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The only curative therapy for many endstage diseases is allograft organ

transplantation. Due to the limited supply of donor organs, relatively few

patients are recipients of a transplanted organ. Therefore, new strategies are

warranted to address this unmet need. Using gene editing technologies,

somatic cell nuclear transfer and human induced pluripotent stem cell

technologies, interspecies chimeric organs have been pursued with

promising results. In this review, we highlight the overall technical strategy,

the successful early results and the hurdles that need to be addressed in order

for these approaches to produce a successful organ that could be transplanted

in patients with endstage diseases.
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Introduction

Endstage organ failure or acute traumatic injuries are associated with considerable

morbidity and mortality. The only curative therapy for many of these terminal or

devastating diseases is solid organ transplantation (Garry et al., 2005; Virani et al.,

2021). Due to the limited number of organ donors, this curative therapy is available for

only a subpopulation of the patients that need these therapies. For example, it is estimated

that 200,000 to 300,000 American adults would benefit from orthotopic heart

transplantation annually, but only about 3000 adults receive a cardiac transplant

(Virani et al., 2021). This disparity is what drives the pursuit of alternative therapies.

In addition to endstage organ disease such as heart disease, there are traumatic injuries

that threaten limbs and ultimately contribute to volumetric muscle loss (Corona et al.,

2015; Greising et al., 2016). Currently, there are limited treatments for volumetric muscle

loss and thus lead to considerable morbidity, amputations, lifelong disability and loss of

life (Greising et al., 2017). These chronic diseases and traumatic injuries warrant new

therapies.

Technological advancements such as gene editing (Doudna and Charpentier, 2014;

Jinek et al., 2012; Cong et al., 2013) and somatic cell nuclear transfer (SCNT) technologies

OPEN ACCESS

EDITED BY

Jun Wu,
University of Texas Southwestern
Medical Center, United States

REVIEWED BY

Canbin Zheng,
The First Affiliated Hospital of Sun
Yat-Sen University, China
Hiromitsu Nakauchi,
Stanford University, United States

*CORRESPONDENCE

Daniel J. Garry,
garry@umn.edu
Mary G. Garry,
garry002@umn.edu

SPECIALTY SECTION

This article was submitted to
Stem Cell Research,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 09 October 2022
ACCEPTED 17 November 2022
PUBLISHED 08 December 2022

CITATION

Choe Y-h, Sorensen J, Garry DJ and
Garry MG (2022), Blastocyst
complementation and interspecies
chimeras in gene edited pigs.
Front. Cell Dev. Biol. 10:1065536.
doi: 10.3389/fcell.2022.1065536

COPYRIGHT

© 2022 Choe, Sorensen, Garry and
Garry. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Mini Review
PUBLISHED 08 December 2022
DOI 10.3389/fcell.2022.1065536

https://www.frontiersin.org/articles/10.3389/fcell.2022.1065536/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1065536/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1065536/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.1065536&domain=pdf&date_stamp=2022-12-08
mailto:garry@umn.edu
mailto:garry002@umn.edu
https://doi.org/10.3389/fcell.2022.1065536
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.1065536


(Polejaeva et al., 2000; Tian et al., 2003; Galli and Lazzari, 2021)

have now allowed for genetic modification of large animals such

as the pig (Lai et al., 2002; Yamada et al., 2005; Hisashi et al.,

2008; Pierson et al., 2020; Watanabe et al., 2020; Hinrichs et al.,

2021; Reichart et al., 2021) (Figure 1). These genetically modified

pigs have renewed the interest in xenotransplantation but they

also provide a platform for engineering human organs and

nonhuman primate cells (interspecies chimeras) in large

animals (Wu et al., 2016; Garry and Garry, 2019; Fu et al.,

2020; Garry and Garry, 2021). For example, a gene edited pig

served as a donor for the first porcine cardiac

xenotransplantation which was performed early in 2022

(Graham, 2022; Griffith et al., 2022; Shah and Han, 2022).

The recipient of the cardiac xenotransplant survived

approximately 2 months and provides a platform for future

clinical studies using these gene edited nonhuman organs that

would serve as an unlimited organ source for those with terminal

diseases (Griffith et al., 2022).

