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Purpose: This study aims to develop a predictionmodel to categorize the risk of

early death among breast cancer patients with bone metastases using machine

learning models.

Methods: This study examined 16,189 bone metastatic breast cancer patients

between 2010 and 2019 from a large oncological database in the United States.

The patients were divided into two groups at random in a 90:10 ratio. The

majority of patients (n = 14,582, 90%) were served as the training group to train

and optimize prediction models, whereas patients in the validation group (n =

1,607, 10%) were utilized to validate the prediction models. Four models were

introduced in the study: the logistic regression model, gradient boosting tree

model, decision tree model, and random forest model.

Results: Early death accounted for 17.4% of all included patients. Multivariate

analysis demonstrated that older age; a separated, divorced, or widowedmarital

status; nonmetropolitan counties; brain metastasis; liver metastasis; lung

metastasis; and histologic type of unspecified neoplasms were significantly

associated with more early death, whereas a lower grade, a positive estrogen

receptor (ER) status, cancer-directed surgery, radiation, and chemotherapy

were significantly the protective factors. For the purpose of developing

prediction models, the 12 variables were used. Among all the four models,

the gradient boosting tree had the greatest AUC [0.829, 95% confident interval

(CI): 0.802–0.856], and the random forest (0.828, 95% CI: 0.801–0.855) and

logistic regression (0.819, 95% CI: 0.791–0.847) models came in second and

third, respectively. The discrimination slopes for the three models were 0.258,

0.223, and 0.240, respectively, and the corresponding accuracy rates were

0.801, 0.770, and 0.762, respectively. The Brier score of gradient boosting tree

was the lowest (0.109), followed by the random forest (0.111) and logistic
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regression (0.112) models. Risk stratification showed that patients in the high-

risk group (46.31%) had a greater six-fold chance of early death than those in the

low-risk group (7.50%).

Conclusion: The gradient boosting tree model demonstrates promising

performance with favorable discrimination and calibration in the study, and

this model can stratify the risk probability of early death among bonemetastatic

breast cancer patients.
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Introduction

Breast cancer poses a serious threat to the global health

problem with an estimated 2.3 million new cases (11.7%) in 2020,

ranking as the most commonly diagnosed malignancy among

female patients (Sung et al., 2021). In addition, breast cancer is

the leading cause of cancer death in women, accounting for

0.7 million new cancer-related deaths in 2020 (Sung et al., 2021),

and it ranks the fifth in terms of mortality among all cancer

patients. Besides, breast cancer incidence continues to rise with

the mortality decreasing slightly mainly due to early detection,

greater knowledge, and therapeutic improvements (Siegel et al.,

2022). However, survival prognosis is far from satisfactory,

especially among less developed countries because of delayed

diagnosis and a lack of access to effective treatments (Kashyap

et al., 2022; Wilkinson and Gathani, 2022). Therefore, an

increasing global burden of breast cancer is inevitable

(Wilkinson and Gathani, 2022).

Bone is the most frequent site for breast cancer metastases,

developing in 65.0%–80% of patients (Kuchuk et al., 2013; Body

et al., 2017). Of note, bone metastatic breast cancer is an

advanced stage and characterized by pathologic fracture,

spinal cord compression, endocrine dysregulation, and

increased mobility, which has a detrimental effect on the

patient’s survival outcome, which worsens the patient’s quality

of life (Brook et al., 2018). It has been reported that the median

survival time for breast cancer patients with bone metastases is

about 2.0 years (Pan et al., 2021), and half the number of breast

cancer patients treated with surgery for bone metastases die

within 30 months (Mou et al., 2021).

Currently, there is no therapeutic benchmark for the

management of bone metastases in breast cancer, which

brings challenges to both patients and physicians. Surgical

interventions of bone metastatic breast cancer patients

typically include minimal invasive surgery and open surgery,

such as stabilization or replacement of the destructive bone. The

basic objective of any treatment is to maximize patient’s

functional outcome and improve the quality of life among

those patients (Hankins et al., 2021). In this context,

prediction of early death is critical for such patients, because

therapeutic strategies are conducted largely depending on the

accurate and personalized prediction of life span (Kirkinis et al.,

2016). Generally, patients with longer life expectancies should be

treated with more aggressive treatments like invasive surgery of

tumor excision in the long bone and spine or relatively long-

course radiotherapy (Tsukamoto et al., 2021), whereas patients

with shorter life expectancies are recommended to receive the

best supportive care and minimal invasive surgery like

vertebroplasty or short-course radiotherapy (Tsukamoto et al.,

2021). Inappropriate estimation of survival may lead to over- or

under-treatments, which can accelerate patient death or result in

a low quality of life.

Therefore, the aim of our study was to develop a reliable

prediction model that would explicitly stratify the risk of early

death among bone metastatic breast cancer patients. In this

study, the logistic regression model and three machine

learning models were introduced and compared in order to

improve the accuracy of prediction. We found that the

gradient boosting tree model performed promisingly and

could stratify the risk probability of early death in bone

metastatic breast cancer patients.

