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Morphological changes of the choroid have been proved to be associated with

the occurrence and pathological mechanism of many ophthalmic diseases.

Optical Coherence Tomography (OCT) is a non-invasive technique for imaging

of ocular biological tissues, that can reveal the structure of the retinal and

choroidal layers in micron-scale resolution. However, unlike the retinal layer,

the interface between the choroidal layer and the sclera is ambiguous in OCT,

which makes it difficult for ophthalmologists to identify with certainty. In this

paper, we propose a novel boundary-enhanced encoder-decoder architecture

for choroid segmentation in retinal OCT images, in which a Boundary

Enhancement Module (BEM) forms the backbone of each encoder-decoder

layer. The BEM consists of three parallel branches: 1) a Feature Extraction

Branch (FEB) to obtain feature maps with different receptive fields; 2) a

Channel Enhancement Branch (CEB) to extract the boundary information of

different channels; and 3) a Boundary Activation Branch (BAB) to enhance the

boundary information via a novel activation function. In addition, in order to

incorporate expert knowledge into the segmentation network, soft key point

maps are generated on the choroidal boundary, and are combined with the

predicted images to facilitate precise choroidal boundary segmentation. In

order to validate the effectiveness and superiority of the proposed method,

both qualitative and quantitative evaluations are employed on three retinal OCT

datasets for choroid segmentation. The experimental results demonstrate that

the proposed method yields better choroid segmentation performance than

other deep learning approaches. Moreover, both 2D and 3D features are

extracted for statistical analysis from normal and highly myopic subjects

based on the choroid segmentation results, which is helpful in revealing the

pathology of high myopia. Code is available at https://github.com/iMED-Lab/

Choroid-segmentation.
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1 Introduction

The choroid is a dense vascular layer posterior of the uvea,

the middle membrane of the ocular posterior segment. It plays a

critical role in thermoregulation, adjustment of retinal position,

and secretion of growth factor (Nickla and Wallman, 2010). The

high blood flow in the choroid makes it immune to

environmental conditions with various extreme temperatures.

Choroidal thickness has become one of the diagnostic indicators

of many ophthalmic diseases, such as high myopia, glaucoma,

age-related macular degeneration, and diabetic retinopathy

(Regatieri et al., 2012; Chen et al., 2014; Wang et al., 2015;

Yiu et al., 2015). Takeing high myopia as an example, the

percentage of Asian young people with high myopia increaed

by 6.8%–21.6% over the period 2010 to 2014 (Wong and Saw,

2016). Individuals with high myopia are highly susceptible to

developing pathological myopia, which is one of the leading

causes of low vision and blindness (Oduntan, 2005; Cedrone

et al., 2006). Therefore, choroid segmentation and choroidal

thickness analysis are crucial in determining the pathogenesis

and treatment strategy of ophthalmopathy.

The development of Optical Coherence Tomography

(OCT) (Huang et al., 1991) has made analysis of retinal

and choroidal morphology convenient and accurate for

clinical research and application. With the emergence of

new OCT techniques such as spectral domain OCT (SD-

OCT) (Yaqoob et al., 2005), enhanced depth imaging OCT

(EDI-OCT) (Wong et al., 2011) and swept-source OCT (SS-

OCT) (Choma et al., 2003), the choroid can be clearly visible.

Because of the characteristics of non-invasive 3D imaging,

these new OCT techniques have become the primary choice

for clinicians to diagnose ophthalmic diseases. Figure 1 shows

an OCT volume acquired from a healthy eye, which can be

divided into three parts: from top to bottom (retina, choroid

and sclera). In addition, the 2D B-scans can be extracted from

the 3D volume for further study of the choroidal morphology.

Based on the B-scans, various methods have been proposed

for choroidal layer segmentation. Previous methods were mainly

based on graph theory (Zhang et al., 2012; Hu et al., 2013;

Mazzaferri et al., 2017). These methods rely on manual

parameter settings, and usually yield low efficiency, which

limits their segmentation accuracy and makes them difficult to

apply in clinical practice. With the emergence and development

of deep learning, several Convolutional Neural Network (CNN)

models have been applied to choroidal layer segmentation (Chen

et al., 2015; Sui et al., 2017; He et al., 2021; Yan et al., 2022). The

powerful feature learning capability of CNN has significantly

improved choroid segmentation accuracy and efficiency over the

last decade. In addition, end-to-end networks have enabled

models to take original images as direct input, and output

segmentation results without handcrafted operations (Mao

et al., 2020; Zhang et al., 2020).

Many current studies have explored possible improvements

of segmentation efficiency and model optimization, but only a

few have focused on the structural characteristics of the choroidal

layer. Due to the low contrast of OCT images (as shown in

Figure 1), the boundary between choroid and sclera is

ambiguous, which for many algorithms leads to inaccurate

boundary localization. However, the issue of vagueness in

imaging the Choroidal Scleral Interface (CSI) has been little

investigated. Moreover, choroidal thickness, as an alternative and

important biological indicator strongly associated with several

ocular diseases, has been quantified in much recent work on the

basis of 2D B-scans only (Regatieri et al., 2012; Kim et al., 2013;

Agrawal et al., 2020). In contrast, the 3D morphological

characteristics of the choroid and its thickness in different

regions, such as the nasal side and the foveal region, may

provide more indicative and accurate information for

FIGURE 1
Examples of a 3D OCT volume and 2D OCT B-scan image. The choroid-sclera interface (indicated by the red dashed line) is ambiguous and
difficult to extract compared to the other boundaries.
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diagnosis of ocular diseases. But few research works have

investigated choroid characteristics derived from 3D

morphology.

