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The mRNA vaccines have been considered effective for combating cancer.

However, the core components of the mRNA vaccines against head and neck

squamous cell carcinoma (HNSCC) and the effects remain unclear. Our study

aims to identify effective antigens in HNSCC to develop mRNA vaccines for

corresponding potential patients. Here, we analyzed alternative splicing and

mutation of genes in TCGA-HNSCC samples and identified seven potential

tumor antigens, including SREBF1, LUC7L3, LAMA5, PCGF3, HNRNPH1, KLC4,

andOFD1, which were associated with nonsense-mediatedmRNA decay factor

expression, overall survival prognosis and the infiltration of antigen-presenting

cells. Furthermore, to select suitable patients for vaccination, immune subtypes

related to HNSCC were identified by consensus clustering analysis, and

visualization of the HNSCC immune landscape was performed by graph-

learning-based dimensionality reduction. To address the heterogeneity of

the population that is suitable for vaccination, plot cell trajectory and

WGCNA were also utilized. HNSCC patients were classified into three

prognostically relevant immune subtypes (Cluster 1, Cluster 2, and Cluster 3)

possessing different molecular and cellular characteristics, immune

modulators, and mutation statuses. Cluster 1 had an immune-activated

phenotype and was associated with better survival, while Cluster 2 and

Cluster 3 were immunologically cold and linked to increased tumor

mutation burden. Therefore, HNSCC patients with immune subtypes Cluster

2 and Cluster 3 are potentially suitable for mRNA vaccination. Moreover, the

prognostic module hub genes screened seven genes, including IGKC, IGHV3-

15, IGLV1-40, IGLV1-51, IGLC3, IGLC2, and CD79A, which could be potential

biomarkers to predict prognosis and identify suitable patients for mRNA

vaccines. Our findings provide a theoretical basis for further research and
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the development of anti-HNSCC mRNA vaccines and the selection of suitable

patients for vaccination.
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head and neck squamous cell carcinoma, tumor antigens, immune subtypes, immune
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) has been

regarded as the most common histological type of head and neck

malignancy and heterogeneous disease with a tendency for rapid

recurrence and poor survival rates. According to GLOBOCAN

data for 2020, the estimated incidence of HNSCC was

approximately 930,000 cases and over 450,000 deaths (Sung

et al., 2021). Genetic, smoking, drinking alcohol, and viral

infections, such as Epstein–Barr virus (EBV) and human

papillomavirus (HPV), are the most prevalent risk factors for

HNSCC (Zhong et al., 2018; Gu et al., 2019). The primary

treatment options include surgery combined with radiation

therapy, chemotherapy, and targeted therapy. Despite the

availability of combined modality treatment, HNSCC has been

considered to have a poor prognosis, according to reports

(Vermorken et al., 2014), and the estimated 5-year survival

rate remains low (50%–55%) (Bray et al., 2018; Shen et al.,

2020). The high mortality rate of HNSCC is due to resistance

to therapy, driving local recurrences and distant metastases.

Hence, there is an urgent need to develop different treatment

patterns and prevention methods to improve the prognosis of

HNSCC.

Immunotherapy, a strategy that boosts the patient’s immune

system to treat malignancies, has recently emerged as a novel

approach to overcome cancer, particularly immune checkpoint

inhibitor (ICI) therapy, which has shown significant promise

(Postow et al., 2018). Since 2016, two ICI therapies targeting

relapsed and metastatic HNSCC, nivolumab and

pembrolizumab, have been approved for marketing by the

United States. Food and Drug Administration (FDA).

However, only a fraction of patients currently benefit from

ICI due to the stringent filtering indications (Ribas and

Wolchok, 2018). Tumor vaccines have been another strategy

attracting significant interest in immunotherapy as a result of

their multifarious advantages, including increased specificity,

ability to induce long-lasting immunity, effectively combating

the low therapeutic efficacy, drug resistance, and side effects of

conventional chemotherapy or ICI (Emens, 2006; Sayour et al.,

2018). Prophylactic and therapeutic vaccines are the two primary

categories for developing tumor vaccines. While prophylactic

tumor vaccines can be used in healthy individuals to prevent

cancer-causing infections, therapeutic tumor vaccines are usually

used in advanced cancers to remove cancer cells (Bayó et al.,

2021). In this research, we concentrate on therapeutic vaccines.

Previous studies have confirmed that the therapeutic vaccines

promote particular antitumor immune responses (Bayó et al.,

2021; Faghfuri et al., 2021). Currently, tumor or immune cell

vaccines, peptide vaccines, viral vector vaccines and DNA or

RNA vaccines are the four primary categories of tumor vaccines

(Faghfuri et al., 2021). mRNA vaccines represent a promising

platform for tumor immunotherapy because of their safety, high

potency, capacity for rapid development and potential for

scalable manufacture (McNamara et al., 2015). mRNA

vaccines stimulate a broader T-cell response (Van Nuffel

et al., 2012), and multiple tumor-associated antigens (TAAs)

or tumor-specific antigens (TSAs) are delivered, which also

trigger cellular and humoral immune responses (Miao et al.,

2021). In contrast to DNA vaccines, mRNA vaccines do not run

the risk of insertional mutations by integration into the genome.

As of now, mRNA tumor vaccines have demonstrated promise

against melanoma, prostate, colorectal, and non-small-cell lung

cancer (Kubler et al., 2015; Fiedler et al., 2016; Sullenger and Nair,

2016; Pardi et al., 2020; Shahnazari et al., 2020). However, no

specific mRNA vaccines against HNSCC have been reported.