Here, we provide a review of the studies related to cardiac

xenotransplantation and blastocyst complementation in the

porcine animal model as potential strategies to engineer a

suitable organ for transplantation that will have longterm

function and decreased requirements for immunosuppressive

agents. Additionally, we will highlight the opportunities and the

challenges for each of the strategies with the overall goal of

engineering organs for research opportunities and clinical

treatments.

Cardiac xenotransplantation:
Historical perspective and recent
successes

Xenotransplantation has been examined using an array of

organs including heart, kidney, vasculature, skin, pancreas, islets

and other organs. Alexis Carrel, M.D. was an early pioneer whose

research focused on the surgical repair of the vasculature in the

early 1900s (Carrel, 1907). Carrel used his knowledge of the

vasculature and applied it to the transplant of arteries, veins,

kidneys and hearts (heterotopically), limbs and endocrine glands

(Carrel and Guthrie, 1905; Carrel, 1912; Carrel, 1914). Further,

he focused on tissue preservation and oxygenation of tissues

(Carrel, 1907). Collectively, his studies earned him the Nobel

Prize in 1912 and these studies provided a platform for allograft

transplantation and xenotransplantation (Figure 1).

James D. Hardy undertook the first xenotransplantation

using an undersized nonhuman primate heart into a 68 year

old male patient who had severe vasculopathy and was supported

with mechanical ventilation (Hardy et al., 1964; Cooper, 2012;

Cooper et al., 2015) (Figure 1). While the xenotransplanted heart

was technically successful, the patient expired in the operating

room after 90 min of support, in part, due to the undersized

donor organ and rejection.

There was a considerable hiatus for the field of cardiac

xenotransplantation until Dr. Leonard Bailey at Loma Linda

Hospital undertook a heroic effort by implanting a baboon heart

into the newborn Baby Fae who had hypoplastic left heart syndrome

(Bailey et al., 1985; Stafford, 2019) (Figure 1). Baby Fae survived for

21 days and ultimately the graft failure was secondary to xenograft

rejection (despite the use of immunosuppression agents). These early

studies emphasized the importance of the vasculature which was the

source of hyperacute rejection and chronic rejection of the xenograft.

Emerging technologies began to revolutionize the field. Keith

Campbell and Ian Wilmut’s team at the Roslin Institute

successfully cloned Dolly who lived from 5 July 1996 to

14 February 2003 and whose birth and lifespan was a milestone

for mammalian cloning technology (Campbell et al., 1996; Wilmut

et al., 1997; Wilmut et al., 2007) (Figure 1). Further, the advent of

gene editing (Jinek et al., 2012; Cong et al., 2013; Doudna and

FIGURE 1
Timeline of technologies and advances in the field of solid
organ transplantation. Modified from https://blogs.ubc.ca/
xenotransplantationandethics/sample-page/.
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Charpentier, 2014) and reprogramming technologies (using

Yamanaka factors (Takahashi and Yamanaka, 2006; Takahashi

et al., 2007); provided important platforms for genetically

engineering large animal models such as swine (Figure 1). Using

these technologies, investigators genetically modified domestic pigs

by deleting genes that contributed to hyperacute rejection of the

xenotransplanted organ (α-1,3-galactosyltransferase or GGTA1, β-

1,4-N-acetylgalactosaminyltransferase two or B4GalNT2 andCytidine

monophosphate-N-acetylneuraminic acid hydroxylase orCMAH) and

Growth hormone receptor to prevent xenograft overgrowth (Kolber-

Simonds et al., 2004; Ahrens et al., 2015; Choi et al., 2017; Sykes and

Sachs, 2019; Goerlich et al., 2021; Hinrichs et al., 2021; Reichart et al.,

2021) (Figure 1). Further genetic modifications included transgenic

overexpression of human proteins to decrease cellular injury

(CD47 and Hemoxygenase 1) (Petersen et al., 2010; Ahrens et al.,

2015; Cooper et al., 2018), complement activation (hCD55 and

hCD46) (Fischer et al., 2016) and coagulopathies (human

Endothelial Cell Protein C Receptor and human

Thrombomodulin) (Oropeza et al., 2009; Petersen et al., 2009).

