genes was

assessed using the Limma package (Ritchie et al., 2015), with
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the p-values corrected using the FDR correction toolkit. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway through Enrichr tool (Xie et al., 2021) or the

clusterProfiler package (Wu et al., 2021b). The t-test was used for

the comparison of continuous characteristics between two groups,

whereas the analysis of variance or chi-square tests was used for

multiple groups. To test the differences between levels of skewed

continuous variables, a non-parametric test of the trend was used.

Statistics were prepared using R language (ver. 4.1.1; R

Development Core Team; Vienna, Austria). All p values

presented are two-sided; and significance testing used an alpha

error level of less than 0.05.

Machine learning

The maximum relevance minimum redundancy (mRMR)

algorithm (Radovic et al., 2017; Bose et al., 2021), iteratively

selects genes that are maximally relevant and minimally

redundant for class prediction. The redundancy (correlation

between genes) was calculated through the Pearson correlation

coefficient, and the relevance (correlation between the class) was

calculated by the F-statistic (regression). The gene importance

score among the DEGs was calculated based on integrated

relevance and redundancy information of each gene through

mrmr_classif or sklearn toolkit in python. The score of each gene

was ranked and visualized by ggplot 2.

Three classification algorithms, including support vector

machine (SVM) (Guyon et al., 2002), logistic regression (Bowden

et al., 2021), and naïve Bayes algorithms (Jiang et al., 2018) were used

to investigate the validity of the ten mRMR genes. These algorithms

have strong power, with supervised learning that carries out a binary

classification of data (Maktabi et al., 2020). The advantages of these

algorithms in predicting are quantitative and qualitative (Meeh et al.,

2009). The accuracy and area under the ROC curve (AUC) were

computed based on the ten hub genes of the hiPSC-CM

transcriptomic dataset, respectively. The training set obtained

80 percent and the test set obtained 20 percent of the total

samples for three classifier algorithms. In this study, mRMR and

three classifier algorithms were conducted using Scikit-learn

(sklearn) toolkit in Python 3.

Regulatory network of TF-miRNA-mRNA
in hiPSC-CM transcriptomes

This study conducted a network-based approach to explore the

DEGs-TFs -miRNA interaction to detect the potential molecular

regulatory signatures of the top ten hub DEGs after mRMR

selection. To explore TFs that bind to regulatory regions of

DEGs, significant TFs were attained from the JASPAR database

(Khan et al., 2018). To investigate miRNAs that bind to target DEGs

(mRNA) to negatively regulate their protein expression, significant

miRNAs were deployed from TarBase (Karagkouni et al., 2018) and

mirTarbase databases (Huang et al., 2020), and visualized through

NetworkAnalyst (Xia et al., 2015), a topological analysis.

Analysis of single-cell transcriptomics
profiles in hiPSC-CMs

Single-cell RNA-seq dataset of healthy hiPSC-CMs was

obtained from the Gene Expression Omnibus, accession No.

GSE175761 (Schaniel et al., 2021). To integrate the four hiPSC-

CM samples (2 females and 2 males White), we used the

anchoring integration method implemented in R package

Seurat v4.0 (Butler et al., 2018; Stuart et al., 2019), which is

based on canonical correlation (CC) analysis.

The data was normalized using LogNormalize (natural log, by

default setting), a global-scaling normalization method. The top

2000 variable genes were selected in eachmatrix and were used as

input for the FindIntegrationAnchors function of Seurat (Hao

et al., 2021).

The expression matrices were then integrated with the

IntegrateData function. The integrated data were conducted

principal component analysis (PCA; top 30 dimensions) to

reduce dimension. In the PCA space, nearest neighbors were

defined among cells with KNN method (FindNeighbors, top

30 PCs were selected), and cells were then grouped with

Smart Local Moving (SLM) algorithm (FindClusters in Seurat,

resolution equal to 0.5). Uniform manifold approximation and

projection (UMAP) through RunUMAP function was used to

visualize clusters with representative markers (Becht et al., 2018).

Gene expression was visualized through the Seurat functions

(Vlnplot, DotPlot, heatmap and FeaturePlot), respectively.

