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Orbital and eyelid disorders affect normal visual functions and facial

appearance, and precise oculoplastic and reconstructive surgeries are

crucial. Artificial intelligence (AI) network models exhibit a remarkable ability

to analyze large sets of medical images to locate lesions. Currently, AI-based

technology can automatically diagnose and grade orbital and eyelid diseases,

such as thyroid-associated ophthalmopathy (TAO), as well as measure eyelid

morphological parameters based on external ocular photographs to assist

surgical strategies. The various types of imaging data for orbital and eyelid

diseases provide a large amount of training data for network models, which

might be the next breakthrough in AI-related research. This paper

retrospectively summarizes different imaging data aspects addressed in AI-

related research on orbital and eyelid diseases, and discusses the advantages

and limitations of this research field.

KEYWORDS

artificial intelligence, deep learning, orbital and eyelid diseases, ophthalmic plastic
surgery, orbital computed tomography, orbital magnetic resonance imaging

Introduction

Artificial Intelligence (AI) simulates and extends human intelligence, and has been

hailed as “the Future of Employment” (Yang et al., 2021). Long before the mid-twentieth

century, the British scientist Alan Turing first predicted that machines could become

intelligent (Li et al., 2019), and in 1956, McCarthy introduced “AI” at the Dartmouth

Conference (Dzobo et al., 2020). At the time, “AI” was actualized via a static computer

program that controlled a machine, which is unlike the AI we currently know (Mintz and

Brodie, 2019). In 1959, Samuel developed the theory of AI and proposed “machine

learning (ML)” (Finlayson et al., 2019), which denotes the capability of a computer to

learn by itself without explicit program instructions (Nichols et al., 2019). In ML large

amounts of data are analyzed to make predictions on real-world events using supervised

and unsupervised algorithms. ML has spawned variants such as conventional machine

learning (CML) and deep learning (DL) (Brehar et al., 2020; Ye et al., 2020). DL has

exhibited a remarkable ability to analyze high-dimensional data with multiple processing

layers, gradually becoming the mainstream of ML modeling (Finlayson et al., 2019). In

particular, DL-based technologies display excellent abilities to extract image features and
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associate various types of data, which plays an active role in the

automatic recognition of image, sound, and text data (Cai et al.,

2020). Ting et al. (2017) reported that AI could automatically

diagnose diabetic retinopathy from more than 100,000 retinal

photographs. In recent years, DL has gradually become a new

tool in the automatic diagnosis of glaucoma and cataracts (Lin

et al., 2019; Wu et al., 2019; Wang et al., 2020a; Girard and

Schmetterer, 2020). Some commercial software applications

related to DL are used to assist in the diagnosis of retinal

diseases in clinical practice (van der Heijden et al., 2018;

Girard and Schmetterer, 2020).

Imaging data, including orbital computed tomography (CT),

orbital magnetic resonance imaging (MRI), and external ocular

photographs, play a crucial role in the diagnosis and treatment of

orbital and eyelid diseases (Bailey and Robinson, 2007; Abdullah et al.,

2010). Currently, AI automatically diagnoses and grades some orbital

and eyelid diseases, such as orbital blowout fractures and thyroid-

associated ophthalmopathy (TAO) (Li et al., 2020; Song et al., 2021a).

Automatic measurement of eyelid morphological parameters and

automatic surgical decision-making based on AI technology are

two recent research hotspots (Bahceci Simsek and Sirolu, 2021;

Chen et al., 2021; Lou et al., 2021; Hung et al., 2022). Compared to

traditional medical models, AI can rapidly analyze large sets of patient

data, achieving healthcare cost savings and assisting in the construction

of teleconsultation platforms (Bi et al., 2020). Automatic measurement

of eyelid morphological parameters based on AI technology could

correct artifactual errors to maintain objectivity and repeatability in

patient data evaluation, whichmight be a new tool in the assessment of

oculoplastic surgery (Lou et al., 2021). However, because of the small

amount of standard imaging data and the imbalance in categories,

ensuring a highly-efficient algorithm training is still a challenge. In

addition, the development of methods for obtaining high-quality

imaging data of orbital and eyelid diseases should also be considered.

In this paper, we comprehensively review the application of AI-

based technology to the diagnosis and treatment of orbital and eyelid

diseases by analyzing various types of image data. The advantages and

limitations of AI in this field are also discussed to explore its potential

targets in detecting and treating orbital and eyelid diseases.