For the most part (with the exception of the Growth hormone

receptor knockout), these genetic modifications targeted the porcine

vasculature as these endothelial antigens have been shown to

promote hyperacute rejection, delayed xenograft rejection,

antibody mediated rejection and chronic xenograft rejection. The

hearts from these gene edited pigs, were xenotransplanted into

baboons in either a heterotopic position (to assess for rejection)

(Lin et al., 1998; Hisashi et al., 2008; Iwase et al., 2015; Goerlich et al.,

2020) or in the orthotopic position (to assess for functional

performance) (Schmoeckel et al., 1998; Waterworth et al., 1998;

Goerlich et al., 2021; Litovsky et al., 2022) (Figure 1). These xenografts

performed well and these preclinical studies served as a platform for

human studies. On 7 January 2022, a patient with endstage heart

failure who was supported by extracorporeal membrane oxygenation

(ECMO) received FDA approval for compassionate care use of a

cardiac xenotransplantation from a gene edited pig (Figure 1)

(Griffith et al., 2022; Pelc and Smiley, 2022; Reardon, 2022). The

cardiac xenotransplant surgical procedure was successful although

the patient had several complications including aortic dissection,

acute kidney injury, thrombocytopenia and infections. The patient

survived approximately 2 months, was the longest living survivor of

cardiac xenotransplantation and was the world’s first human to

receive a porcine heart (Griffith et al., 2022). These efforts have

provided an important platform for other strategies aimed at

engineering organs for transplantation therapies.

The use of miniature swine for the
production of human organs

Miniature swine have been utilized extensively as biomedical

research models of human disease due to their comparable size to

humans, docile behavior, and slower growth curves when

compared to domestic swine (Table 1). Various breeds

including the Hanford (Ho et al., 2010), Sinclair/Hormel/

Minnesota Mini (Misfeldt and Grimm, 1994), Yucatan

(Panepinto and Phillips, 1986) and Gottingen (Khan et al.,

2018) have been bred and each have distinct advantages and

uses (Table 2). The use of miniature swine for the production of

human organs is equally attractive for the reasons cited above but

also for the relatively short gestational times and the ability to use

inbred strains such as MGH defined MHC factors (Sykes and

Sachs, 2019) and where isolation and breeding techniques can

eliminate zoonotic viruses.

SCNT and blastocyst
complementation to produce
exogenic organs

Previous studies have demonstrated that the deletion of genes

to produce a mouse embryo that lacks an entire lineage or organ

can be completely rescued using blastocyst complementation and

pluripotent embryonic stem cells from a different species. For

example, genetic mouse studies demonstrated that the deletion of

Pdx1 (the master regulator for the pancreas) resulted in a mouse

that lacked a pancreas and died early following birth (Offield

et al., 1996). Using blastocyst complementation, the Pdx1mutant

mouse blastocyst was completely rescued using GFP-labeled rat

embryonic stem cells (ESCs) and produced a viable mouse with a

GFP-labeled pancreas (reflecting that all the pancreatic cells were

derivatives of the GFP-labeled rat ESCs) (Kobayashi et al., 2010).

Similarly, blastocyst complementation was undertaken with the

Pdx1 null rat blastocyst and the GFP-labeled mouse ESCs

(Yamaguchi et al., 2017). The resulting rat was viable and had

a GFP-labeled pancreas. These studies demonstrated the

importance of the depleted organ niche, the efficiency and

feasibility of blastocyst complementation and that the host

embryo determined the growth and the size of complemented

organ (i.e. the size of the pancreas which was derived frommouse

ESCs was equal to the size of a rat pancreas and not the size of a

mouse pancreas). These successes provided the rationale for

interspecies complementation using larger animal models.

The first challenge for the field was to define an appropriate

large animal model. Previously, baboons, sheep, cows,

chimpanzees, pigs and others have served as donors or

recipients for xenotransplantation (Crick et al., 1998; Cooper,

2012; Cooper et al., 2015; Sachs, 2017). Each of these large animal

models have their strengths and limitations. Increasingly, the pig

has been used for these types of studies as they have a number of

characteristics including: availability, comparable size to

humans, large litter size, relatively short gestational periods

and they can be housed within barrier facilities and screened

for multiple pathogens. Further characteristics associated with

the porcine animal model are highlighted in Table 3.

The Nakauchi laboratory generated the first large animal

exogenic organ by using blastocyst complementation to deliver
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TABLE 1 Domestic pigs vs. Miniature pigs.