Furthermore, considering the high level of tumor heterogeneity

and the complicated tumor immune microenvironment, it is

crucial to designate HNSCC patients that are suitable candidates

for vaccination in order to maximize the efficacy and safety of

vaccines.

In tumor cells, transcriptional regulation can be disrupted

at various steps, leading to the accumulation of aberrant

transcripts. However, aberrant transcripts can be

subsequently degraded by nonsense-mediated mRNA decay

(NMD) in the transcription of normal cells. Therefore, NMD

has been considered a surveillance pathway used by cells to

control the quality of mRNAs and to fine-tune transcript

abundance (Kim et al., 2014; Baralle and Giudice, 2017;

Zhang et al., 2021). Recent studies have shown that

alternative splicing and NMD coupling could be a key

posttranscriptional mechanism that regulates gene

expression and has a significant impact on the

transcriptome, and when NMD has been inhibited in

tumor cells, frameshift mutations and aberrant splicing

transcripts could produce neoantigen peptides (Goodman

et al., 2017; Nogueira et al., 2021). Many biological

processes, including proliferation, growth, differentiation

and development, are controlled by alternative splicing

(Kelemen et al., 2013). Protein isoforms produced by

abnormal splicing can encourage the growth and

development of tumors as well as resistance to treatment

(Venables, 2004; David et al., 2010). An HNSCC patient’s
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alternative splicing signature can be used as a prognostic

biomarker (Zhao et al., 2020). Additionally, neutral

aberrant transcripts have the potential to be used as novel

biomarkers for ICI therapy (Litchfield et al., 2020). For the

current ICI therapy, tumor mutational burden (TMB) has

been a potential biomarker positively correlated with its

efficiency. TMB reflects cancer mutation quantity, and

mutations are processed into neoantigens. Numerous pieces

of evidence have revealed that tumors with a high mutation

burden are related to greater infiltration of CD8+ T cells in

tumor tissue, which could identify and eradicate these tumors.

It suggests that TMB may influence the individual’s response

to cancer immunotherapy (Rizvi et al., 2015; McGranahan

et al., 2016). The evidence mentioned above is employed as the

basis for our exploration of tumor antigens for the

development of anti-HNSCC mRNA vaccines. At the same

time, bioinformatics analysis is applied in this study, since it

has been an essential tool for comprehending the molecular

processes and signaling networks involved in cancer. Cancer

diagnosis and treatment have advanced significantly as a

result of the development of bioinformatics technology and

the discovery of biomarkers (Bellairs et al., 2017; Leemans

et al., 2018). Researchers may find tumor markers through the

use of molecular-level data mining from various databases for

clinical diagnosis or treatment (Chen and Coppola, 2018).

Herein, we aimed to use public data in the TCGA and GEO

databases and apply bioinformatic analysis to identify potential

tumor antigens of HNSCC. In addition, to identify patients with a

higher vaccine response, multiple immune subtypes were

discovered by consensus clustering analysis, and the cell

components of different subtypes were characterized.

Furthermore, to select suitable patients for vaccination,

weighted gene co-expression network analysis was used to

find prognostic gene modules and identify related genes to

obtain the corresponding biomarker genes. Our findings will

provide a reference for the development of anti-HNSCC mRNA

vaccines.

2 Materials and methods

2.1 HNSCC patients

The Cancer Genome Atlas (TCGA) (https://portal.gdc.

cancer.gov/) provided HNSCC patients for our research,

which included 537 TCGA-HNSCC samples, of which

493 were cancer samples and 44 were normal samples

(Supplementary Table S1). The RNA-seq data, Ensembl to

Symbol annotation data, and clinical information of

493 HNSCC samples (Supplementary Table S2) were gathered

from the University of California Santa Cruz (UCSC) Genome

Browser (http://genome.ucsc.edu/). The Ensembl of RNA-seq

data was converted to a gene symbol based on annotation data,

and the gene lines annotated to the symbol were averaged and

used as the new expression value of the gene. Next, the genes with

zero expression in no less than 30% of the samples were removed,

and samples that had a longer than 30-day survival duration were

taken. Finally, samples of RNA-seq data, phenotypic data, and

survival data were intersected. As an independent validation

dataset, HNSCC samples for the GSE21122 dataset were

gathered from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/gds/).

2.2 Screening of potential antigen
candidate genes

The TCGASpliceSeq (https://bioinformatics.mdanderson.

org/TCGASpliceSeq/) database provided HNSCC alternative

splicing data. The percent spliced in (PSI) spectrum of

alternative splicing events in TCGA-HNSCC was screened.

The mean PSI values of alternative splicing events in cancer

and normal samples were calculated separately and splicing

events with mean values of 0 or 1 in samples were filtered

out. A total of 40418 alternative splicing events were finally

selected, and t tests and logFC calculations were performed. The

BH method was used to correct the p-value of the t tests, and

alternative splicing events with a false discovery rate (FDR) < 0.

05 and | logFC | > 1 were treated as abnormal alternative splicing

events.

Mutated genes were identified by mutation analysis in the

Genomic Data Commons (GDC) (https://gdc.cancer.gov/) and

cBioPortal (https://www.cbioportal.org/) databases. Using the R

package “maftools”, mutated genes of TCGA-HNSCC samples

were summarized and visualized.

Potential antigen candidate genes were chosen based on

abnormal upregulation of alternative splicing events and

frameshift mutations. Functional enrichment analysis was

carried out using the R package “clusterProfiler.” The Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway and Gene

Ontology (GO) were used. GO team analysis was classified into

three subgroups: biological process (BP), cellular component

(CC), and molecular function (MF). Potential antigen

candidate genes were matched with the genes from the RNA-

seq expression profiles of TCGA-HNSCC, and then the

differential expression of potential antigen candidate genes

between cancer samples and normal samples was examined

using the R package “limma”.