In this paper, we focus on tackling the following two issues in

choroid segmentation and morphological analysis. Firstly, since

it is difficult to extract the boundary between choroid and sclera

due to low contrast in OCT, existing segmentation methods

usually perform ineffectively and produce poor definition of the

choroidal boundary. Secondly, there is a lack of choroid-related

biomarkers in highly myopic subjects, especially three-

dimensional biomarkers, which are more conducive to the

diagnosis and treatment of diseases.

To this end, we propose a fully automated choroid

segmentation framework with boundary feature enhancement.

Initially, in order to extract accurate boundary information, we

design a new Boundary Enhancement Module (BEM). This

consists of three parallel branches. One branch is a Feature

Extraction Branch (FEB), which uses dilated convolution (Yu

and Koltun, 2015) with different dilation rates to acquire relevant

image features under different receptive fields, so that the

boundary features are fully retained. The second branch is a

Channel Enhancement Branch (CEB), which exploits and

enhances the boundary characteristics of different channels

through global average pooling and convolution operations.

The third branch is a Boundary Activation Branch (BAB),

which strengthens the boundary information from the spatial

perspective via one-dimensional convolution and a specific

activation function to further enhance boundary features. The

BEM can be integrated with different encoder-decoder networks,

such as the U-Net and FCN. In addition, for each B-scan, a soft

point map is generated based on the extracted points on the

choroidal boundary by using a boundary strengthen point

selection algorithm. Based on these boundary soft point maps,

we introduce the Boundary Perceptual Loss (BP-Loss) to provide

feedback on the boundary enhancement effect of the output

segmentation result. Finally, we extract and analyze both 2D and

3D morphological features of the choroid in the highly myopic

population, based on the segmentation results.

In brief, our main contributions are listed as follows:

• We propose a novel BEM module for reinforcing

information on the choroidal boundary from three

perspectives including feature, channel and space, which

can be integrated with major encoder-decoder

architectures such as U-Net, FCN, etc.

• A boundary perceptual loss is introduced to incorporate

expert knowledge into our segmentation network. This

new loss provides the flexibility to learn a prior boundary

information from a soft point map.

• We extract 3D edge point cloud features and reconstructed

the 3D structure of the choroid based on the 2D

segmentation results of all B-scans. In addition, we

statistically analyze choroidal thickness and 3D

characteristics in different subfields to further determine

the correlation between choroidal morphological changes

and high myopia.

2 Related work

2.1 Choroid segmentation

Existing methods for choroid segmentation in OCT are

mainly divisible into two categories: traditional methods, and

machine learning methods. Zhang et al. (Zhang et al., 2012) first

attempted to extract the choroidal layer in 3D SD-OCT by

adapting a graph-based method, which produced a relatively

accurate choroidal surface. However, this method was tested on

normal subjects only, and it is difficult to achieve the expected

segmentation performance for some patients, especially those

with large changes of choroidal morphology. In order to

overcome this limit, Hu et al. (Hu et al., 2013) improved the

graph-based multi-layer segmentation method by applying

various smoothness and interaction constraints to different

choroidal layer structures. This method has been validated on

OCT images collected from both healthy subjects and non-

neovascular AMD subjects, revealing great similarities with

manual segmentation.

With the emergence of Enhanced Depth Imaging OCT (EDI-

OCT) technology, its high-resolution imaging made the

choroidal layer structure more clearly displayed in OCT

B-scans, which is more conducive to choroid segmentation.

Tian et al. (Tian et al., 2013) adopted Dijkstra’s algorithm to

seek the shortest path, and the choroidal surface was quickly and

accurately detected. Similarly, Danesh et al. (Danesh et al., 2014)

proposed a segmentation method based on the Gaussian mixture

model, to obtain the choroidal structure in EDI-OCT images.

However, this still requires handcrafted features, and is sensitive

to noise artifacts existing in EDI-OCT images. In addition, Chen

et al. (Chen et al., 2015) introduced a new pipeline composed of a

progressive intensity distance image generation algorithm and

graph search method for the problem of noise and boundary

ambiguity. Wang et al. (Wang et al., 2017) used a Markov

Random Field (MRF) method to connect adjacent pixels, and

a level set method to regularize the distance of uneven textures.

Since graph search technology is greatly affected by manual

parameter settings, deep learning-based methods have been

developed to obtain the choroidal structure. Sui et al. (2017)

proposed a convolutional neural network (CNN)-based method

that learns a graph-edge weight directly from raw OCT pixels.

The network structure can be divided into two parts: one detects

the CSI boundary, and the other detects the BM boundary. This

method has revealed good adaptability to 3D EDI-OCT images

collected from both healthy subjects and patients with macular

edema. He et al. (2021) combined CNN and a l2-lq (0 < q < 1)

fitter to segment the outer choroidal surface, in which the CNN is
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used to generate predicted values, and the l2-lq fitter is employed

to maintain the stability of the fitting function. The OCT image is

partitioned into small patches to form the input of the CNN, and

post-processing is required to discard irrelevant information,

which leads to relative inefficiency compared to end-to-end

architectures. Similarly, Masood et al. (2019) used deep

learning methods to establish a new segmentation structure to

obtain the outer choroidal surface. Before being fed into the

CNN, the OCT image needs to be divided into patches for data

sampling and conversion. This method reduces the average

segmentation error, but it is still not as efficient as end-to-end

architectures.

As a result, several end-to-end deep learning approaches have

been proposed more recently. Zhang et al. (2020) proposed an end-

to-end method, consisting of a global multi-layer segmentation

block, a choroidal layer segmentation block, and a regularization

block. This first segments all the inner retinal layers, and then utilizes

global information to detect the choroidal layer. For 3DOCT images

collected from healthy subjects, the thickness difference obtained by

thismethod (4.30 ± 0.02 pixels) ismore accurate than those obtained

by other state-of-the-art methods. Chai et al. (2020) proposed a

method that can effectively segment the choroidal boundary by

minimizing the differences between different regions, and takes into

account the differences between different OCT acquisition

equipment. It feeds OCT images from different domains into a

U-Net-based network, and uses both adversarial and perceptual loss

for domain adaptation.