Differential gene expression (DEG)
analysis

FindMarker function in Seurat with the default Wilcoxon’s

rank-sum test was used for DEGs between sex analysis (Hao et al.,

2021). DEGs for scRNA-seq data were selected based on cutoff

avg_logFC of 0.25, and at least 25% of cells expressed the markers.

Weighted gene co-expression network
analysis (WCGNA)

The genes depending on sex were explored by WCGNA

analysis that was adapted from our previous study (Nguyen

et al., 2021). Briefly, the value of the gene was used as an input

for the analysis implemented in theWGCNA package (Zhang and

Horvath, 2005). Detection of hub genes was based on the highest

value of the gene significance (GS) (Wang et al., 2020), module

membership (MM), and intramodular connectivity (K.in). The
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FIGURE 1
Compositions of hiPSC lines. (A) Sixmajor repositories account for a total of 3,787 hiPSC lines included in this study. (B)Distribution of races and
ethnicity of hiPSC lines. (C)Distribution of diseases or organ sources of hiPSC lines. (D) Proportions of races/ethnicities in hiPSCs of different diseases
or organ sources. (E) Proportions of different diseases or organ sources in each race/ethnicity. (F) Proportions of sexes in hiPSCs of different races/
ethnicities. (G) Proportions of race/ethnicity in hiPSCs of the female, male, or other (or unidentified) sex. AIAN, American Indian or Alaska Native;
NHPI, Native Hawaiian or Other Pacific Islander.
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overlap of WCGNA hub genes with GS > 0.2 andMM > 0.5 in the

best module and DEGs were selected as potential hub genes (Pol

et al., 2017; Wu et al., 2021a). In summary, this method helped

improve prediction and reduce dimensional issues.

Gene-drug interaction analysis

The drug-gene interaction database (DGIdb) was used to

discover potential drugs that interact with the top ten hub genes

between sex single cell analysis. CYTOSCAPE software (Ver.

3.9.1) was used for drug-gene network visualization.

Results

Different races/ethnicities present with
organ diseases

We analyzed the state of the diversity of iPSC repository

regarding sex, ethnic group, and targeted disease types. In the

seven hiPSC banking repositories available in the United States

(US) and Europe, a total of 5,120 lines were accounted for at the

time of writing this report. We analyze NYSCF’s 1,333 line

separately given the limited information from the provider

(Supplementary Material). There were 3,787 hiPSC cell lines

banked by the other 6 repositories, on which we performed

more detailed analysis (Figure 1A). Among the available

hiPSCs, more than a half were from male donors (male:

53.16% (n = 2013 hiPSC lines); female: 42.2% (n = 1,598);

and others (not reported or abnormal): 4.6% (n = 176). In terms

of race/ethnicity, the White cohort made up 56.2%, the other

cohort accounted for about one-tenth of the total, and the

unidentified (labeled “Other”) donors accounted for 31.2%

(Figure 1B). About one-fourth of the hiPSCs were derived

from healthy (normal) donors. And for hiPSCs in disease/

organ types, neuronal disease was the major group (36.1%),

followed by cardiovascular (12.3%), lung (7.26%), pancreatic

(5.15%), eye (3.78%), and liver-related (3.59%); and those

derived from blood, skin, skeletal muscle, kidney, intestine,

and cancer, accounted for a minor faction so far (Figure 1C).

And within disease/organ types of each race/ethnicity or vice

versa, there were different levels of diversity (Figures 1D, E). It

is worth noting that among the 21 Native Hawaiian or Other

Pacific Islander (NHPI) hiPSCs, the majority were subjects with

cardiovascular disease and diabetes.

Different sexes present with unique races/
ethnicities

There were more male hiPSC lines than female hiPSCs

among the available repositories. The comparison within the

races shows the most significant difference between the

American Indian or Alaska Native (AIAN) group and the

Black (African) cohorts. In the AIAN cohort, females

comprised 12.5% of their samples, while males comprised

87.5%. And in the Black cohort, females comprised 31.03%,

males comprised 54.6% and the remaining 14.37% are non-

reported (Figure 1F). We then compared the different races

within each sex cohort. The data showed that in both male

and female groups, the White and the “Other” races comprised

the majority of the samples (Figure 1G). In the female group, the

White group makes up 58.45%, the other makes up 30.41%, and

the other race groups make up the rest. There is a similar trend in

male hiPSCs samples.