2.3 Identification of potential tumor
antigens in HNSCC

The NMD factors included UPF1, UPF2, UPF3A and

UPF3B, and these factors were divided into low and high

expression groups according to their median expression levels
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in TCGA-HNSCC. The differences in the expression levels of

potential antigen candidate genes between the two groups were

analyzed. A t test was applied for analysis of variance with a

threshold of p ≤ 0.05, and the R package was “ggpubr.” To

recognize potential antigen candidate genes closely related to the

overall survival prognosis, potential antigen candidate genes were

analyzed using one-way Cox regression using the R packages

“survival” and “survminer”, dividing the high and low expression

groups by median gene expression values and analyzing the

overall survival differences of the two groups, with a threshold

of p < 0.05. Taking the intersection of potential antigen candidate

genes that were differentially expressed in each NMD subgroup

and potential antigen candidate genes with overall survival

prognosis differences. To investigate and show the

relationship between tumor immune infiltrating cells and

intersection genes, we used the Tumor Immunization

Estimation Resource (TIMER, https://cistrome.shinyapps.io/

timer/) and p < 0.05 was regarded as statistically significant

when using Spearman’s analysis.

2.4 Identification and verification of
immune subtypes

Immune gene dataset was obtained from the Immport database

(1255 genes) and the article “Pancancer immunogenomic analyses

reveal genotype-immunophenotype relationships and predictors of

response to checkpoint blockade” (782 genes). The final dataset with

1894 immune genes was obtained by taking the merged dataset. We

used the intersection of the immune gene dataset and the genes in

the RNA-seq data of TCGA-HNSCC and then screened immune

genes related to overall survival prognosis. The final expression

profile of 479 genes × 493 samples of the immune gene dataset in

cancer samples was obtained. The R package

“ConsensusClusterPlus” was used to perform consensus

clustering of immune gene expression profiles.

To determine the repeatability of the immune subtypes, the

same settings were used in the validation set to identify potential

immune subtypes, and the final expression profiles contained

75 genes × 270 samples of the immune gene dataset in cancer

samples.

2.5 Mutation status among immune
subtypes

TMB data of HNSCC were obtained from the Genomic Data

Commons (GDC) database (https://gdc.cancer.gov/). The TMB

distribution among the subtypes was first demonstrated. Next,

the mutation data of the corresponding samples were extracted

by subtype, and the number of mutated genes in each subtype

sample was counted. To display the mutations separately, the

oncoplot function in the “maftools” package was used.

2.6 Immune modulators in different
immune subtypes

The article “PMID33648511” provided immunogenic cell

death (ICD) modulators and immune checkpoints (ICPs). The

expression levels and differences of each factor between

subtypes were presented. ANOVA was used with a

threshold of p ≤ 0.05.

2.7 Cellular and molecular characteristics
of immune subtypes

Using the R package “ESTIMATE”, the immune score,

stromal score and tumor purity of cancer samples were

computed. The distribution of these scores among different

subtypes was shown using the R package “ggpubr.”

Meanwhile, the heatmap and immune cell infiltration scores

were displayed using “ComplexHeatmap”. The difference test

was performed using the Wilcoxon test with a threshold of p ≤
0.05, and the difference between groups was annotated on the

heatmap using ANOVA with a threshold of p ≤ 0.05.

Pancancer immune subtypes of TCGA-HNSCC were

obtained from the article “PMID29628290” and compared

with the subtypes identified in this article. Differences in the

proportion of pancancer immune subtypes were tested using

ANOVA with a threshold of p ≤ 0.05.

2.8 Immune landscape of HNSCC

Utilizing the reduce Dimension function of the “Monocle”

package with a Gaussian distribution, graph learning-based

dimensionality reduction analysis was carried out to display

the distribution of immunological subtypes across individual

patients. The immune landscape of the cell trajectories of

immune subtypes was shown in different colors. We

calculated the Pearson correlation between principal

components and cellular infiltration. The infiltration

proportional differences between subtypes were determined

using the Wilcoxon test with a threshold of p ≤ 0.05. Samples

at extreme locations were chosen to demonstrate their survival.

2.9 WGCNA coexpression network
construction

A coexpression network was constructed by weighted

correlation network analysis (WGCNA) using the R package

“WGCNA” for immune gene expression profiling. The number

of genes in the resulting modules, as well as the ME scores of the

samples in each module’s various subtypes were displayed. The

prognostic module was identified using one-way Cox regression
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analysis with a threshold of p < 0.05. The prognosis-related

module genes were identified using GO and KEGG

enrichment analyses. The MM scores (correlation between

genes and modules) of the prognostic module genes were

calculated, and the hub genes of the prognostic module were

chosen with an MM greater than 0.9. One-way Cox analysis

was performed on hub genes, and the seven genes with the

most significant Cox regression were screened as biomarker

genes. A multifactorial Cox analysis of the seven biomarker

genes was performed and the following equation was used to

calculate a risk score using the coefficient value as a

coefficient:

Riskscorei � ∑
n

i�1
exp ji *βj,

Where expji denoted the expression value of the jth gene in the ith

sample and βj denoted the coefficient of the jth gene in the

multifactorial Cox regression model. The median risk score

was employed to classify high- and low-risk groups.