Domestic pigs Miniature pigs

Life span (years) 6–9 10–15

Body temperature (°C) 39.2 ± 0.5 39.2 ± 0.5

Body Weight (kg)

Male 100-300 40-90a

Female 100-300 40-90a

Growth rate Fast Slow

Sexual maturation (months) 7–9 4–5

Estrus cycle (days)

Frequency 18–24 18–24

Duration of estrus 2–3 2–3

Gestation period (days) 112–115 111–114

Litter size 8–15 Mean 6, range 3–12

Breeding period (years) 4–5 6–8

Heart rate (bpm) 60–80 105 ± 7

Blood pressure (mmHg)

Systolic 127 ± 8 128

Diastolic 86 ± 7 80

MAP 79–121 68–118

CO (lpm) 5–5.3 7–7.6

Ease of handling Poor Good (small size and docile temperament)

Genetic background Inbred or crossbred Well characterized

Inbred or closed herd, outbred

aVariable depending on strains. Table compiled from (McKenzie, 1996; Kahn, 2005; Stricker-Krongrad et al., 2016; Bouchard et al., 2019).

TABLE 2 Comparison of various Miniature pig strains.

Parameter Hanford Yucatan Sinclair Göttingen

Life span (year) 10–15 10–15 10–15 10–15

Body temperature (°C) 39.2 ± 0.5 39.2 ± 0.5 39.2 ± 0.5 39.2 ± 0.5

Weight (kg)

2 months 8–11 7–9 7–9 3–6

12 months 60–70 55–60 37–42 26–35

24 months 80–95 70–80 55–70 41–53

Sexual maturation (month) 4–6 4–6 4–6 3–5

Estrus cycle (days) 21 21 21 21

Litter size (average) 6.7 6 7.2 6.5

Heart rate (bpm)

Male 106 ± 20.3 91 ± 19.3 133 ± 41 100 ± 7

Female 104 ± 17.3 92.5 ± 12.2 126 ± 43 92 ± 7

Heart weight (g)a

Male 146.8 ± 27.9 135.9 ± 12.0 63.6 ± 13.2 73.72 ± 5.8

Female 130.8 ± 18.2 121.6 ± 13.3 62.5 ± 10.9 59.76 ± 8.9

Relative heart weighta (average % of body weight)

Male 0.41 0.5 0.43 0.52

Female 0.4 0.47 0.44 0.41

aAbsolute and relative weight of 5–8 month old Hanford, Yucatan, Sinclair miniature pig or 6 month old Göttingen miniature pig. Table compiled from: (Gutierrez et al., 2015; Bouchard

et al., 2019; Stricker-Krongrad et al., 2017).
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allogenic porcine blastomeres to a pancreas disabled porcine

(Matsunari et al., 2013). These studies demonstrated the

generation of functional pancreata in lineage disabled pigs

(Matsurnari et al., 2013). Additionally, the rescue of pigs that

were lacking kidneys (Matsunari et al., 2020), livers (Matsunari

et al., 2020), vasculature and blood (Das et al., 2020) or pancreas/

vasculature/blood (Matsunari et al., 2020) was demonstrated

using allogenic blastocyst complementation (Das et al., 2020;

Matsunari et al., 2020) or with blastocyst complementation of

human cells (Das et al., 2020). These papers provided a platform

for the deletion and rescue of the vasculature and blood (either

alone or in addition to other lineages) within a chimera which

may be essential for the transplantation of an organ without

rejection.

The discovery of hiPSCs (Takahashi and Yamanaka, 2006;

Takahashi et al., 2007) (Figure 1) facilitated the ability to perform

blastocyst complementation using human cells. Accordingly, the

Belmonte laboratory delivered various types of hiPSCs in WT

porcine parthenotes which were, ultimately, delivered to surrogate

animals (Wu et al., 2017). Early stage analysis of these chimeric

embryos revealed that the donor stem cells were localized throughout

the embryo (using lineage specific antisera) (Wu et al., 2017). The

authors concluded that while these technologies were successful, the

efficiency of the chimerism was limited.