Transcriptomics profiles in hiPSCs of
different races and sexes

To compare the molecular signatures of hiPSCs among races,

we utilized the RNA-sequencing data from Mount Sinai Medical

Center’s recent stem cell repository that was relatively balanced,

and composed 4 ethnic groups: Asian (6 females; 4 males), White

(11 females; 9 males), and White-Hispanic (3 females; 6 males)

(Supplementary Figure S1B; Supplementary Table S1) (Schaniel

et al., 2021). The comparisons between White and Asian showed

56 molecular signatures that significantly differed in combined

male and female RNA-seq data (Figure 2A). Between the male

and female hiPSCs from this repository, there are 21 DEGs

(Figure 2B). Gene Ontology and KEGG pathway enrichment

analysis revealed that these DEGs converge to a variety of

molecular functions, cellular components, and biological

processes (Supplementary Table S2; Supplementary Figure S2).

Transcriptomics profiles in
cardiomyocytes derived from hiPSCs of
different races and sexes

Cardiovascular disease is the leading cause of death, and

hiPSC-CM models have been used in disease modeling and

therapeutic development. To understand the potential

biological basis of cardiological differences among races

(Mensah et al., 2005; Wadhera et al., 2021), we looked into

the bulk RNA-seq transcriptomics profiles of cardiomyocytes

derived from normal hiPSCs of different races (Schaniel et al.,

2021). Intriguingly, there were 484 DEGs between female and

male White hiPSC-CMs (Figure 2C). Gene Ontology and KEGG

pathway enrichment analysis revealed that these DEGs of

different hiPSC-CMs also converge to a variety of molecular

functions, cellular components, and biological processes

(Supplementary Table S3; Supplementary Figure S3).

Using the Maximum relevance minimum redundancy

(mRMR) algorithm (see Methods), we sorted these DEGs
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based on their Importance Score (Figure 2D). We implemented

several machine learning classifiers and tested the prediction

accuracy of the ten mRMR genes with an accuracy >0.90,
suggesting the novel biomarker potential of the hub genes

related to cardiovascular disease and diabetes

(Supplementary Figure S3B; Supplementary Table S4). The

ten hub genes with the highest importance score of the

mRMR algorithm were used for TF-miRNA-mRNA

interaction network analysis. Notes, for the ten hub genes

from the comparison between White male and female

hiPSC-CMs, we found a sub-regulatory network that

centered on miRs (miR-27, miR-26), and TFs (FOXL1,

NFIC, YY1, USF1, FOXC1, and GATA2), and these

important miRNAs, TFs interact with hub genes (DDX3Y,

FIGURE 2
Differentially expressed genes (DEGs) in hiPSCs and hiPSC-CMs of different races and sexes. (A) Volcanomap DEGs betweenWhite (n= 20) and
Asian (n = 10) using combined male and female hiPSCs. (B) Volcano map DEGs between males (n = 19) and females (n = 18) using White, Asian, and
Hispanic hiPSC datasets. (C) Volcano map of DEGs between White male and females hiPSC-CM (n = 2 for each sex). The x-axis represents the
corrected p-value (scale conversion using logarithm), and the y-axis represents the fold change (log2FC). Each dot in the figure represents a
gene; red or green dots represent genes that are significantly upregulated or downregulated, respectively. (D) Top ten gene importance scores
between White male and White female hiPSC-CMs.
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FIGURE 3
Single-cell transcriptomics differences between cardiomyocytes derived from hiPSC (hiPSC-CMs) of male and female White. (A) The UMAP
projects 19 clusters of cardiomyocytes derived from 2 male and 2 female health hiPSC lines. Each cluster was labeled with an Arabic number. (B)
Volcano map of DEGs between White male and White female hiPSC-CMs. (C) The top five hub genes in the best module significantly related to sex
after WCGNA analysis using single-cell transcriptomics data. ****p < .0001. (D) Drug-genes interaction network derived from the sex-
dependent DEGs in hiPSC-CMs. Drugs are denoted in blue, Drugs-genes interactions are in gray, and genes are in red. (E)GeneOntology Enrichment
analysis of the DEGs. (F) KEGG function enrichment analysis of the DEGs. The abscissa signifies the number of genes enriched in the function, and the
ordinate is the name of the different types, which include molecular function, cellular components, and biological processes.
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EIF1AY, USP9Y, PRKY, TXLNGY, and UTY) (Supplementary

Figure S3C).