3 Results

3.1 Identification of potential antigen
candidate genes

To find potential antigen candidate genes in HNSCC, an

overview of 42849 alternative splicing events in TCGA-

HNSCC was provided. The alternative splicing event that

occurred the most was ES (16,572 events) and the least was

ME (174 events) (Figures 1A,B). A total of 2476 abnormal

alternative splicing events were filtered by t test and logFC

calculation, which contained 1998 upregulated alternative

splicing events (including 1544 genes) and

FIGURE 1
Identification of potential antigen candidate genes. (A) Types of alternative splicing events. (B) Numbers of alternative splicing events and
corresponding genes in HNSCC. (C) Volcano plot of abnormal alternative splicing events. (D) Heatmap of abnormal alternative splicing events. (E)
Waterfall chart of the mutated genes. Different colors represented different types of mutations. (F) Identification of potential antigen candidate
genes. The intersection of abnormal upregulation of alternative splicing (1544 genes) and a frameshift mutation (2087 genes), of which
162 potential antigen candidate genes were identified. (G) Differentially expressed potential antigen candidate genes. (H) Heatmap of differentially
expressed potential antigen candidate genes.
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478 downregulated alternative splicing events (including

411 genes) (Figures 1C,D). Mutations include nonsense

mutations, missense mutations, frame shift ins, splice sites,

frame shift del, frame-del mutations, start site mutations

(translation start site), and multiple coexisting mutations

(multiple hits). The mutated genes in the samples were

identified, and 2087 frameshift mutations were obtained.

The top 30 genes with higher mutation probability were

enriched in the waterfall chart, and different mutation

types were represented by different colors (Figure 1E). The

samples in altered genome fractions and mutation counts,

representing a favorable immunogenic, which further

demonstrates that the identified tumor antigens possess

promising immunogenic (Supplementary Figures S1A,B).

The upregulated genes generally may play an important

role in tumorigenesis and tumor proliferation. The majority

of tumor antigens come from upregulated genes and mutated

genes (Coulie et al., 2014). Therefore, we intersected the genes

with abnormal upregulation of alternative splicing

(1544 genes) and frameshift mutations (2087 genes) as

potential antigen candidate genes. A total of 162 potential

antigen candidate genes were identified (Figure 1F).

Functional enrichment analysis of 162 potential antigen

candidate genes identified 20 functions of BP, 5 functions

of CC and a KEGG pathway (Supplementary Figures S1C–E).

The functions of BP were significantly enriched in cellular

response to peptide, response to peptide hormone and aging.

Focal adhesion and cell-substrate junction were highly

enriched in the CC. The KEGG pathway was enriched in

glycolysis gluconeogenesis. Potential antigen candidate genes

matched to RNA-seq data of TCGA-HNSCC were 162 genes,

and differential expression analysis identified 15 differentially

expressed potential antigen candidate genes. As shown in

Figures 1G,H, the up-regulated differentially expressed

FIGURE 2
Identification of potential tumor antigens. (A–D) The top 20 most significantly differentially expressed genes were ranked according to the
p-value of the t-test. (A)UPF1, (B)UPF2, (C)UPF3A, and (D)UPF3B. (E) Forest plot of overall survival prognosis-related genes. The first columnwas the
genes, the second column was the P-value of Cox regression, and the last column was the HR value of the genes. (F) Overview of the number of
abnormal upregulations of alternative splicing genes, frameshift mutation genes, and overall survival prognosis-related genes. (G) Venn diagram
showing the overlapping genes among differentially expressed genes in potential antigen candidate genes differentially expressed genes in all NMD
groups, APCs-related genes, and overall survival prognosis-related genes. ****p ≤ 0.0001.
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genes were TGFBI, COL6A3, PDLIM7, AJUBA, NLRC5, TNC,

CDKN2A, and PKP1, as well as the down-regulated

differentially expressed genes were ENO3, MUC20,

ADCK3, TNS1, NR4A1, MYO5B, and FOS.

3.2 Identification of potential tumor
antigens in HNSCC

To determine the relationship between NMD factors and

potential antigenic candidate genes, the differential

expression of 162 potential antigen candidate genes in the

high- and low-expression groups of different NMD factors

was demonstrated. The results showed that the expression

levels of the top 20 differential potential antigen candidate

genes in each group mostly coincided with NMD factor

expression (Figures 2A–D). In addition, 1,064 alternative

splicing events of 162 potential antigen candidate genes

were obtained and analysis was performed on the

differential distribution of their PSIs between the high- and

low-expression groups of different NMD factors. The PSI

values of the top 20 differential alternative splicing events

were higher in the NMD factor high-expression group

(Supplementary Figure S2). The quality-control mechanism

of NMD might prevent tumor-causing cells from developing

(Goodman et al., 2017; Nogueira et al., 2021). The results were

consistent with the fact that when NMD factors were highly

expressed, potential antigen candidate genes were also highly

expressed to inhibit tumor progression. As previously stated,

there is a close connection between NMD activity and

alternative splicing. The results also confirmed that more

differential alternative splicing events occurred in the NMD

factor high-expression group. To obtain overall survival

prognostic differences of potential antigen candidate genes,

24 genes associated with overall survival time in HNSCC were

identified based on one-way Cox regression analysis,

identifying the 8-protective factor indicators and 16-risk

factor indicators (Figures 2E,F).

To identify potential tumor antigens in HNSCC, the

intersection was taken between potential antigen candidate

genes differentially expressed in each NMD group and

potential antigen candidate genes with overall survival

prognosis differences, and then the genes SREBF1,

LUC7L3, LAMA5, PCGF3, HNRNPH1, KLC4, and

OFD1 were obtained. Spearman analysis of the above genes

and the ratio of immune infiltration showed that the

expression of genes was significantly and positively

correlated with tumor purity and the proportion of B cell,

macrophage cell and dendritic cell infiltration

(Supplementary Figure S3). According to the findings, these

genes might be directly processed by antigen-presenting cells

(APCs), presented to T cells, and then identified by B cells to

initiate an immune response. Overall, SREBF1, LUC7L3,

LAMA5, PCGF3, HNRNPH1, KLC4, and OFD1 were

identified as possessing abnormal upregulation of

alternative splicing, frameshift mutation, and NMD

differential expression and were highly connected to both

HNSCC prognosis and the infiltration of APCs (Figure 2G),

which exhibit excellent properties of tumor antigens for the

development of anti-HNSCC mRNA vaccines.