2.2 Choroidal thickness analysis

Examining the choroidal layer as extracted from OCT images,

ophthalmologists can analyze choroidal variations from different

perspectives. In particular, choroidal thickness is of great interest, as

it often indicates the presence or even severity of some ophthalmic

diseases. Yiu et al. (2015) extracted choroidal thickness from EDI-

OCT images collected from subjects with Age-related Macular

Degeneration (AMD). Employing on a semi-automatic

segmentation method, they analyzed the similarities and

differences in choroidal thickness between normal individuals

and patients with AMD. Wang et al. (2015) compared choroidal

thickness between patients with highmyopia and healthy people. By

analyzing the experimental results, they found that choroidal

thickness in healthy individuals is significantly thicker than that

of individuals with high myopia. Regatieri et al. (2012) examined

choroidal thickness in diabetic patients and found that the change of

choroidal thickness was related to the severity of diabetes. More

recently, several studies have shown that choroidal thickness as

revealed by retinal OCT images is associated with certain

neurodegenerative diseases. Moschos and Chatziralli (2018)

extracted the retinal thickness and choroidal thickness of patients

with Parkinson’s Disease (PD) from spectral domain OCT, and

compared the results with those from healthy individuals. The

differences between people with, and without PD were

statistically significant. Similarly, Satue et al. (2018) used swept-

source OCT to measure retinal and choroidal thickness of patients

with PD. They found that the retina of patients with PD became

thinner, while choroidal thickness might increase. Similar to our

work, Chen et al. (2022) segmented the choroidal layer of highly

myopic patients and non highly myopic people and compared the

thickness, while they lacked the analysis of three-dimensional

features, and the segmentation performance needs to be improved.

To this end, the automatic and accurate quantification of

choroidal thickness is potentially crucial to diagnosis of these

diseases. However, most quantification approaches of choroidal

thickness can only provide two-dimensional measurements at a

fixed location, which limits the practicability. Therefore, we

proposed to use 3D edge point cloud features to produce a

three-dimensional reconstruction of the choroidal layer.

2.3 Boundary segmentation

Boundary segmentation in images remains a research

hotspot, not only in the fields of medical image analysis but

also in many fields of other computer vision such as remote

sensing. The mainstream boundary segmentation approaches

may be divided into two categories: filtering-based methods,

and learning-based methods. Wang et al. (2018) introduced

an interactive geodesic method based on CNN into medical

image segmentation: a mannual correction of boundary

information is required to improve the accuracy of boundary

segmentation. Lee et al. (2020) proposed a novel network with

boundary preserving blocks to retain the boundary information

via learning proper weights of boundary features. Wei et al.

(2021) proposed a concentric loop CNN with a boundary

detector and a refinement block to improve the effect of

boundary segmentation in remote sensing images. Dang and

Lee (2021) improved the effect of boundary segmentation in

document images by sharing the weights of boundary features

and global features, and using adversarial loss to strengthen the

learning of boundary information. Wang et al. (2021) combined

a transformer with CNN to enhance the segmentation of skin

lesions, and used an attention mechanism to boost the

performance of boundary segmentation. Recently, Yu et al.

(2022) proposed FBCU-Net, which uses boundary semantic

features to segment medical images, but it is mainly used for

region segmentation and the performance of layer structure

segmentation still needs to be improved.

3 Methods

In this paper, we propose a novel encoder-decoder network

with boundary feature enhancement for choroid segmentation.

The proposed choroid segmentation framework is presented in
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Figure 2. The proposed framework adopts U-Net (Ronneberger

et al., 2015) as the baseline encoder-decoder network, and

incorporates a novel module, termed a BEM into each

encoder/decoder layer. The BEM consists of three parallel

branches: FEB, CEB and BAB. In addition, pre-trained VGG-

19 is utilized to calculate the specific boundary perceptual loss,

which guides the segmentation framework in reducing the gap at

boundary feature level between the predicted segmentation map

and ground truth.

In order to train the proposed framework, a soft point map

is constructed for each B-scan as another ground truth for

extra supervision. Boundary enhancement points are first

extracted using the boundary enhancement point selection

algorithm. To allow tolerance of the key points’ position in the

training phase, we generate Gaussian distributed disks based

on all extracted points for each B-scan to construct the

corresponding soft point map. The details are illustrated in

the following subsections.

3.1 Soft point map construction

Inspired by Lee et al. (2020), we employed the boundary

enhancement point selection algorithm to select several key

points, then generated a point map for each B-scan as another

ground truth for training. By contrast with the binary disks

generated on the selected points in (Lee et al., 2020), we

adopted a two-dimensional Gauss function to generate a

point map with soft boundaries for more effective guidance

with boundary information to segmentation. This

modification is mainly based on the following

considerations: a binary disk allocates undifferentiated

attention to all pixels in the neighborhood of the

corresponding selected point, which creates vulnerability to

deviation of boundary localization. The soft point map can be

expressed as follows:

Si,j � max
k∈ 1,...,K{ }

exp − i − xk( )2 + j − yk( )2
2σ2

( ) (1)

where (i, j) represent the coordinates of one pixel of the generated

soft point map matrix S; (xk, yk) represent the coordinates of kth

selected key point (total K selected key points); σ represents the

standard deviation of the Gauss function. The differences

between the original point map and the proposed soft point

map are illustrated in Figure 3.