What is artificial intelligence?

AI is a branch of computer science, in which “artificial” indicates

that the systems are man-made and “intelligence” denotes features

such as consciousness and thinking (Thrall et al., 2018). The major

purpose of AI is to simulate human thinking processes by learning

from existing experiences to solve problems that cannot be solved

through traditional computer programming (Bischoff et al., 2019).ML

is a subset of AI that has become the mainstream of AI technology

(Shin et al., 2021). ML extracts and analyzes the features of input

samples to classify new homogeneous samples (Totschnig, 2020). ML

automatically improves and optimizes computer algorithms and

programs by analyzing the data rather than relying on explicit

program instructions (Nichols et al., 2019; Cho et al., 2021).

Among the various ML models that have emerged, neural

networks simulate the synaptic structure of human neurons and

improve the computational ability of ML by adjusting the parameters

of network models (Starke et al., 2021). Convolutional neural

networks (CNNs), which have an encoding structure similar to

that of visual cortical neurons (Hou et al., 2019), have become one

of themost popular neural networkmodels (Mintz and Brodie, 2019).

In human vision, each neuron in the visual cortex responds to

stimulation by activating specific regions in the visual space that form

the entire visual field (Figure 1) (Brachmann et al., 2017). Similarly,

CNNs extract features from the input image and output a featuremap

using convolution and pooling operations (Le et al., 2020). A

convolution layer consists of a set of two-dimensional numerical

matrices that are also known as filters. The CNN obtains the pixel

value of the output images by multiplying the value in the filter by the

value of the corresponding pixel in the image and summing the

product, that is, via convolution operations (Brachmann et al., 2017).

To avoid similar sizes of the output pixels after the convolution

operation, the CNN changes the size of the output pixels by reducing

the input values through the pooling operation. By repeating the

convolution and pooling operations, the CNN continuously self-

corrects so that the output values become closer to the human

ratings (Larentzakis and Lygeros, 2021). New neural network

models, such as UNet and ResNet, have been developed to

overcome the difficulty of training CNNs with deep layers. These

neural network models improve the framework of a CNN by

expanding its depth, convolutional layer, or pooling layer. For

example, while traditional CNN models can only classify images

and output the labeling of an entire image, UNet can achieve pixel-

level classification and output the class of each pixel, which makes it

well-suited for image segmentation tasks (Yin et al., 2022). ResNet

solves the gradient vanishing and gradient exploding problems of

traditional CNNs by adding a residual block (He et al., 2020).

To process large amounts of data, multilayer neural networks

have been cascaded to form DL algorithms (Kaluarachchi et al.,

2021). Compared with traditional ML algorithms, DL has a

greater ability to analyze large-scale matrix data (Jalali et al.,

2021). The relationship between AI, ML, and DL is shown in

Figure 2. Currently, DL-based technologies are widely used in the

diagnosis of certain ophthalmic diseases, such as cataracts (Wu

et al., 2019) and glaucoma (Sudhan et al., 2022), and the

segmentation of medical images, including those of retinal

vessels (van der Heijden et al., 2018).

Artificial intelligence technology
applied to orbital computed
tomography/magnetic resonance
imaging images

Orbital CT and MRI are important tools for the diagnosis

and monitoring of orbital and eyelid diseases (Weber and

Frontiers in Cell and Developmental Biology frontiersin.org02

Bao et al. 10.3389/fcell.2022.1069248

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1069248


Sabates, 1996). MRI and CT rely on magnetic fields and radio

wave energy to provide images within the orbit (Russell et al.,

1985; Langer et al., 1987). MRI is suitable for imaging soft tissue,

whereas CT is commonly used to image bony structures (Hou

et al., 2019). CT and MRI images are suitable as training data for

AI-based research as they have less background occupation and

noise (Thrall et al., 2018; Jalali et al., 2021).

Automatic identification and
segmentation of anatomical structures
from orbital computed tomography/
magnetic resonance imaging

Automatic recognition and labeling of anatomical structures of

the eye orbit can be achieved through the segmentation of medical

images based on AI technology (Hou et al., 2019). Furthermore, AI

can segment bony structures from orbital CT/MRI images.