3.3 Identification of immune subtypes

The immune subtypes have been considered to be reflecting

the immune state and microenvironment of the tumor,

contributing to the identification of suitable vaccinated

patients. Consensus clustering was created when the

expression profiles of prognosis-related genes in HNSCC

samples were evaluated. k = 3 was chosen for stable clustering

of immune-related genes based on their accumulative

distribution functions and incremental regions, and three

immune subtypes were obtained, given the names Cluster 1,

Cluster 2, and Cluster 3 (Figures 3A–C). Principal component

analysis was used to validate the three subtypes, and the findings

demonstrated that they could be easily identified (Figure 3D).

Genes and samples were clustered separately to illustrate the

expression of immune genes in three subtypes (Figure 3E). The

survival curves demonstrated that the overall prognosis of

Cluster 1, Cluster 2, and Cluster 3 were significantly different.

Cluster 1 had a better prognosis, whereas Cluster 3 had the lowest

chance of survival (Figure 3F). The validation set was similarly

clustered, and there was a significant difference in overall survival

between the three subtypes (Figure 3G). Taken together, immune

subtypes can be utilized to forecast the prognosis of HNSCC

patients.

3.4 Mutation status among immune
subtypes

The efficiency of tumor immunotherapy is highly

correlated with TMB and the quantity of mutations in

tumor patients (Sha et al., 2020). Herein, using the

mutation dataset acquired from TCGA-HNSCC, TMB and

the number of mutations in individual patients in different

subtypes were evaluated. The difference in TMB score

between Cluster 1 and Cluster 3 was not significant, and

Cluster 2 had the highest TMB score (Figure 4A). The

number of mutations between subtypes was not

significantly different (Figure 4B), but the highest mutation

rate was 97.31% in Cluster 3, followed by Cluster 2 (94.83%)

and Cluster 1 (93.7%) (Figures 4C–E). In addition, the most

frequently mutated genes in HNSCC subtypes were TP53 and

TTN. These findings indicated that Cluster 1 may respond to

immunotherapy less favorably than Cluster 2 and Cluster 3.
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FIGURE 3
Identification of immune subtypes in HNSCC. (A–C) (A) Consensus matrix heatmap, (B) cumulative distribution function curve, and (C) delta
area curve based on immune-related gene expression profile. (D) Distribution of principal component analysis. (E) Heatmap of immune gene set
expression in Cluster1, Cluster2, and Cluster3. Genes and samples were clustered separately. (F) Survival curves for Cluster1, Cluster2, and Cluster3 in
the training set (TCGA). (G) Survival curves for Cluster1, Cluster2, and Cluster3 in the testing set (GEO).

FIGURE 4
Association of immune subtypes with TMB and mutation. (A) TMB of different immune subtypes. (B) Mutation number of different immune
subtypes. (C–E)Waterfall diagram of the top 20 frequently mutated genes in the three immune subtypes. (C)Cluster 1, (D)Cluster 2, and (E)Cluster 3.
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3.5 Immune modulators in different
immune subtypes

The efficiency of mRNA vaccines may be assessed using ICPs

and ICD modulators, which are crucial in cancer immunity

(Hodges et al., 2017; Galluzzi et al., 2020). Therefore, the

expression levels of ICP- and ICD-related genes in different

immune subtypes were analyzed. The results showed that ICP-

related genes were differentially expressed between the immune

subtypes in the TCGA dataset (93.75%) and validation set

(88.1%) (Figures 5A,B). For instance, most ICP-related genes,

including CD200, CD27, CD28, CD40, CTLA4, HAVCR2, IDO1,

IDO2, LGALS9, TNFRSF9, and VTCN1, were elevated in Cluster

1 in the TCGA dataset, while they were expressed at lower levels

in Cluster 2 and Cluster 3. CD27, CD40, CD48, CTLA4, TIGIT,

TNFRSF14, and TNFSF14 were significantly upregulated in

Cluster 1 and Cluster 3 in the validation dataset. There were

14 (66.67%) and 18 (75%) ICD-related genes that showed

differences in the TCGA dataset and validation set,

respectively (Figures 5C,D). For example, CXCL10, EIF2AK2,

and TLR3 were significantly increased in Cluster 2 in the TCGA

dataset, while FPR1, IFNE, MET, ANXA1, and PANX1 were

elevated in Cluster 2 in the validation set. Thus, the immune

subtypes may serve as potential therapeutic indicators for mRNA

vaccines by reflecting the expression levels of ICPs and ICD

modulators. Given the high expression of ICP-associated genes in

FIGURE 5
Relationships among ICPs and ICDmodulators and the immune subtypes. (A,B)Distribution of ICP genes among the three immune subtypes in
the TCGA and GEO dataset. (C,D) Distribution of ICD genes among the three immune subtypes in the TCGA and GEO dataset. *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001, ****p ≤ 0.0001, and ns, non-significant.
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Cluster 1, which has immunosuppressive tumor

microenvironment and might not be appropriate for

developing mRNA vaccines.