3.2 Boundary enhancement module

The proposed choroid segmentation architecture

incorporates our novel BEMs into its encoder/decoder

layers, as shown in Figure 2. Figure 4 presents the

architecture of the BEM, which consists of three branches

including FEB, CEB and BAB. The BEM can be embedded in

various layers in the segmentation network. The BEM

embedded in the ith layer takes the feature maps

fi ∈ Rwi×hi×ci as input, where wi, hi, and ci respectively

represent the width, height and channels of the feature

maps at the ith layer. The FEB produces the boundary-

enhanced point map Mi ∈ Rwi×hi×1. The CEB generates a

channel-wise weighting vector Ni ∈ Rci . The BAB outputs a

FIGURE 2
An overview of the proposed boundary enhancement framework for choroid segmentation. A novel BEM is incorporated into each encoder/
decoder layer of the proposed framework. In addition, a pre-trained VGG network is utilized to calculate the specific boundary perceptual loss to
improve the choroidal boundary segmentation with the guidance of the soft point map generated from ground truth.
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single-channel activation map Qi ∈ Rwi×hi×1. Then, the final

output feature maps vi ∈ Rwi×hi×ci is calculated as follows:

vi � fi ⊕ fi ⊗ Mi ⊗ Qi ⊗ Ni( ), (2)

where ⊕ represents element-wise addition; ⊗ represents

multiplication (pixel-wise multiplication for single-channel

maps Mi and Qi, and channel-wise multiplication for the

weighting vector Ni).

3.2.1 Feature extraction branch

The gray section in Figure 4 shows the architecture of the

FEB, which is designed for extracting a boundary-enhanced point

map with different receptive fields. Multiple receptive fields

integrate global context information and local detailed

information, which is beneficial to accurate localization of

boundary key points. We adopted convolution with different

FIGURE 3
Two different types of point maps extracted from the same OCT B-scan. The original points map was generated using binary disk as (Lee et al.,
2020), while the soft map was generated based on a two-dimensional Gauss function. All points were extracted from the same boundary of ground
truth.

FIGURE 4
The architecture of the proposed BEM (A). The BEM consists of three parallel branches including FEB (B), CEB (C) and BAB (D), which achieve
enhancement of boundary information from the feature, channel and spatial perspective, respectively.
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dilation rates to obtain the features with different receptive fields.

Finally, the features with different receptive fields are

concatenated and then fed into a single 1 × 1 convolutional

layer with a Sigmoid function. Let dsr(fi) be the encoded feature

maps of input feature maps fi using s × s convolution with

dilation rate r. Then the generated boundary-enhanced point

map can be expressed as:

Mi � S d1
1 d1

1 fi( ) ⊙ d3
1 fi( ) ⊙ d3

2 fi( ) ⊙ d3
4 fi( ) ⊙ d3

6 fi( )[ ]( ),
(3)

where ⊙ and S denote a concatenation operation, and a Sigmoid

function, respectively.

3.2.2 Channel enhancement branch

Each channel of a feature map may be regarded as a specific-

class response. However, there are also some differences in the

importance of different feature classes to a specific task (e.g.,

choroid segmentation). In order to selectively enhance features

useful for choroid segmentation, a CEB is designed to calculate

channel-wise weighting vectors for extracted feature maps. The

detailed structure of CEB is shown in the green section of

Figure 4. The branch first adopts global average pooling (gap)

to generate channel-wise statistics of the input feature maps fi,

then applies one-dimensional convolution of kernel size 3 to

obtain the final channel-wise weighting vectors Ni, which can be

denoted as follows:

Ni � S C1D3 fgap fi( )( )( ), (4)

where fgap denotes global average pooling; C1D3 denotes the one-

dimensional convolution of kernel size 3; S denotes a Sigmoid

function.

3.2.3 Boundary activation branch

In order to further improve detection of the choroidal

boundary, we introduced an extra branch called the BAB, as

detailed in by the red section of Figure 4. The channel number of

the feature maps is reduced to 1 via a 1 × 1 convolutional layer

followed by a Sigmoid function: a specific activation function is

then applied to the obtained single-channel feature map, which

can be formulated as follows:

Qi � e xi−0.5( )2 + 1 − e−0.25,
xi � S C2D1 fi( )( ),{ (5)

where fi represents the input feature maps; C2D1 represents the

1 × 1 convolutional layer; S denotes a Sigmoid function.

It is worth noting that the specific activation function was

designed based on the observation that choroidal boundary

pixels generally have a value around 0.5 in the obtained

feature maps, while interior of choroid and background pixels

have values near 1 and 0, respectively. To this end, the activation

map is utilized to adjust each feature map spatially for the

choroid segmentation task, by assigning higher weights for

choroidal boundary pixels (close to 2—e−0.25), and lower

weights for interior of choroid and background pixels (close

to 1) (Simonyan and Zisserman, 2014). In this way, the boundary

information is highlighted after activation.

3.3 Loss function

In order to effectively train the proposed choroid

segmentation network, we introduced a novel loss called

boundary perceptual loss (BP-Loss), which embeds the soft

point map into the segmentation network. The complete joint

loss function is formed after incorporating segmentation loss.

3.3.1 Segmentation loss

First, we adopted Binary Cross Entropy Loss as the

segmentation loss in order to reduce the difference between

the ground-truth segmentation map and the predicted

segmentation map, which is defined as:

LossSeg � −∑
i

1 − SiGT( ) · log 1 − Ŝ
i

Pred( ) + SiGT · log Ŝ
i

Pred( )( ),
(6)

where SiGT and Ŝ
i
Pred represent the ith pixel of ground truth

segmentation map, and the corresponding predicted

segmentation map, respectively.