Engineering human
hematoendothelial lineages using
blastocyst complementation

Our laboratories targeted master regulators and pioneer

factors that regulated specific lineages and used gene editing

technologies to produce organ depleted porcine embryos that

would serve as recipients for blastocyst complementation of

donor stem cells. Initially, studies focused on the vasculature

as this organ has been shown to harbor cell surface receptors/

proteins that promote hyperacute rejection, antibody mediated

rejection and chronic rejection (Auchincloss and Sachs, 1998;

Sykes and Sachs, 2019). Previous studies using independent

screens identified ETV2 and global deletion of this gene

resulted in nonviable mouse embryos (E8.5-E9.5) that lacked

vasculature and blood (Rasmussen et al., 2012; Rasmussen et al.,

2013; Shi et al., 2014; Shi et al., 2015; Garry, 2016; Gong et al.,

2017; Koyano-Nakagawa and Garry, 2017; Singh et al., 2020).

Additional studies, using zebrafish, xenopus and mice, defined

upstream regulators, downstream regulators and further defined

roles in the regulation of cell proliferation, cell migration (Chan

et al., 2013; Craig et al., 2015; Singh et al., 2017; Gong et al., 2022)

and we have identified ETV2 as a pioneer factor for development

of the hematoendothelial lineage (Gong et al., 2022).

TABLE 3 Characteristics of pigs as a biomedical research model.

Similarity to humans and advantages

General
physiology

Life span Compared to other experimental animals (rodents, dogs), the relatively long life span of pigs allows for long-term
studies.(15–25 years)

Growth rate Growing rapidly until reaching adult human size (6 months) than nonhuman species

Gestation period
(112–115 days)

The short gestation period and large litter size of pigs: good availability (high productivity, low reproduction costs)

Litter size (8-15)

Organ size and function • Similar size, weight and function of pig organs (heart, kidney, skin, GI): benefit for research of surgery training,
drug safety, and xenotransplantation

• Similar metabolism: pigs are widely used for field of toxicology

Cardiovascular system (heart, vasculature) • Similar anatomical size and structure:

• Heart morphology, size, and weight

• Structure of atria and ventricles

• Similar physiological feature

• Coronary circulation pattern

• Hemodynamic parameters and vascular remodeling mechanisms

• Traditional medical material: tissue from porcine hearts has been widely used to develop human heart valve and
blood vessel replacements

Musculoskeletal system Similar femoral bone cross-sectional diameter, area, lamellar bone structure, bone regeneration processes, bone
mineral density, and concentration

Pathogen control • The well-known species-specific pathogen of pig herd and they have been monitored extensively.

• Possible to establish pathogen barrier facilities for pig.

Genome editing Advances in genome editing technologies, such as CRISPR-Cas9, somatic cell nuclear transfer (SCNT), and
interspecies chimera can now be routinely applied

Table compiled from (Cooper., 2012; Garg et al., 2013; Gutierrez et al., 2015; Renner et al., 2016; Swindle and Smith, 2016; Garry and Garry, 2019; Lunney et al., 2021).
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Furthermore, the genetic deletion of the 3.9 kb upstream

fragment of the Etv2 gene, which harbors the promoter and

enhancer modules, phenocopied the global deletion of

Etv2 supporting the notion that this fragment contained all

the regulatory modules for Etv2 gene regulation (Koyano-

Nakagawa et al., 2015). Deletion of ETV2 in the pig also

resulted in the absence of vasculature and blood and the

mutant embryos were nonviable by E16/E17 (Das et al.,

2020). Having established an organ (vasculature) depleted

porcine model, SCNT and blastocyst complementation using

GFP-labeled pig stem cells resulted in the complete rescue of the

ETV2 null phenotype and viable intraspecies chimeric pigs with

GFP-labeled vasculature and blood (Das et al., 2020). These

intraspecies chimeric studies represent an important

accomplishment for interspecies blastocyst complementation.

Two GFP-labeled hiPSCs were delivered into the four to six

cell ETV2 null porcine embryo and these interspecies chimeras

were transferred to surrogate gilts. Analysis of the chimeric

embryos revealed that the hiPSCs rescued the lethal

phenotype and differentiated to the endothelial lineage

(Figure 1) (Das et al., 2020). Importantly, no hiPSCs or

human derivatives were found outside of the

hematoendothelial lineages. These studies demonstrated the

merit for using an organ depleted strategy (to establish a

niche for stem cell homing) in a large animal model. Future

studies will be necessary to examine later embryonic

development of the interspecies chimeras and the production

of a viable human-pig chimera that has a human vasculature.