3.6 Cellular and molecular characteristics
of immune subtypes

Tumor purity can be predicted by the immune score and

stromal score, which can also be used to estimate the immune cell

and stromal cell content in tumors. High stromal cell and

immune cell contents are associated with low tumor purity

and vice versa. In the TCGA dataset, Cluster 1 had a higher

immune score and stromal score (Figures 6A,B) but a lower

tumor purity (Figure 6C). The immune cell infiltration ratio

heatmap (Figure 6D) and distribution of differences (Figure 6E)

showed that 17 immune cells had intergroup variations. Plasma

cells, CD8+ T cells, regulatory T cells and follicular helper T cells

had larger immune cell infiltration ratios in Cluster 1, whereas

NK cells, macrophages, dendritic cells, and activated mast cells

had higher immune cell infiltration ratios in Cluster 2 and

Cluster 3. In the validation set, Cluster 3 had a lower tumor

purity (Supplementary Figures S4A–C), and there was

intergroup variability in the immune cell infiltration ratio of

12 immune cells. The immune cell infiltration ratios of plasma

cells, CD8+ T cells, activated CD8+ T cells, follicular helper T cells,

regulatory T cells and gamma-delta T cells were higher in Cluster

1, while monocytes, M0 macrophages, activated mast cells and

neutrophils were significantly higher in Cluster 2 and Cluster 3

(Supplementary Figures S4D, E). Therefore, Cluster 2 and

FIGURE 6
Cellular and molecular characteristics of immune subtypes in TCGA. (A–C) Differential distribution of (A) immune scores, (B) stromal scores,
and (C) tumor purity among the three immune subtypes. (D) Heatmap of immune cell infiltration ratio. (E) Differential distribution of immune cell
infiltration ratio. (F) Distribution of Cluster1-Cluster3 between pan-cancer immune types (C1-C4, C6). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤
0.0001, and ns, non-significant.
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Cluster 3 were higher compared to Cluster 1 on anti-tumor

immune cells, such as activated dendritic cells and NK cells, as

well as pro-tumor immunosuppressive cells, such as tumor-

associated macrophages. The results indicated that all three

immune subtypes had complex tumor immune

microenvironments. Cluster 1 was an immune-activated and

immunologically hot phenotype, while Cluster 2 and Cluster

3 were immunologically cold phenotypes. The immune subtypes

are available to support the identification of patients benefiting

from mRNA vaccination and may be a reflection of the immune

status for HNSCC.

The correlation between the immune subtypes and

pancancer immune subtypes was explored to support the

validity of the immune subtypes. In the six pancancer

immune subtypes (C1-C6) previously reported, HNSCC was

mostly clustered into C1 (wound healing) and C2 (IFN-γ
dominant) and very little clustered into C3 (inflammatory),

C4 (lymphocyte depleted) and C6 (TNF-β dominant)

(Thorsson et al., 2018). Our results were consistent with

previous results and showed more clusters in C2 than in C1.

Additionally, there was more overlap with C2 in Cluster 2,

implying that Cluster 2 may be more related to C2 than

Cluster 1 and Cluster 3 (Figure 6F).

3.7 Immune landscape of HNSCC

The immune landscape of HNSCC was constructed using the

immune gene expression profiles of individual patients

(Figure 7A), and HNSCC patients were divided into different

clusters. B cells, T cells, macrophages, etc., were significantly

correlated with the first principal component (PC1) and the

second principal component (PC2) (Figure 7B). The integral

distribution of Cluster 1 was opposite to that of Cluster 3, and the

distributions of the two subtypes were discrete. In addition, the

same subtype additionally showed an opposite distribution,

revealing strong intracluster variation within subtypes,

particularly within Cluster 2. Cluster 1 and Cluster 3 were

each further separated into two subgroups based on the

distribution of immune cell populations (Figure 7C), and the

enrichment scores of several immune cells varied dramatically

between subtypes (Figures 7F,G). Cluster 1A had significantly

higher enrichment scores for CD8+ T cells, resting memory CD4+

T cells, activated memory CD4+ T cells, regulatory T cells,

M1 macrophages, and resting mast cells, while Cluster 1B had

significantly higher enrichment scores for plasma cells, activated

dendritic cells, activated mast cells, and neutrophils. CD8+

T cells, activated memory CD4+ T cells, follicular helper

T cells, activated NK cells, M1 macrophages, and

M2 macrophages had considerably higher enrichment scores

in Cluster 3A, while Cluster 3B had significantly higher

enrichment scores in M0 macrophages. Furthermore,

prognostic comparisons of samples with extreme

distributional positions in the immune landscape revealed that

patients in Cluster 1 had the best survival probability (Figures

7D,E). Taken as a whole, the immune landscape based on

FIGURE 7
The immune landscape of HNSCC. (A)The immune
landscape of HNSCC immune subtypes. Each dot represented a
patient, and different colors represented different immune
subtypes. The horizontal axis represented the principal
component 1, and the vertical axis represented the principal
component 2. (B) Heatmap of the correlation between principal
components 1 and 2 and immune cells. (C) The immune landscape
of the subgroups of HNSCC immune subtypes. (D) The immune
landscape of samples from extreme distributional positions. (E)
Prognosis of extreme distributional places. (F,G) Differences in
enrichment scores of immune cells among subgroups: Cluster
1 (F) and Cluster 3 (G). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤
0.0001, and ns, non-significant.
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immune subtypes can accurately identify the immunological

components of each HNSCC patient and predict their

prognoses, which is advantageous for choosing customized

therapies for mRNA vaccination.

3.8 WGCNA coexpression network
construction and hub genes

Understanding the characteristics of each immune subtype

was aided by identifying the functional modules of immune-

related genes in HNSCC patients. The data were grouped by the

immune gene coexpression module using WGCNA and a soft

threshold of 3 for the scale-free network (Figures 8A,B). The

representation matrix was then transformed into an adjacency

matrix, which was then transformed into a topological matrix.