3.3.2 Boundary perceptual loss

Unlike general semantic segmentation tasks, medical

images require strong expert knowledge to achieve better

segmentation performance. Therefore, we concatenated the

generated soft point map with the predicted result and

ground-truth to form the input of the VGG network, in

order to constrain their geometrical relationship. To

maintain consistency between the output of the FEB and

ground truth. We adopted mean square error (MSE) loss

and defined boundary point loss as:

LossiMap � 1
hi × wi

∑h
i

j�1
∑w

i

k�1
Mi

j,k −Mi
GTj,k

( )2

, (7)

where Mi and Mi
GT respectively represent the output point map

and the ground truth soft point map for the FEB in the ith layer,

and hi and wi represent the corresponding height and width,

respectively.
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LossGF � ∑
i

1
Ni

‖ϕi SGT ⊙ MGT( ) − ϕi ŜPred ⊙ MGT( )‖1, (8)

where ϕi (·) denotes the feature maps from the ith layer of the

VGG-19 network pre-trained on the ImageNet; SGT denotes

ground truth segmentation map; MGT denotes ground truth

soft point map; ŜPred denotes the predicted segmentation map;

⊙ denotes concatenation operation; and Ni denotes the element

number of feature maps from the ith layer of VGG-19.

The Boundary Perceptual Loss is defined as:

LossBP � LossGF +∑n
i

LossiMap (9)

where n indicates the number of BEMs in the proposed choroid

segmentation network.

Finally, the total loss function is defined as:

LossTotal � λSegLossSeg + λBPLossBP (10)

where λSeg and λBP are set as 0.5 and 0.5 in our task.

4 Experiment settings

4.1 Dateset

In this work, a newChoroidalOCT image for SegmenTAtion

(COSTA) dataset, which consists of three subsets named

COSTA-H, COSTA-T and COSTA-B, was constructed for our

proposed approach. These subsets were acquired from different

devices or adopted different bit depths, as illustrated in Figure 5.

• COSTA-H consists of 10 OCT volumes from 10 healthy

subjects. Each volume was captured by the Heidelberg Spectrails

system, and contains 384 non-overlapping B-scans, each covering a

3 × 3 × 2mm3 region. Two groups of ophthalmologists were invited

to independently make manual annotations of the upper and lower

boundaries of the choroidal layer (BM andCSI), and their consensus

were used as ground truth after discussion. In order to reduce the

number of manual annotations, we asked these ophthalmologists to

annotate one B-scan every six consecutive B-scans, due to the high

similarity between adjacent B-scans in an OCT volume. Finally, we

obtained a total of 384/6 × 10 = 640 B-scans with manually

annotated choroid boundaries.

• COSTA-T was captured by the Topcon DRI-OCT-

1 system, containing a total of 20 OCT volumes from

20 healthy human eyes. Each volume contains 256 B-scans

with a resolution of 512 × 992 pixels covering a 6 × 6 ×

2mm3 region. This dataset was also annotated by the same

protocol as COSTA-H, yielding a total of 256/4 × 20 =

1280 B-scans with annotated choroid boundaries.

Both COSTA-H and COSTA-T datasets were used for training

and testing, where the ratio of data volume between the training and

testing sets is 3:1. To more accurately and credibly evaluate the

proposed network, we adopted the 4-fold cross-validation strategy,

i.e., randomly dividing all samples into 4 equal pieces and taking

each piece as the validation set and others as the training set in turn.

After 4 groups of tests, different validation sets are replaced each

time. That is, the results of four groups of models are obtained, and

the average value is taken as the final result.

• COSTA-B was captured by a homemade 70-Khz SD-OCT

system with different bit depths, and all this data was selected from

Hao et al. (Hao et al., 2020). It contains 199 annotated B-scans with a

resolution of 270 × 450 pixels from one normal subject. By contrast

with COSTA-H and COSTA-T, COSTA-B was only used to test the

robustness of the proposed method with respect to imaging quality.

For the same B-scan, we also made a comparison of segmentation

results based on different bit depths. The higher bit depth represents

the better image quality, whichmakes for easier choroid segmentation.

4.2 Implementation

All deep learning approaches in the experiments were

implemented with PyTorch (Paszke et al., 2019) and ran on a

single NVIDIA GeForce GTX 3090 GPU with 24 GB memory

FIGURE 5
Examples of the original OCT images from (A) COSTA-H dataset, (B) COSTA-T dataset, (C) COSTA-B dataset (6 bit-depth), and (D) COSTA-B
dataset (12 bit-depth).
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under an Ubuntu 16.04 system. The proposed network was

trained with 400 epochs, and some hyper-parameters were set

as follows: Adam optimization, with an initial learning rate of

0.0005 and batch size of 8. For other comparison methods, we

adopted the same training strategy in the original paper.

4.3 Quantitative evaluation metrics

In order to compare the performance of the proposed

method with other state-of-the-art deep learning networks, the

following routine metrics for image segmentation were adopted

and calculated:

• Dice Coefficient (Dice) = 2 × TP
2 × TP+FP+FN;

• Intersection over Union (IoU) = TP
TP+FP+FN;

• Accuracy (Acc) = TP+TN
TP+TN+FP+FN;

• Sensitivity (Sen) = TP
TP+FN;

where TP is true positive, FP is false positive, TN is true negative,

and FN is false negative.

In addition, we adopted Average Unsigned Surface Detection

Error (AUSDE) (Xiang et al., 2018) based on BM and CSI:

AUSDE � 1
m

∑m
i�1

|y i( ) − ŷ i( )| (11)

where m represents the width of the B-scan, y(i) and ŷ(i)

represent vertical coordinates of the ith point in the horizontal

direction of BM or CSI in the predicted segmentation map and

ground truth, respectively. Based on y(i) and ŷ(i) of BM and CSI

(respectively denoted as y(i)
BM, ŷ(i)

BM and y(i)
CSI, ŷ

(i)
CSI), average

Thickness Difference (TD) can also be calculated as:

TD � 1
m

∑m
i�1

‖y i( )
CSI − y i( )

BM| − |ŷ i( )
CSI − ŷ i( )

BM‖ (12)

5 Results

In this section, we performed training, validation as well as

testing on COSTA-H and COSTA-T datasets, and compared them

with the state-of-the-art choroid segmentation methods from both

qualitative and quantitative perspectives. In addition, we applied the

model trained on COSTA-H to COSTA-B to validate the robustness

of the proposed method. Furthermore, we applied the proposed

method to high myopia subjects. Segmentation results of all B-scans

were then utilized for 3D reconstruction, which extracts 3D features

for clinical correlation analysis.