Hamwood et al. (2021) developed a DL system for the

segmentation of bony regions from orbital CT/MRI images that

exhibited excellent efficiency, particularly in terms of computational

time. Li et al. (2022a) extracted bony orbit features and analyzed

Asian aging characteristics through the popular deep CNN (DCNN)

model. Some commercial software can also automatically segment

orbital regions fromCT images (Hamwood et al., 2021). In addition,

using AI-based technology, irregular soft tissues, such as fat and

abscesses, have been reliably segmented from orbital CT/MRI

images. Brown et al. (2020) used a UNet-like CNN to segment

orbital septal fat from orbital MRI images, and the results showed

that AI segmentation was consistent with manual segmentation. Fu

et al. (2021) trained and evaluated a context-aware CNN (CA-CNN)

to segment orbital abscess regions from CT images of patients with

orbital cellulitis, with the AI results being similar to those obtained

by medical experts.

In addition, AI can automatically quantify certain anatomical

structures based on image segmentation. Umapathy et al. (2020)

FIGURE 1
(A) Human visual feedback pathway. (B) Neural network structure framework mimics the human neural network. (C) The convolution process
performs a linear transformation at each position of the image and maps it to a new value. (D) Pooling is a computational process that reduces the
data size. The commonly used pooling methods are max pooling and average pooling.

FIGURE 2
Machine learning is a subset of artificial intelligence. Deep
learning has revolutionized the machine learning field in the past
few years. It is now widely used in image recognition, voice
recognition, etc.
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established an MRes-UNet model to segment and quantify the

volume of the eyeball based on orbital CT images. Pan et al.

(2022) achieved automatic calculation of the size and height of

the bony orbit regions using a U-Net++ based on pre-3D images

reconstructed from orbital CT images.

Automatic diagnosis and grading of orbital
and eyelid diseases based on orbital
computed tomography/magnetic
resonance imaging images

Orbital CT/MRI images are crucial in the preliminary

diagnosis of orbital diseases such as orbital wall fractures,

orbital tumors, and TAO (Griffin et al., 2018). Orbital

blowout fractures are one of the most common injuries

caused by orbital trauma. Li et al. (2020) used the Inception

V3 DCNN to automatically classify CT images exhibiting orbital

burst fractures. Song et al. (2021a) proposed a 3D-ResNet to

automatically detect TAO from orbital CT images, and the

trained AI algorithm showed excellent performance in a real

clinical setting. Lin et al. (2021) used a DCNN to grade TAO

based on orbital MRI images, resulting in a labeling of disorder

areas that was consistent with that made manually through an

occlusion test. Hanai et al. (2022) developed a deep neural

network to assess the enlarged extraocular muscles (EEM) of

patients with Graves’ ophthalmopathy (GO) from orbital CT

images. When applied to the test data, the area under the receiver

operating curve (AUC) was 0.946, indicating that the deep neural

network could effectively detect EEM in GO patients. Lee et al.

(2022) used 288 orbital CT scans from patients with mild and

moderate-to-severe GO and healthy controls to train a neural

network for diagnosing and assessing the severity of GO. The

developed neural network yielded an AUC of 0.979 in diagnosing

patients with moderate-to-severe GO. Han et al. (2022)

automatically identified the differences in the orbital

cavernous venous malformations (OCVM) from orbital CT

images by training 13 ML models, including support vector

machines (SVMs) and random forests. Nakagawa et al. (2022)

implemented a VGG-16 network to determine from CT images

whether a nasal or sinus tumor invades the periorbital area. The

network model achieved a diagnostic accuracy of 0.920,

indicating that CNN-based DL techniques can be a useful

supporting tool for assessing the presence of orbital

infiltration on CT images.

In addition to diagnosing and grading diseases, AI can extract

and determine subtle features from images to differentiate

confusing diseases. Orbital cavernous hemangioma and

schwannoma differ in terms of surgical strategy but have

similar MRI features. Bi et al. (2020) developed a database of

orbital MRI images of patients with cavernous hemangioma and

schwannoma from 45 hospitals in China and used AI to identify

and classify the affected eye, tumor location, and tumor category.

The AI system was validated, showing an accuracy greater than

0.900 on a multicenter database. Xie et al. (2022) developed a DL

model that combines multimodal radiomics with clinical and

imaging features to distinguish ocular adnexal lymphoma (OAL)

from idiopathic orbital inflammation (IOI). The diagnosing

results yielded an AUC of 0.953, indicating that the DL-based

analysis may successfully help distinguish between OAL and IOI.