Using the default parameters of the “WGCNA” R package, we

obtained 8 modules, of which the gray modules were not

clustered with the rest (Figure 8C). The number of genes in

each module was shown, and an in-depth analysis of the

distribution of immune subtypes in the eight modules was

provided. Significant differences were found in all modules,

except for the red module (Figures 8D,E). Brown, turquoise,

and yellow modules had the most eigengenes in Cluster 1. The

number of eigengenes in Cluster 2 was significantly the highest in

the Black and Green modules, while that in Cluster 3 was Gray

and Black. Thus, Cluster 1 corresponded to immunologically hot

phenotypes, and Cluster 2 and Cluster 3 corresponded to

immunologically cold phenotypes. Further prognostic analysis

of the identified modules revealed significant prognostic efficacy

for the Turquoise and Brown modules (Supplementary Figure

S5A). To investigate the functions of genes in the Turquoise and

Brown modules, a KEGG functional enrichment analysis was

performed, and the first ten pathways were displayed

(Supplementary Figures S5B, C). The immune-related

cytokine-cytokine receptor interaction pathway was enriched

in both modules. Genes with Turquoise and Brown module

correlations >90% were selected as the hub genes of the

FIGURE 8
Characterization of the immune gene coexpression module of HNSCC. (A) Sample Clustering. (B) Scale-free fit index (β) andmean connectivity
for every soft threshold power. (C) Tree diagram of all immune-related genes clustered based on the TOM matrix. (D) Number of genes in every
module. (E) Differential distribution of module eigenvectors in HNSCC immune subtypes. *p ≤ 0.05, ****p ≤ 0.0001, and ns, non-significant.

Frontiers in Cell and Developmental Biology frontiersin.org12

Chen et al. 10.3389/fcell.2022.1064754

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1064754


prognostic module, and a total of 77 genes were identified. Seven

marker genes, including IGKC, IGHV3-15, IGLV1-40, IGLV1-

51, IGLC3, IGLC2, and CD79A, were screened by one-way Cox

regression as potential biomarkers.

The risk model was used to score the seven biomarker genes.

Samples with scores above the median were defined as the high-

risk group, and samples with scores below the median were

defined as the low-risk group (Supplementary Figure S6A). The

low-risk group had a better survival status than the high-risk

group (Supplementary Figures S6B, C). Prognostic analysis of the

risk score was performed to demonstrate its prognostic efficacy,

and the area under the curve (AUC) was used to verify its

accuracy. The AUC curves of the risk score were 0.653, 0.622,

and 0.575 at 1, 3, and 5 years, respectively (Supplementary Figure

S6D), verifying their accuracy and indicating that they have

potential as biomarkers for mRNA vaccines of HNSCC. The

expression heatmap showed that all seven biomarker genes were

highly expressed in the low-risk group (Supplementary Figure

S6E). In summary, HNSCC patients with higher expression of

IGKC, IGHV3-15, IGLV1-40, IGLV1-51, IGLC3, IGLC2, and

CD79A may present with a more favorable prognosis, which are

available to forecast prognosis and choose patients suitable for

mRNA vaccines.

4 Discussion

The trending subject in cancer immunotherapy is

currently the development of mRNA vaccines (Huang

et al., 2021a; Huang et al., 2021b; Ye et al., 2021; Zhong

et al., 2021). In our study, we identified a series of potential

tumor antigens, including SREBF1, LUC7L3, LAMA5,

PCGF3, HNRNPH1, KLC4, and OFD1, by systematically

analyzing alternative splicing and mutation of genes in

patients with HNSCC. They were associated with not only

NMD expression and overall survival prognosis but also the

infiltration of APCs. As a result, we deduce that these potential

tumor antigens are crucial for the initiation and development

of HNSCC and have the ability to cause an immunological

attack by inducing a powerful cytolytic CD8+ T cell response.

Previous investigations confirmed their potential for the

creation of anti-HNSCC mRNA vaccines, even if functional

validation and preclinical evaluation are still required in the

future. For example, SREBF1 is essential for squamous cell

carcinoma viability and migration, and its overexpression is

associated with poor survival in squamous cell carcinoma

patients. Squamous cell carcinomas may have SREBF1 as a

potential therapeutic target and prognostic marker (Li et al.,

2021). LUC7L3 is an mRNA that has rarely been studied for its

biological role in disease. Only the fact that LUC7L3 is

increased in human heart failure tissues and exacerbates

heart failure is known (Gao et al., 2011). In many types of

cancer, LAMA5 has been observed to be highly expressed and

is a possible candidate for targeting angiogenesis in cancer

(Hao et al., 2001). In addition, the PCGF3 gene, which is a

member of the polycombgroup of proteins, has been shown to

be involved in deregulating proteins that could lead to cancer

cell transformation (Valk-Lingbeek et al., 2004). HNRNPH1,

belonging to the heterogeneous nuclear ribonucleoprotein

family, is an RNA binding protein that is involved in pre-

mRNA splicing and mRNA trafficking and stability (Turunen

et al., 2013; Grammatikakis et al., 2016). HNRNPH1 is

associated with survival, and its high expression is

associated with poor outcome in HNSCC (Xing et al.,

2019). Moreover, KLC4 is a light chain isoform of kinesin

that is observed at higher levels in tumor tissue than in healthy

tissue. It is a brand-new and powerful cancer therapeutic

marker, particularly for individuals with radiation

resistance (Baek et al., 2018). One important element,

OFD1, is employed to prevent primary cilia in human

cancer cells from growing (Huang et al., 2015). In patients

with oropharyngeal squamous cell carcinoma, HPV may

regulate OFD1 expression and primary cilia formation,

thereby influencing tumor progression and making this

protein a possible target for treatment (Meng et al., 2020).