Difference of single-cell transcriptomic
profiles in hiPSC-CMs of different sexes

To further show sex as a crucial biological variable at the

transcriptomics level, we analyzed the single-cell RNA-

sequencing (scRNA-seq) data of cardiomyocytes derived from

healthy White male and female hiPSCs of the same repository

(Schaniel et al., 2021). As shown in Figure 3A, several clusters of

hiPSC-CMs are different between males and females, with more

cells in clusters 4, 10, and 13, and fewer cells in clusters 7 and

16 in male hiPSC-CMs compared to female ones. We further

identified the overall DEGs betweenmale and female hiPSC-CMs

and found that genes associated with collagen formation and

extracellular matrix (COL1A1, COL1A2, and COL3A1) are

significantly lower in male hiPSC-CMs (Figure 3B).

To better understand genemolecular related to sex, this study

constructed a gene co-expression network through the WGCNA

R package (Langfelder and Horvath, 2008). We found twelve co-

expression modules (Supplementary Figure S4) that contained

from 37 to 989 genes screened. The most interesting module was

the yellow module (r = −0.37, p < .0001). The genes in the yellow

module overlap with DEGs, which may be potential hub genes

(Figure 3C). GO and KEGG signaling pathway analyses show

that these DEGs are enriched in focal adhesion, extracellular

matrix, and are potentially important in cardiomyopathy

processes (Figures 3E, F). A number of these genes can also

interact with drugs, as revealed by the enriched Drug-Genes

interaction network analysis (Figure 3D). These factors can be

important targets in pathophysiological intervention and

pharmaceutical development. Understanding the differences in

gene expression between the sexes and races would be useful in

developing more specific and effective therapeutics.

Discussion

A large and diverse bank of iPSC is necessary for furthering

biomedical research as these cell lines are used in disease

modeling and pharmaceutical developments. The major hiPSC

repositories state shows low diversity in ethnicity and disease

models, and an imbalance in male and female hiPSC lines. There

is an unequal distribution of iPSCs derived from different

ethnicity. The White cohort makes up more than half of the

total samples and is close to the recent 2021 US Census of 59.3%;

and the next identified race, Black, comprises only a small

fraction, 4.5% which is fewer than the recent 2021

Census estimate for the Black (13.6%). On the other hand, the

“Other” ethnicity accounted for 30.9% of the total repository. As

the repositories included in this analysis are mainly in the U.S.

and Europe, it is expected that the hiPSCs identified with non-

White ethnicity are fewer.

Nonetheless, besides strategically implementing a diverse

ethnicity design in stem cell work, proper identification of

race/ethnicity is essential to improve our knowledge of the

biological basis, e.g., genetic ancestry (race and ethnicity) as

an important factor in biomedical sciences and drug

development (Schaniel et al., 2021). For disease types, the

neural cohort made up the majority of the total hiPSCs

samples. When both parameters are cross-analyzed, this

study found that the White ethnicity comprises the

majority of each disease/organ type except for blood and

intestinal iPSC models. And neural disease models

comprise a large portion of each ethnic group except for

NHPI, who have more cardiovascular and diabetic diseases-

related hiPSC samples. This data shows that there is a large

discrepancy in ethnic groups and disease/organ types for the

hiPSC resources as compared to the populations and the

disease prevalence. This discrepancy may cause an

ethnocentric and organ-centric research interest due to the

different availability of hiPSCs. An active curation for “Other”

ethnic groups [e.g., based on SNP Genotyping (Alexander

et al., 2009)] and diseased organs will better reflect the state of

hiPSC diversity.