5.1 Qualitative results

Figure 6 shows the visualization of the results of training and

testing on Heidelberg, and we compare them with other popular

methods that use deep learning to segment the choroid layer,

including the U-Net (Ronneberger et al., 2015), FCN (Long et al.,

2015), DeepLab v3+ (Chen et al., 2018), SegNet (Badrinarayanan

et al., 2017), CE-Net (Gu et al., 2019), CS-Net (Mou et al., 2019),

and SCA-CENet (Mao et al., 2020). In Figure 7, the BM and CSI

are located by blue and red lines, respectively. In both the overall

segmentation and the boundary extraction (shown by the

zoomed-in part of Figure 7), the proposed BEM performed

better than its counterparts, which shows that our

reinforcement of boundary characteristics is useful and efficient.

The testing results on the COSTA-B dataset are presented in

Figure 8, which shows three OCT B-Scans with different bit

depths, including 6, 8, and 12 (the best image quality) bits. The

model with the best segmentation results on the COSTA-H

dataset was used to segment these images. The segmentation

results show the excellent robustness of the proposed model.

Common segmentation methods that focus on global

information and lack detailed features have difficulty in fully

segmenting all the choroid layers. In contrast, the proposed

method, which benefits from its ability to enhance boundary

characteristics and extract different features from different

perceptual fields and channels, shows good robustness across

images of differing qualities.

5.2 Quantitative results

In order to verify the advantages of our method from a

quantitative perspective, we selected the Dice, IoU, AUSDE and

TD as evaluation metrics. For the COSTA-B test, only two

metrics, Dice and IoU, were selected for evaluation, as the

segmentation results of many methods could not form clear

boundary lines (as shown in Figure 8).

Table 1 shows the quantitative comparison of various deep

learning methods applied to the COSTA-H dataset. As is shown

in Table 1, our method achieved 97.06% of the Dice coefficient

and 94.31% of the IoU value, with a Boundary Error of 0.9496 for

AUSDE of the BM and a Detection Error of 3.0029 for the lower

boundary CSI, outperforming other methods. After adding BEM

and BP-Loss to UNet, the value of AUSDE of CSI is improved by

2.57 pixels and that of TD is improved by 2.68 pixels,

demonstrating the value of boundary extraction.

In order to further evaluate our proposed method, we

conducted additional tests on the COSTA-T dataset and the

results are shown in Table 2. With the help of BEM, our method

achieves 92.87% of the Dice coefficient and 86.91% of the IoU

value: after adding the BEM and BP-Loss, this improves to 2.02%

and 2.39% on the Dice and IoU values, respectively.

We also select 6, 8, 10, and 12 bit depth images in the

COSTA-B dataset for evaluation on the DICE and IoU metrics.

For each network, both the best trained and validated models on

the COSTA-H dataset were tested. It may be seen from Figure 9,

by contrast with our proposed method, the segmentation results
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of the other networks degrade significantly over decreased depths

of the same image. Specifically, all of the tested algorithms obtain

better segmentation results on the 12-bit depth map than those

on the 6 and 8-bit depths. This further validates the robustness of

the proposed method.

5.3 Ablation study

In order to verify that each branch in the BEM and the BP-Loss

are effective, we conducted ablation experiments by removing each

branch separately and performing the experiments on the same

FIGURE 6
The visualization of the example result of choroid segmentation on the COSTA-H dataset. The first image is the original image, the second
image is the ground truth, and the next few images are the results of different methods of segmentation: the specific methods are marked in the
upper left corner of the image. White denotes a correctly segmented choroidal area, red denotes over-segmentation, and blue denotes under
-segmentation.

FIGURE 7
Results of different choroid segmentation methods in boundary detection. The name of the method is shown at the upper left corner of each
image.
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FIGURE 8
Comparison results of other choroid segmentationmethods in boundary detection. The specificmethods aremarked in the upper left corner of
the image.

TABLE 1 Quantitative segmentation results of different deep learning methods on the COSTA-H dataset.

COSTA-H

Methods Acc(%) Sen(%) Dice (%) AUSDE (pixels) TD (pixels) Size (Mb)

BM CSI

U-Net 99.04 ± 0.92 95.52 ± 3.87 96.10 ± 3.96 1.01 ± 1.07 5.57 ± 5.58 5.92 ± 7.01 53.7

CE-Net 99.09 ± 0.88 96.05 ± 5.12 96.30 ± 3.08 1.05 ± 0.25 3.95 ± 5.03 4.19 ± 4.89 116.2

FCN 99.00 ± 0.95 96.33 ± 5.51 96.04 ± 3.26 1.25 ± 0.46 3.93 ± 4.82 4.24 ± 4.57 134.4

SegNet 98.86 ± 0.70 96.70 ± 2.97 95.68 ± 1.84 1.33 ± 0.73 4.72 ± 3.22 4.99 ± 3.12 176.8

DeepLab v3+ 98.78 ± 0.99 95.30 ± 5.40 95.23 ± 3.29 1.37 ± 0.89 5.36 ± 5.08 5.52 ± 4.94 368.1

SCA-CENet 99.14 ± 0.80 96.11 ± 4.65 96.41 ± 3.23 1.01 ± 0.30 4.11 ± 5.15 4.40 ± 5.00 116.2

CS-Net 99.00 ± 0.85 95.31 ± 4.92 96.03 ± 2.85 1.03 ± 0.50 4.32 ± 4.45 4.46 ± 4.26 35.8

Our method 99.27 ± 0.27 97.07 ± 2.01 97.06 ± 0.90 0.95 ± 0.59 3.00 ± 1.48 3.24 ± 1.37 54.1

The values in bold represent the best of all the comparative experimental results.