Hou et al. (2021) used an SVM classifier and the bag-of-features

(BOF) technique to distinguish OAL from IOI based on orbital

MRI images. During an independent verification test, the

proposed method with augmentation achieved an AUC of

0.803, indicating that BOF-based radiomics might be a new

tool for the differentiation between OAL and IOI. Early

detection of hypothyroid optic neuropathy (TON) is crucial in

clinical decision-making. Wu et al. (2022) built an AI predictive

model to distinguish between TAO and TON by extracting

radiomic features from optic-nerve T2-weighted water-fat

images from a cohort of patients with TAO and a cohort of

patients with TON. Table 1 summarizes the discussed AI-related

studies on orbital CT/MRI images.

Artificial intelligence technology
based on external ocular
photographs

Owing to features such as easy and convenient delivery and

storage, external ocular photographs are unique imaging data for

diagnosing orbital and eyelid diseases. External ocular

photographs show abnormalities and deformities in the orbital

and eyelid appearance caused by trauma, tumors, inflammation,

and other factors (Fukuda et al., 2005). With the development of

face recognition technology, AI could locate and extract ocular

information from faces, which lays the foundation for AI

research based on external ocular photographs.

Automatic measurements of eyelid
morphologic parameters from external
ocular photographs

The accurate measurement of eyelid morphological

parameters is crucial in developing an individual eyelid

surgery strategy. However, manual measurement of eyelid

morphological parameters is difficult to replicate because of

subjective errors induced by head movements and changes in

facial expressions. AI provides a more objective and convenient

tool for quantifying eyelid morphological parameters by

parameterizing facial structures and automatically measuring

length, area, and volume. Moriyama et al. (2006) achieved eye

motion tracking based on the eyelid structure parameters and iris

position. Van Brummen et al. (2021) utilized a ResNet-50 model

to segment regions, such as the iris and eyebrow, to measure the
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TABLE 1 AI-related studies utilizing orbital CT/MRI images.

Authors Study goals Imaging data
type

Dataset Network model Accuracy AUC Dice

Hamwood
et al. (2021)

Segmentation of the bony
orbital regions

Orbital CT and
MRI images

Training set (n =
443 slices). Test set
(n = 363 slices)

Two full convolutional
neural networks
(CNNs) in series
followed by a graph-
search method

— — Dice (CT images) =
0.813 and 0.975.
Dice (MRI
images) = 0.930 and
0.995

Li et al.
(2022a)

Analysis of Asian aging
characteristics by extracting
features of the bony orbit

Orbital CT
images

595 people UNet 0.979 (Male)
and 0.992
(Female)

— —

Brown et al.
(2020)

Segmentation of orbital
septal fat

Orbital MRI
images

1,018 scans from
256 participants

UNet-like CNN — — —

Fu et al.
(2021)

Segmentation of orbital
abscess regions

Orbital CT
images

67 patients Context-aware CNN
(CA-CNN)

— — Dice = 0.780.
Jaccard = 0.120.
Hausdorff = 0.650

Umapathy
et al. (2020)

Segmentation and
quantification of eyeball
volume

Orbital CT
images

80 patients MRes-UNet — — Dice = 0.940

Pan et al.
(2022)

Segmentation of the bony
orbit regions

Orbital CT
images

595 Chinese people UNet — — IoU = 0.954

Li et al.
(2020)

Classification of orbital CT
images with orbital blowout
fractures

Orbital CT
images

94 patients and
94 normal people

Inception V3 deep
CNN (DCNN)

0.920 0.957 —

Song et al.
(2021a)

Detection of patients with
thyroid-associated
ophthalmopathy (TAO)

Orbital CT
images

193 patients and
715 normal people

3D-ResNet 0.870 0.919 —

Lin et al.
(2021)

Grading of TAO disease Orbital MRI
images

160 patients (80% for
training, 20% for
testing)

DCNN 0.863 0.922 —

Hanai et al.
(2022)

Assessment of the enlarged
extraocular muscles of
patients with Graves’
ophthalmopathy

Orbital CT
images

371 participants — 0.946 —

Lee et al.
(2022)

Diagnosis and severity
assessment of Graves’
ophthalmopathy

Orbital CT
images

288 cases; 80% for
training and 20% for
testing

A developed CNN. Moderate-to-
severe GO:
0.930 mild GO:
0.826

0.979
0.895

—

Han et al.
(2022)

Distinguishing orbital
cavernous venous
malformations

Orbital CT
images

215 patients with
OCVM and 96 non-
OCVM patients

13 ML models — — —

Nakagawa
et al. (2022)