Engineering human muscle using
blastocyst complementation

Previous studies have demonstrated the essential role of the

basic helix-loop-helix (bHLH) MYOD family members (MYF5,

MYOD, Myogenin and MRF4 also known as MYF6) as master

regulators or fundamental determinants for the myogenic lineage

(Hasty et al., 1993; Rudnicki et al., 1993; Rawls et al., 1995; Rawls

et al., 1998). Elegant studies using the mouse model

demonstrated that these myogenic regulatory factors revealed

functional redundancy (Rawls et al., 1995; Tajbakhsh et al., 1997;

Rawls et al., 1998; Valdez et al., 2000; Kassar-Duchossoy et al.,

2004). Using CRISPR/Cas9 gene editing, porcine fibroblasts were

genetically modified with MYF5/MYOD/MYF6 multiplex

deletions (Maeng et al., 2021) (Figure 2). These mutant

porcine embryos were found to lack myogenic progenitors

and the skeletal muscle lineage. This mutant phenotype was

completely rescued using blastocyst complementation with GFP-

labeled pig stem cells (Maeng et al., 2021). These intraspecies

chimeras were viable, ambulatory and indistinguishable from the

controls. The skeletal muscle from these intraspecies chimeras

was fully developed, labeled with GFP (demonstrating that the

myofibers were derivatives of the exogenous GFP-labeled porcine

stem cells). The chimeric skeletal muscle had a normal fiber type

distribution and satellite cell distribution which were resident

within the muscle. Furthermore, the physiological response to

stimuli were comparable between controls and the intraspecies

chimeras (Maeng et al., 2021). Using blastocyst complementation

and GFP-labeled hiPSCs as donor cells, the interspecies chimeras

were delivered into surrogate gilts and analyzed at two

developmental stages. The analyses of these interspecies

chimeras used wholemount immunofluorescence,

immunohistochemical, sequence analysis (to confirm the

presence of human members of the MYOD family and the

absence of porcine proteins) and PCR techniques (Maeng

et al., 2021). These studies demonstrate that the myotome of

the somite was repopulated with human myogenic progenitors

that expressed human MYOD and human MYF5. Furthermore,

these human myogenic progenitors migrated to the limbs and

formed human skeletal muscle. Importantly, a rigorous analysis

was performed and demonstrated that no human stem cells or

derivatives were located in the brain or the gametes of the

chimeric embryos. Collectively, these studies demonstrated the

benefits of establishing a muscle depleted embryo as a recipient

for engineering the interspecies chimeras (Maeng et al., 2021).

Strategies for enhanced efficiencies
for the generation of interspecies
chimeras

Interspecies chimera production is highly dependent on a

number of factors. One factor is the evolutionary distance

between the donor cells and the recipient embryo. We know

that rat-mouse interspecies chimera formation is relatively

efficient and produces viable offspring following blastocyst

complementation. The evolutionary distance between rat and

mouse species is approximately 25–35 million years (Makalowski

and Boguski, 1998). In contrast, the evolutionary distance

between humans and mice (rodents) is approximately

95 million years (Makalowski and Boguski, 1998). Likewise,

the distance of a common ancestor between humans and pigs

is estimated to be more than 90 million years ago (Wei et al.,

2018). This divergence reflects the genetic similarity between the

respective species. Another factor may be the survival of the

donor cells following blastocyst complementation. Studies

undertaken in several laboratories have demonstrated the

benefit of genetic modification of donor cells to promote cell

survival. For example, stem cells that overexpress B-cell

lymphoma 2 (BCL2) and/or MYCN have shown increased

efficiency of chimera production (Labi et al., 2013; Wang

et al., 2018; Das et al., 2020; Zhu et al., 2022). These studies

demonstrate that programmed cell death related to evolutionary

divergent donor cells is an important factor or barrier. While a

clear benefit has been demonstrated, chronic overexpression of

BCL2 may be associated with a hypercellular state. Alternatively,
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strategies have demonstrated that genetic deletion of TP53 or