TABLE 2 Quantitative segmentation results of different deep learning methods on the COSTA-T dataset.

COSTA-T

Methods Acc(%) Sen(%) Dice (%) AUSDE (pixels) TD (pixels) Size (Mb)

BM CSI

U-Net 97.20 ± 1.47 91.32 ± 6.25 90.85 ± 4.29 1.99 ± 0.97 11.99 ± 7.48 11.98 ± 7.45 53.7

CE-Net 97.52 ± 1.46 93.00 ± 5.85 91.77 ± 4.70 1.96 ± 0.81 10.06 ± 6.35 10.18 ± 6.49 116.2

FCN 97.19 ± 1.47 91.49 ± 6.53 90.61 ± 5.04 2.72 ± 3.56 12.17 ± 7.54 11.97 ± 8.32 134.4

SegNet 97.37 ± 1.35 92.01 ± 6.11 91.38 ± 4.04 2.12 ± 1.17 11.43 ± 6.67 11.57 ± 6.61 176.8

DeepLab v3+ 96.87 ± 1.64 87.00 ± 9.05 88.95 ± 6.01 3.22 ± 4.35 13.75 ± 9.18 13.92 ± 8.71 368.1

SCA-CENet 97.62 ± 1.52 93.30 ± 5.93 92.21 ± 4.78 1.94 ± 0.70 9.56 ± 6.56 9.77 ± 6.65 116.2

CS-Net 97.31 ± 1.52 90.65 ± 6.74 91.12 ± 4.58 1.76 ± 0.59 11.16 ± 7.74 11.20 ± 7.76 35.8

Our method 97.85 ± 1.25 92.47 ± 6.13 92.87 ± 3.70 1.88 ± 1.07 9.11 ± 6.19 9.23 ± 6.28 54.1

The values in bold represent the best of all the comparative experimental results.
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dataset, and the results are shown in Figure 10. It can be seen that the

dice and IoUmetrics gradually increase with the addition of different

branches, both in COSTA-T and COSTA-H datasets. It is obvious

that the segmentation result benefits from every branch of the BEM.

After adding BEM, the IoU of the segmentation result on

COSTA-T dataset reaches 86.53%, which is 3.01% higher than the

baseline. With the help of BP-Loss, the segmentation result reaches

86.91%, which further improves the segmentation effect. Similarly,

each module and branch plays a role on the COSTA-H dataset.

6 Clinic applications

High myopia is a common visual impairment worldwide.

The mechanical pulling of the growing eye axis in high myopia

leads to retinal and choroidal thinning, as well as to a variety of

pathological changes in the fundus, which can easily evolve into

pathological myopia (Read et al., 2019; Scherm et al., 2019; Singh

et al., 2019). Previous studies have shown that choroidal

thickness is significantly higher in highly myopic patients than

that in the healthy subjects, but no correlation has been found in

other features such as volume, surface area, curvature of the BM

and CSI, and other 3D features. Encouraged by the good

perfomance of the proposed method demonstrated in the

experimentation, we applied the segmentation method to a

prospective clinical study, in which the choroidal thickness of

different regions are extracted and the 3D morphology of

choroidal structures reconstructed using point clouds.

1) Dataset: We collected 20 volunteers aged between 20 and

30 years with high myopia. The right and left eyes of all

FIGURE 9
Trend of Dice and IoU results of different segmentation methods in different bit depth images. (A), (C) are the result on the COSTA-H dataset,
and (B), (D) are the result on the COSTA-T dataset.

FIGURE 10
Ablation results on COSTA-H and COSTA-T datasets. The blue bars denote the quantitative results of the baseline network U-Net. The orange
bars denote the segmentation results of the network with FEB. The gray bars denote the segmentation results of the network with FEB and CEB. The
yellow bars denote the segmentation results of the network with FEB, CEB, and BAB. The red bars denote the segmentation results of the network
with FEB, CEB, BAB, and BP-Loss.
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volunteers were scanned by the Heidelberg Spectrails system

device for data acquisition, and volume data were extracted

within a 4.5 × 4.5 × 2mm3 area centered on the macular.

Each volume contained 512 B-scans.

2) Result: Figure 11 shows the distribution of choroidal layer

thickness in different areas across the volume, in both normal

and highly myopic subjects. Table 3 shows the quantitative

results of the average choroidal thickness in different subfields

of the macula. The average choroidal thickness in the highly

myopic subjects was significantly thinner than that in the normal

subjects in all regions, with an average choroidal thickness of

230.41 ± 28.92 μm in the normal population and 177.31 ±

42.35 μm in the highly myopic subjects, while the specific

thickness distribution in the other regions is shown in

Table 3, with p-values less than 0.001 after t-test, which is

consistent with the results reported in (Wang et al., 2015)

recently.

Current studies on the correlation between choroidal

morphology and diseases rarely involve the 3D features of the

choroid. To fill this gap, we reconstructed the 3D morphology of

the choroid and extracted the 3D features of choroidal volume,

surface area and surface curvature using 3D point clouds. The

FIGURE 11
Choroidal layer thickness map in normal and highly myopic subjects using Early Treatment Diabetic Retinopathy Study (ETDRS) circles of 1 mm,
3 mm, and 6 mm. The standard ETDRS subfields dividing the macula into 9 subfields. CFT: Central foveal thickness; TIM: Temporal inner macula;
NIM: Nasal inner macula; SIM: Superior inner macula; IIM: Inferior inner macula; TOM: Temporal outer macula; NOM: Nasal outer macula; SOM:
Superior outermacula; IOM: Inferior outermacula. (A) denotes the thicknessmap in normal subject, (B) denotes the 9 subfields ofmacula, (C,D)
denote the average choroidal thickness [μm] of subfields in normal subjects and highly myopic, respectively.