Determination of whether a
tumor invades the
periorbital area in a nasal or
sinus tumor

Orbital CT
images

Training set (n = 119).
Test set (n = 49)

Pre-trained CNN
algorithm devoted to
image classification

0.920 0.940 —

Bi et al.
(2020)

Identification and
classification of the affected
eye, tumor location, and
tumor category

Orbital MRI
images

11,489 images of
cavernous
hemangioma and
3,478 images of
schwannoma

RCNN ResNet-101 0.911 0.954 —

Xie et al.
(2022)

Distinguishing ocular
adnexal lymphoma (OAL)
from idiopathic orbital
inflammation (IOI)

Orbital CT
images

OAL (n = 39) and IOI
(n = 50)

VGG-16 0.920 0.953 —

Hou et al.
(2021)

DifferentiatingOAL and IOI Orbital contrast-
enhanced MRI
(CE-MRI)

IOI (n = 28 patients)
and OAL (n =
28 patients)

Support vector
machine (SVM)

— 0.803 —

Wu et al.
(2022)

Distinguishing hypothyroid
optic neuropathy from TAO
patients

Orbital MRI
images (optic-
nerve T2-
weighted water-
fat images)

Training set (n = 163).
Test set (n = 72)

Radiomics nomogram — Test set:
0.880 vs.
0.750

—
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marginal reflex distance (MRD) in static and dynamic external

ocular photographs. Simsek and Sirolu used computer vision

algorithms to automatically measure pupillary distance (PD), eye

area (EA), and average eyebrow height (AEBH) from external

ocular photographs for evaluating the surgical effect of patients

who had undergone Muller’s muscle-conjunctival resection

(MMCR) surgery (Bahceci Simsek and Sirolu, 2021). The

automated measurement of eyelid morphology parameters

based on AI technology helps assess eyelid status and

improves the accuracy of eyelid surgery.

Compared with other types of imaging data, external ocular

photographs can be taken and shared by patients and physicians

through smartphones and the internet, which provides sufficient

data for AI research on external ocular photographs. Chen et al.

(2021) compiled CNN algorithms using the software MAIA to

build DL models for the automatic measurement of MRD1,

MRD2, and levator muscle strength based on external ocular

photographs taken with smartphones. This study was the first

smartphone-based DL model for the automatic measurement of

eyelid morphological parameters. Compared to those obtained

manually, measurements taken with the aid of AI are more

objective.

Ptosis is a common eyelid disorder in which a drooping

eyelid obscures the pupil, hindering vision in severe cases.

Ptosis is generally diagnosed by measuring eyelid

morphological parameters, such as the levator muscle

strength, lid fissure height, and limbal reflex distance,

based on typical clinical symptoms. Surgical therapy is the

main treatment for ptosis (Mahroo et al., 2014). Tabuchi

et al. (2022) performed an automatic diagnosis of ptosis

using a pre-trained MobileNetV2 CNNi applied to photos of

patients taken with an iPad Mini. Hung et al. (2022) realized

the automatic identification of monocular appearance

photos of ptosis patients based on a VGG-16 neural

network, and the results showed that AI outperformed

GPs in diagnosing ptosis. Combined with devices such as

smartphones, the analysis of eye appearance based on AI can

be useful in further clinical scenarios. AI provides an

objective tool for measuring eyelid morphological

parameters and planning surgery strategies instead of

relying on the experience of surgeons. Song et al. (2021b)

developed a gradient-boosted decision tree (GBDT) for

choosing ptosis surgery strategies and trained it with 3D

models created by photographing and scanning the eyes of

ptosis patients with a structured light camera. The AI model

evaluates the external ocular photographs and the 3D model

to determine whether surgery is required and establish the

surgery strategy to follow. Lou et al. (2021) evaluated the

outcome of ptosis surgery by comparing pre- and

postoperative values of eyelid morphological parameters,

such as MRD1 and MRD2, which were automatically

measured by a UNet from ocular appearance photographs

of the patients.

Artificial intelligence diagnosis and
prediction based on external ocular
photographs

Oculoplastic surgery involves the aesthetic restoration and

predicting postoperative outcomes through AI can help the

surgeon develop a personalized plastic surgery plan. The major

purpose of oculoplastic surgery is to realize the expected aesthetic

goals. However, it is hard to judge the expected aesthetic results due to

a variety of subjective factors (Swanson, 2011). Establishing an

objective facial beauty standard is still controversial. Zhai et al.