The sex comparison shows a slight difference, with more male

hiPSCs in the total repositories. In the sex analysis within each ethnic

group, male samples comprised the majority of each group except

for theNHPI group, which has a 50–50 ratio. And the analysis of the

ethnic composition of each sex shows that the White ethnic group

makes up themajority of each sex. Although this study found a slight

difference in the total samples, when we look at each ethnic group

separately, the difference in sexes is more pronounced. This is

obvious in the American Indian and Alaska Native group, which

is likely due to the low number of hiPSCs. During curation, there

should be an effort to gather samples from both sexes, especially in

the underrepresented ethnic groups.

From our molecular analysis of races, there are more hiPSCs of

the White than of other races. The comparison between the races

shows that non-differentiated hiPSCs are relatively comparable to

each other as evident assessed by fewer DEGs between their

transcriptomes (Figure 2A). Between the two sexes, there were

multiple enriched pathways (Figures 2B, C, and Figure 3;

Supplementary Figures S2B, S3A). The results showing fewer

DEGs in hiPSCs than hiPSC-CMs between the two sexes,

confirming that differentiated cells such as cardiomyocytes show

significant sex-dependent molecular features that can contribute to

pathophysiological differences between male and female hearts.

Nonetheless, male and female pluripotent stem cells differ in

autosomal gene expression as evident by transcriptomics analysis,

albeit their comparable ground state of stemness (Ronen and

Benvenisty, 2014). Cellular sex difference is a key factor in

dimorphic pathophysiology, which is caused by both sex

hormones and chromosomal genotype (Walker et al., 2021), as
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well as sex-dependent different regulations in genomic imprinting

(Arez et al., 2022). Some genes that were differentially expressed

were sex-specific; for example, Zinc Finger Y-linked (ZFY) and

Taxilin Gamma (TXLNGY) (Figure 2). These genes are associated

with gene regulation, acting as transcription factors and

transcription inhibitors. Their function is not well defined in

gene regulation, which makes it potential targets for future

studies. We also found the Wnt pathway being more enriched in

the male group (Supplementary Figure S2B). The Wnt pathway is

widely associated with cell fate during embryonic development

which could explain the differing transcriptomes. In addition, it

was found that sex plays a large biological role in the development of

central nervous system disorders due to the differences in gene

expression (Kiris, 2022). This difference in transcriptome is also

found in myeloid cells when iPSC were used as a model for

Alzheimer’s (Coales et al., 2022). As stem cells are increasingly

being used in modeling human cell development and disease

processes as well as in clinical interventions (Tang et al., 2022)

further investigation of the physio-pathological significance will help

guide biomedical research and therapeutic development that are

inclusive of ethnicity and sex.

There are some limitations in this study such as the large

population of other/unidentified samples. We also recognize that

the repositories included in this analysis were only at our extent of

getting the American and European ones. In addition to those

included in the full cross-matrix analysis (Figure 1), we received

hiPSC repository data from New York Stem Cell Foundation for

limited analysis, which shows similar level of a lack of diversity

(Supplementary Figure S5). Future attempt should include the

analysis of hiPSC repositories of other regions. In addition, the

analysis is based on the assumption that hiPSCs have comparable

stemness, and cardiac differentiation from hiPSCs of each line is

equally efficient.While the sample sizes in transcriptomics analysis for

each race and sex may be small, the data in hiPSC-CMs (bulk RNA-

seq, and scRNA-seq) and hiPSCs suggested the differences are very

plausible. Non-etheless, we could not exclude the possibility that any

residual epigenetic backgrounds from the source tissues (cells) for

hiPSC lines affect transcriptomes of their derived cardiomyocytes even

if they present comparable functions (Xu et al., 2012). Lastly, while our

transcriptomics analysis showed that DEGs between hiPSCs and their

derived CMs can be protein-coding or non-coding (e.g. long non-

coding RNA; Figure 2C; Supplementary Figure S3C), analysis at

protein level difference will reveal better patterns that closely reflect

functional differences between stem cells and differentiated cells of

different races and sexes.

In conclusion, the data shows current iPSC banks in North

America and Europe lack diversity with respect to ethnicity, sex, and

disease/organ modeling. Active curation of hiPSC lines and

obtaining more samples from different organ types and

unrepresentative ethnicities will increase the diversity of the

repository. This shall close the gap of diversity in stem cell

research and enhance the precision designs in disease modeling

and pharmaceutical developments.
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