TABLE 3 Average choroidal thickness and 95% CI of different Early Treatment Diabetic Retinopathy Study (ETDRS) subfields in normal and highly
myopic subjects.

ETDRS subfield Normal High Myopia Mean Difference (μm)* 95%CI (μm) p-value

Mean SD Mean SD Lower Bound Upper Bound

(μm) (μm) (μm) (μm)

Center point thickness 235.93 45.54 180.94 50.72 −54.99 28.13 81.85 <0.001
Central foveal thickness 242.85 40.91 177.31 52.13 −65.54 12.82 39.81 <0.001
Superior inner macula 247.22 31.86 186.16 48.40 -61.06 38.97 83.16 <0.001
Nasal inner macula 246.43 33.50 185.05 49.44 −61.38 38.55 84.22 <0.001
Inferior inner macula 246.08 37.16 177.73 49.94 −68.36 44.32 92.39 <0.001
Temporal inner macula 236.63 44.22 170.19 47.37 −66.44 40.79 92.08 <0.001
Superior outer macula 245.70 27.59 185.94 48.96 −59.76 38.20 81.32 <0.001
Nasal outer macula 237.04 29.44 187.05 46.11 −49.99 29.19 70.78 <0.001
Inferior outer macula 237.30 30.78 174.64 44.82 −62.67 41.85 83.49 <0.001
Temporal outer macula 210.82 45.66 153.32 40.59 −57.50 32.83 82.16 <0.001
Global average 230.41 28.92 177.31 42.35 −53.09 33.47 72.72 <0.001

* Normal group as reference, SD, means Standard Deviation.
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average volume of the choroid in the central macular notch 3 ×

3 × 2mm3 in the normal subjects was 2.211 ± 0.656mm3, whereas

the average volume of the choroid in the same range in the highly

myopic subjects was 1.304 ± 0.441 mm3, with a p-value less than

0.001. This is also consistent with the relevant research results

reported in (Barteselli et al., 2012).

In addition, we also calculated the surface area and the

curvature of the upper and lower choroid: the results are

shown in Table 4. It may be seen from Table 4 that the

choroidal surface areas of highly myopic subjects and normal

subjects are significantly different, while differeces of curvature

between highly myopic subjects and normal subjects are not as

significant.

7 Discussion and conclusion

With the emergence and popularity of deep learning

methods, several choroidal layer segmentation methods

have been developed during the last decade and many

have been applied to choroidal segmentation tasks.

However, due to the low depth and low contrast of the

early OCT techniques, the applications of deep learning

methods to retinal segmentation tasks have been limited.

Since the continuous innovation of OCT equipment means

that the choroid can now be rendered intact in B-scan, it is

straightforward that the previous methods for segmenting

the retinal layer should be applied to the task of choroidal

layer segmentation. However, even when using the most

recent technical improvements in OCT imaging, the CSI

layer of the choroid is still not as clear as the boundaries

of the retina. Therefore, the models developed for retinal

layer segmentation tend to generate ambiguous results when

applied to the choroidal boundary.

Recognizing the limitations of existing models, the goal of

our work is to develop a method to automatically segment the

choroidal layers, while dealing with the ambiguous boundary.

We enable the segmentation network to focus on the boundary

features by adding a boundary enhancement module to the major

segmentation network. The module has three branches to

enhance boundary features via different perspectives:

expanding the perceptual field using dilated convolution,

activating a boundary features using the boundary activation

function and extracting the boundary features of different

channels using channel convolution.

In order to embed expert knowledge into the proposed

choroidal automatic segmentation model, we extract boundary

enhancement points from the boundary of ground truth and

generate a soft point map, then introduce a boundary perceptual

loss, so that the boundary region information can be fed back to

the segmentation network based on ground truth, following

which the accurate segmentation of the choroidal layer can be

performed.

In addition, in order to further validate the clinical

application of this method, compared with previous studies,

we investigated not only from the two-dimensional

perspective of thickness, but also from a three-dimensional

perspective. The differences of choroidal 3D morphological

structures between highly myopic and normal subjects are

compared. This paper demonstrates the effectiveness of the

proposed method, which has the potential to promote

understanding the pathogenesis of some eye diseases (e.g.,

high myopia) related to morphological changes of the

choroid, so as to support early screening and intervention.

However, this work has limitations. For example, the

volunteer normal subjects may have a certain degree of

myopia, yet still not reach the definition of high myopia,

which may affect the statistical analysis of final results. The

dataset employed for validation might be extended, not only

in terms of data volume but also in terms of disease types, such as

glaucoma and pathological myopia. Another limitation of our

method is that it is less useful for tackling multi-layer (multi-

class) segmentation tasks. Since the selected boundary

enhancement points have not been further classified by

different layers, soft point map construction and boundary

enhancement module in the proposed method might not be

suitable for multi-layer segmentation in retinal OCT images. In

future work, the proposed model may be improved by setting

different weights to the boundary points, which would change the

type and number of points adaptively. In this way, the proposed

TABLE 4 Results of choroidal 3D features in normal and highly myopic subjects.

Normal High Myopia Mean Difference * p-value

Mean SD Mean SD

BM Curvature (mm−1) 0.027 0.011 0.029 0.006 0.002 0.538

CSI Curvature (mm−1) 0.091 0.024 0.115 0.141 0.024 0.474

Inner Volume (mm3) 2.211 0.656 1.304 0.441 -0.907 <0.001
Inner Surface Area (mm2) 1.166 0.258 0.804 0.436 -0.362 <0.001

* Normal group as reference.

Frontiers in Cell and Developmental Biology frontiersin.org14

Wu et al. 10.3389/fcell.2022.1060241

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1060241


model might then be applied to both binary and

multiclassification tasks.
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