(2019) proposed a new facial detection method based on a transfer

learning CNN, which has better classification accuracy than previous

geometric assessment methods, laying a foundation for the prediction

of oculoplastic surgery effects. Yixin et al. explored the effect of the

eyelid on oculoplastic surgery and aesthetic outcomes by comparing

the postoperativemetrics of oculoplastic patients assessed by the CNN

model with those assessed only artificially. The CNN assessment

group had better postoperative extent, lower eyelid skin wrinkles,

eyelid tear troughs, skin shine, and aesthetic scores than the control

group, suggesting that CNN is a beneficial tool for evaluating

oculoplastic surgery (Yixin et al., 2022).

Eyelid and periocular skin tumors seriously affect the health and

aesthetics of patients (Silverman and Shinder, 2017). Early preliminary

screening through external photography helps detect and monitor

these tumors. Seeja and Suresh (2019) trained aUNet to automatically

segment skin lesions and differentiate melanoma from benign skin

lesions, achieving reliable results in the segmentation and diagnosis of

melanoma. Li et al. (2022b) used a faster region-based CNN and a DL

classification network to build an AI system that automatically detects

malignant eyelid tumors from ocular external photographs, obtaining

positive performance on both internal and external test sets (AUC

ranging from 0.899 to 0.955). CNNs could fully mine image

information and distinguish deep features from external

photography to detect subtle eyelid and skin tumors that are

elusive to the naked eye, thus helping reduce misdiagnosis and

missed diagnosis.

Changes in ocular appearance, such as retraction of the upper

eyelid, strabismus, and proptosis, are crucial in the diagnosis of TAO

(Hodgson and Rajaii, 2020). Huang et al. (2022) used the ResNet-50

model to obtain an automatic diagnosis of TAO based on external

ocular photographs. Karlin J et al. (2022) developed a DL model for

detecting TAO based on external ocular photographs. A set

comprising 1944 photographs from a clinical database was used

for training, and a test set of 344 additional images was used to

evaluate the trained DL network. The accuracy of the model on the

test set was 0.892, and heatmaps showed that themodel could identify

pixels corresponding to the clinical features of TAO. Orbital

decompression surgery can alleviate the symptoms of eye

protrusion and repair the appearance of patients with TAO.

According to the 2021-EUGOGO guidelines, orbital

decompression surgery is the recommended treatment strategy for

patients with severe TAO (Smith, 2021). Yoo et al. (2020) trained a
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conditional generative adversarial network (GAN) using pre- and

postoperative external ocular photographs of patients with orbital

decompression. The trained GAN could convert the preoperative

external ocular photographs into predictive postoperative images,

which were similar to the real postoperative condition, suggesting

that GAN might be a new tool for the prediction of oculoplastic

surgery results. Table 2 summarizes the aforementioned AI-related

studies on external ocular images.

Artificial intelligence-based
techniques using other image data
types

Tear spillage is a major symptom of lacrimal duct obstruction

(LDO), and its incidence in rural areas is gradually increasing

(Brendler et al., 2013). The use of anterior segment optical

coherence tomography (AS-OCT) to assess the tear meniscus

is considered a more objective non-invasive diagnostic

procedure. Imamura et al. used DenseNet-169 and pooled

DL models (VGG-16, ResNet-50, DenseNet-121, DenseNet-

169, Inception ResNet-V2, and Inception-V3) to detect

patients with LDO from AS-OCT images. The trained

network models exhibited remarkable reliability in

marking the areas of the tear meniscus (Imamura et al.,

2021).

Pathological examination is the gold standard for diagnosing

the nature of ocular tumors. However, traditional pathological

examination results are influenced by the experience of the

physician, which takes a large amount of time from specimen

submission to result confirmation (Heran et al., 2014). AI is not

influenced by subjective factors and can process a large number

of specimens in a short time. Wang et al. (2020b) used AI

technology to automatically diagnose malignant melanoma of

the eyelid from pathological sections. They also developed a

random forest model to grade tumor malignancy, suggesting that

TABLE 2 AI-related studies utilizing external ocular images.