Igfr1 in the donor cell population also results in increased

efficiency of interspecies chimera production (Maeng et al.,

2021). This strategy increased the proliferation of the donor

cell population and may facilitate the reprogramming and

integration to the recipient embryo. A third strategy has

focused on enhancement of donor cell-recipient cell

interconnections and communication, metabolic transition,

trophectoderm development and cell surface proteins all of

which have been shown to impact the efficiency of

interspecies chimeras (Zheng et al., 2021). These latter studies

have used single cell RNA-seq to define distinct, species-specific

molecular programs at various times during early embryogenesis

(Gong et al., 2017; Cutter et al., 2019; Das et al., 2020; Lu et al.,

2021; Maeng et al., 2021). These studies further demonstrated the

species-specific link between the metabolic state and epigenetic

and transcriptional gene regulation in the pre-gastrulation

embryo and highlighted targets that may be modified in

future experiments in order to achieve increased efficiency of

primate-porcine chimeras (Theunissen and Jaenisch, 2017; Lu

et al., 2021).

Future studies focused on
interspecies chimeras

While initial studies have engineered human-porcine

chimeras using an organ-depleted strategy in the porcine

recipient, future studies will focus on modifications to

enhance the efficiency of interspecies chimeras.

Establishment of a developmental niche in the recipient,

resulted in successful complementation (Matsunari et al.,

2013; Das et al., 2020; Maeng et al., 2021; Nishimura et al.,

2021) without the contribution of human stem cells or human

derivatives to outside tissues/lineages such as the brain or

gametes (Das et al., 2020; Maeng et al., 2021). Future studies

using other developmental niche strategies and other human

stem cell populations (naïve vs primed vs intermediate

hiPSCs) (Wu et al., 2017) will also need to undertake an

assessment to examine human cell localization (using

immunohistochemistry and PCR) in the embryonic

recipient brain and gametes. These quantitative studies will

add to the study results that have already been published.

Moreover, later stage human-porcine chimeras should be

evaluated and characterized using morphological,

physiological and molecular (scRNA-seq, ATAC-seq, etc.)

techniques to assess developmental progression and the

comparison of the chimeric organ to the porcine organ.

The immunological status and the response of the

recipient animal model to the hiPSCs and their derivatives

should also be evaluated. The absence of an immunological

response by the porcine recipient following blastocyst

complementation using GFP-labeled porcine blastomeres

supports the notion that tolerance is established in the

resulting chimera (Das et al., 2020; Maeng et al., 2021).

Future studies will need to dissect the mechanisms

FIGURE 2
Strategy for generation and transplantation of human organ engineered in pig. Process Step 1: Biopsies are collected from patients to derive
hiPSCs. Process Step 2: Porcine embryonic fibroblasts are gene edited to delete a lineage following which these fibroblasts are cloned to produce
null porcine embryos. Blastocyst complementation is used to deliver patient derived hiPSCs to null embryos following which the complemented
embryos are surgically transferred to a surrogate animal. The offspring of the surrogate develops a human organ to replace the deleted lineage.
These human organs are then harvested and transplanted to the patient. Figure modified from (Garry and Garry, 2021).
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associated with the immunological response or tolerance of

the recipient animal model to the interspecies (i.e. human-

porcine) chimera. The definition of these mechanisms will be

an important advance for the field and serve as a platform for

studies that will examine the impact of these chimeric organs

as a donor supply for patients with chronic and terminal

diseases.

Conclusion

More than 100,000 Americans are awaiting solid organ

transplantation and are on the national transplant waiting list.

Many more adults could benefit from such curative therapies but

due to limited number of donor organs such therapy is not

broadly available. Using gene editing technology primarily aimed

at the genetic modification of the porcine vasculature, the first

porcine cardiac xenotransplant was performed early in 2022.

These successes have also paved the path for the generation of

human-porcine chimeric organs. Using a gene deletion strategy

and blastocyst complementation, human vasculature and human

skeletal muscle have been engineered and early chimeric embryos

have been examined. Additional studies are warranted that will

focus on the developmental progression of the human-porcine

chimeric organs, immunological response/tolerance of the

recipient animal model, strategies aimed at increased

efficiency of interspecies chimeras and the comprehensive

characterization of the human chimeras. Collectively, these

early studies have generated tremendous enthusiasm and

excitement focused on the opportunities to cure endstage

diseases and democratize organ transplantation using

xenografts and exogenic chimeric organs.
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