These potential tumor antigens can be used as a basis for the

subsequent search for identified tumor antigens in the

development of mRNA vaccines in the future.

The selection of vaccinable patients is crucial for the efficacy of

HNSCC mRNA vaccines. Immune subtypes can aid in discovering

suitable vaccinated patients by reflecting the immune state and

tumor microenvironment. Therefore, we classified the HNSCC

samples into three different subgroups based on the gene

expression profiles related to immunological prognosis. The three

immune subtypes exhibited different molecular and cellular

characteristics. They can be used to identify the prognosis of

HNSCC patients, as Cluster 1 was linked to a better prognosis,

while Cluster 3 had the worst survival probability. In addition,

Cluster 2 had a relatively higher TMB, and Cluster 3 had the highest

somatic mutation rates. According to the pertinent literature,

immune status may be connected to mutation (Leemans et al.,

2018). High somatic mutations and TMB were linked to a higher

antitumor immune response (Rooney et al., 2015). Therefore,

compared to Cluster 2 and Cluster 3, Cluster 1 may have a

lower response to immunotherapy. Moreover, Cluster 1 had

relatively higher expression of ICPs, suggesting that Cluster

1 might respond well to passive immunotherapies, such as

blocking therapy; however, it might not be suitable for anti-

HNSCC mRNA vaccines. It is well known that the tumor

immune status determines the efficacy of mRNA vaccines. Thus,

immune and stromal cell scores in different subtypes were analyzed

to predict tumor purity and immune cell components. In the TCGA

dataset, Cluster 1 had a lower tumor purity and an immune cell

infiltration ratio that was significantly higher for plasma cells, CD8+

T cells, regulatory T cells and follicular helper T cells. Cluster 2 and

Cluster 3 had higher immune cell infiltration ratios of NK cells,
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macrophages, dendritic cells, and activated mast cells. However, in

the validation set, Cluster 2 and Cluster 3 had a lower tumor purity.

The immune cell infiltration ratios of plasma cells, CD8+ T cells,

activated CD8+ T cells, follicular helper T cells, regulatory T cells and

gamma-delta T cells were higher in Cluster 1, while monocytes,

M0 macrophages, activated mast cells and neutrophils were

significantly higher in Cluster 2 and Cluster 3. We inferred from

the results that Cluster 1 was an immune-activated and

immunologically hot phenotype, while Cluster 2 and Cluster

3 were immunologically cold phenotypes. Furthermore, immune

cell infiltration and the cancer microenvironment have both been

relevant to cancer prognosis. Previous studies have shown that naive

B cells were immune cells that fight cancers (Katsuta et al., 2019).

CD8+ T cells were associated with better prognosis in a number of

cancer types (Sato et al., 2005). Meanwhile, a better prognosis was

linked to greater B/plasma cell and T cell infiltration (Kurebayashi

et al., 2018), whereas macrophages had been linked to a worse

prognosis (Edin et al., 2012; Noy and Pollard, 2014). These

molecular characteristics and the immune profiles were identical,

indicating that HNSCC patients with different immune subtypes

have dramatically varying specificity formRNAvaccines. Finally, the

complex immune landscape of HNSCC indicated that there was

much variation across patients and even within the same immune

subtype, which may significantly limit the effectiveness of mRNA

vaccines. IGKC, IGHV3-15, IGLV1-40, IGLV1-51, IGLC3, IGLC2,

and CD79Awere identified as hub genes, and a validated prognostic

risk model was constructed based on the seven genes and created

two groups with different levels of risk for the samples. All seven

biomarker genes were strongly expressed in samples from the low-

risk group, which also had a higher survival status. These results

implied that the potential biomarkers IGKC, IGHV3-15, IGLV1-40,

IGLV1-51, IGLC3, IGLC2, and CD79A may be utilized to forecast

prognosis and choose patients suitable for mRNA vaccines.

The HNSCC patients were categorized into C1-C6 subtypes,

with the exception of C5, based on a prior study (Thorsson et al.,

2018), and the majority of patients were grouped into the C1 and

C2 subtypes. In the present study, HNSCC patients were

differentiated into three subtypes, and all mainly overlapped

with C1 and C2, which was consistent with previous findings.

The results indicated that our immunotyping method was

reliable. Nevertheless, the vaccination tumor antigens and

prognostic indicators discovered in this study still need to be

verified in subsequent research.

5 Conclusion

We used public data in the TCGA and GEO databases and

identified the prospective HNSCC tumor antigens for the

development of mRNA vaccines, including SREBF1, LUC7L3,

LAMA5, PCGF3, HNRNPH1, KLC4, and OFD1, which are

associated with NMD factor expression, overall survival

prognosis and infiltration of APCs. The immune subtypes

obtained by consensus clustering analysis and the results of a

series of characterization proved that the immune subtypes

Cluster 2 and Cluster 3 in HNSCC are most likely to respond

well to mRNA vaccination. Meanwhile, prognostic module genes

identified by WGCNA, including IGKC, IGHV3-15, IGLV1-40,

IGLV1-51, IGLC3, IGLC2, and CD79A, could be potential

biomarkers for predicting prognosis and identifying

individuals that would benefit from mRNA vaccinations. Our

findings provide a theoretical foundation for further research,

including the development of anti-HNSCC mRNA vaccines and

the identification of appropriate patients for vaccination.
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