Authors Study goals Imaging
data
type

Dataset Network model Accuracy AUC

Moriyama et al.
(2006)

Eye motion tracking External ocular
images

— Generative eye region
model

— —

Van Brummen
et al. (2021)

Segmentation of regions such
as iris and eyebrow

Photographs of
periorbital areas

418 images ResNet-50 — —

Bahceci Simsek
and Sirolu,
(2021)

Evaluation of postoperative
changes

Full-face
photographs

55 patients DLIBML toolkit — —

Chen et al.
(2021)

Measurement of eyelid
paraments

External ocular
images

411 participants MAIA software — —

Tabuchi et al.
(2022)

Classification of images taken
with a tablet device of patients
with blepharoptosis diagnosis

Eyelid images 1,276 images Pre-trained
MobileNetV2 CNNi

0.828 0.900

Hung et al.
(2022)

Identification of monocular
appearance photos of ptosis
patients

External ocular
images

782 images VGG-16 0.90 0.987

Song et al.
(2021b)

Determination of the choices of
ptosis surgery strategies

External ocular
images

152 eyes Gradient-boosted
decision tree (GBDT)

0.826 0.795

Lou et al. (2021) Evaluation of ptosis surgery
outcome

External ocular
images

103 patients (135 ptotic
eyes)

U-Net (Attention
R2U-Net)

— —

Yixin et al.
(2022)

Exploration of the effect of
eyelid on oculoplastic surgery
and aesthetic outcomes

External ocular
images

64 patients Multichannel CNN 0.988 —

Huang et al.
(2022)

Diagnosis of TAO Facial images 3,120 eyes ResNet-50 U-Net Eye location: 0.980.
Cornea: 0.930. Sclera
segmentation: 0.870

Over 0.850

Li et al. (2022b) Automatic detection of
malignant eyelid tumors

External ocular
images

Development set (n =
1,258). External test set
(n = 309)

Faster-RCNN — AUCs ranged
from 0.899 to
0.955

Karlin J et al.
(2022)

Detection of thyroid eye disease External ocular
images

Training set (n = 1994).
Test set (n = 344)

ResNet-18 0.892

Yoo et al.
(2020)

Synthesis of realistic
postoperative appearance for
orbital decompression surgery

External ocular
images

500 preoperative images
and 500 postoperative
images

Generative adversarial
network (GAN)

— 0.957
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AI may be a future tool for the rapid screening and grading of

tumor pathology.

Jiang et al. (2022) proposed a DL framework for the

automatic detection of malignant melanoma (MM) of the

eyelid based on self-supervised learning (SSL). The framework

consisted of a self-supervised model for detecting MM regions at

the patch level and another model for classifying lesion types at

the slide level. Considering that the differential diagnosis of basal

cell and sebaceous carcinomas of the eyelid is highly dependent

on the experience of the pathologist, Luo et al. (2022) proposed a

fully automated differential diagnostic method based on whole

slide images (WSIs) and DL classification, achieving an accuracy

of 0.983 for the trained network model.

In addition, AI-decision models can be established based on

various types of patient information. Song et al. (2022) trained an

ML model using a database that contained both ocular surface

characteristics and demographic information (gender, age) of

patients with lacrimal sacculitis. Tan et al. (2017) established an

alternating decision tree to predict the risk of reconstructive

surgery after eyelid basal cell carcinoma (pBBC) resection which

provides a new prediction model based on a database with

various patient information.

Discussion

The acquisition and analysis of imaging data are crucial in the

treatment of orbital and eyelid diseases. In this paper, we discuss

the advantages and limitations of AI technology for diagnosing

orbital and eyelid diseases by analyzing the different

characteristics of image data and the current problems and

potential approaches to promote the development of AI-based

technology in this field.

Orbital and eyelid diseases are primarily caused by

inflammatory (Lutt et al., 2008), metabolic, and traumatic

factors (Li et al., 2020). The anatomy integrity of the orbital

and eyelid not only protects and supports important structures,

such as the eyeball and optic nerve, but is also critical to the

aesthetic appearance of the patient’s face (Huggins et al., 2017).

AI converts traditional medical images into matrix data and

supports clinical decision-making by developing models and

analyzing the matrix data (Mintz and Brodie, 2019). Structural

segmentation of orbital CT/MRI images using AI might assist in

endoscopic and 3D-print surgery and lay a foundation for robotic

surgery (Wang et al., 2022). In addition, the automatic

measurement of eyelid morphological parameters based on

external ocular photographs provides a new tool for

developing individualized eyelid surgical strategies (Bahceci

Simsek and Sirolu, 2021). Thus, AI technology for diagnosing

and treating orbital and eyelid diseases, which remains in its

infancy, has great potential for broad clinical application.

Imaging data play an important role in the diagnosis and

treatment of orbital and eyelid diseases, providing an adequate

source of data for AI training. Non-invasive Orbital CT

examination is easy and fast to perform (Lee et al., 2004).

Orbital MRI examination is free of ionizing radiation damage

and is superior in revealing soft tissue. Compared with MRI

examinations, CT images are noisier (Hamwood et al., 2021).

Therefore, the traditional UNet algorithm is better suited to

training with CT images because it extracts rich feature scales and

can effectively filter local noise (Pan et al., 2022). External ocular

photographs serve as a unique type of imaging data for orbital and

eyelid diseases and provide information for eyelid surgery decisions.

Compared with other types of medical images, external ocular

photographs are non-invasive and can be easily taken by doctors

and patients with smartphones, which breaks the barrier of expensive

image equipment and facilitates the application of AI (Chen et al.,

2021). Furthermore, automatic facial recognition and eye-tracking

technology, which have been widely used in safety inspection,

instrument development, etc., could also be applied to AI research

based on external ocular photographs (Asaad et al., 2020). In addition,

visual field tests, OCT, and CT of the optic-nerve canal also play an

active role in the diagnosis of orbital and eyelid diseases. The

multimodal diagnostic images provide adequate raw datasets for

training AI models and validating their performance.

Although AI analysis of imaging data of orbital and eyelid

diseases has, there are some limitations in its development (Mintz

and Brodie, 2019; Yang et al., 2021). Uneven disease prevalence

and small sample sizes for certain rare diseases cause oversampling

when training AI models for specific types of diseases, resulting in

poor generalization and a lack of adaptability to new data. Several

studies have shown that the category imbalance problem can be

solved by weighting the data differently when computing the loss

function (Liu et al., 2021; Luo et al., 2021). Moreover, the current

AI datasets of orbital and eyelid diseases are generally obtained

from the samemedical institution. However, it is difficult to obtain

standardized data because of the differences in the examination

equipment used by different medical institutions. Image-based AI

research requires large sets of standard, annotated imaging data,

which are still scarce in the case of orbital and eyelid diseases as

compared, for instance, with ImageNet. Transfer learning may

offer a good solution to the lack of imaging data.When obtaining a

large dataset or labeling the data is difficult, learning can be

transferred from a task with sufficient data that is easily labeled

and similar to the target task. Liu et al. (2020) modified ResNet-

152, which was pre-trained on ImageNet, through transfer

learning to classify left and right optic discs with an accuracy of

0.988, thus demonstrating a new solution to the lack of data in

orbital and eyelid diseases. In addition, we can increase the amount

of data through data augmentation by rotating, panning, zooming,

or changing the brightness or contrast of the images. For example,

Song et al. (2021a) performed 200 rotations on the training data for

a CNN to increase the dataset size and reduce overfitting. When

verified, the overfitting of the trained CNN remarkably decreased.

There are also some drawbacks regarding the quality of imaging

data in orbital and eyelid diseases, which have limited the
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development of AI-related research. For example, it is difficult to

obtain standardized orbital CT/MRI images due to the long

scanning time, different equipment, and variable experience of

the operators. Zhai et al. (2021) developed a method based on a

signed distance field for the automatic calibration and quantitative

error evaluation when processing orbital CT images, which

provides a new tool to standardize CT/MRI images. Moreover,

lighting variations prevent high-quality standardized external

ocular photography. To address this problem, some studies

have attempted to model the illumination templates and

establish illumination-invariant algorithms (Li et al., 2007; Lu

et al., 2017), whose main purpose is to make shapes and

textures independent of illumination variations. Lastly, ethical

considerations and patient privacy issues associated with

external ocular photography also require in-depth deliberation.

Overall, although there are still some limitations to the

advance of AI-based research on orbital and eyelid diseases, as

large databases are established and shared and as new neural

networks that more closely resemble biological neurons are

developed, further development of such AI applications is

expected to occur, leading to the next breakthrough in

ophthalmology.

Conclusion

AI technology has a significant potential for application in

the automatic diagnosis and precise quantification of orbital and

eyelid diseases. AI is more objective than manual methods, can

process large amounts of data in a short time, and, thus, could

assist physicians in clinical decision-making and surgical design.

The predictive capabilities of AI may also play an active role in

assessing the outcome of oculoplastic surgery. As computer

algorithms are updated and high-quality datasets become

available, AI will play a broader role in the assessment of

orbital and eyelid disorders in the future.
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