Patients and methods

Patients and study design

The data for this study, which examined 23,045 breast

cancer patients with bone metastases between 2010 and

2019, were taken from the Surveillance, Epidemiology, and

End Results (SEER) database, which can be accessed at

https://seer.cancer.gov. According to SEER, an authoritative

data source for cancer statistics in the United States, the

cancer incidence and population information were broken

down by age, sex, race, year of diagnosis, and geographic

regions. In addition, the SEER database updates its research

data each spring depending on the previous November’s

submission of data. The database can be accessed publicly

and provides patient data without requiring personal

identification, so ethical approval and informed permissions

were not necessary. Using the reference number 23489-

Nov2020, we were given permission to access the database of
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the National Cancer Institute in the United States. The human

data were in accordance with the Declaration of Helsinki.

For analysis, patients with breast cancer with bone metastases

were included. The following were the exclusion criteria: patients

aged 18 years or younger (Sung et al., 2021); patients having no

recorded survival time (Siegel et al., 2022); patients who died

from causes other than this cancer (Wilkinson and Gathani,

2022); patients who died from causes that were unknown or

missing (Kashyap et al., 2022); patients with missing data

(Kuchuk et al., 2013); patients who were alive with a follow-

up of 3 months or less (Body et al., 2017). At last, based on the

aforementioned criteria, 16,189 individuals with bone metastatic

breast cancer were enrolled for analysis. A training group (n =

14,582, 90%) and validation group (n = 1,607, 10%) were

randomly developed from the entire patient cohort. Figure 1

shows patients’ flowchart.

Extraction of characteristics

The clinical characteristics for analysis in the study included

patients’ demographics, cancer stages, metastatic conditions,

hormone status, therapeutic strategies, and survival times. The

patient demographics included age (years), sex (female vs. male),

race (American Indian/Alaska Native vs. Asian or Pacific Islander

vs. black vs. white vs. unknown), marital status [married (which

includes common law) vs. separated, divorced, or widowed vs. single

(never married) vs. others], and geographic areas (metropolitan

counties vs. nonmetropolitan counties vs. unknown). Cancer-related

information included laterality (bilateral, single primary vs.

left—origin of primary vs. only one side—side unspecified vs.

paired site laterality, but no information concerning laterality vs.

right—origin of primary), histologic type [adenomas and

adenocarcinomas vs. ductal and lobular neoplasms vs. epithelial

FIGURE 1
Flowchart of the study.
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TABLE 1 Patients’ demographics, clinical characteristics, and therapeutic interventions among bone metastatic breast cancer patients.

Characteristic Overall Groups p

Training cohort Validation cohort

n 16,189 14,582 1,607

Age, mean (SD) 61.67 (14.04) 61.65 (14.04) 61.87 (14.10) 0.547

Sex (%) 0.116

Female 15,998 (98.8) 14,403 (98.8) 1,595 (99.3)

Male 191 (1.2) 179 (1.2) 12 (0.7)

Race (%) 0.368

American Indian/Alaska Native 105 (0.6) 92 (0.6) 13 (0.8)

Asian or Pacific Islander 1,218 (7.5) 1,104 (7.6) 114 (7.1)

Black 2,356 (14.6) 2,130 (14.6) 226 (14.1)

White 12453 (76.9) 11201 (76.8) 1,252 (77.9)

Unknown 57 (0.4) 55 (0.4) 2 (0.1)

Marital status (%) 0.866

Married (which includes common law) 7,055 (43.6) 6,370 (43.7) 685 (42.6)

Separated, divorced, or widowed 4,627 (28.6) 4,157 (28.5) 470 (29.2)

Single (never married) 3,554 (22.0) 3,199 (21.9) 355 (22.1)

Others 953 (5.9) 856 (5.9) 97 (6.0)

Geographic areas (%) 0.800

Metropolitan counties 14,345 (88.6) 12,927 (88.7) 1,418 (88.2)

Nonmetropolitan counties 1,821 (11.2) 1,635 (11.2) 186 (11.6)

Unknown 23 (0.1) 20 (0.1) 3 (0.2)

Laterality (%) 0.575

Bilateral, single primary 95 (0.6) 90 (0.6) 5 (0.3)

Left—origin of primary 7,734 (47.8) 6,970 (47.8) 764 (47.5)

Only one side—side unspecified 55 (0.3) 48 (0.3) 7 (0.4)

Paired site, but no information concerning laterality 776 (4.8) 697 (4.8) 79 (4.9)

Right—origin of primary 7,529 (46.5) 6,777 (46.5) 752 (46.8)

Brain metastasis (%) 0.179

No 14,443 (89.2) 13,031 (89.4) 1,412 (87.9)

Unknown 569 (3.5) 504 (3.5) 65 (4.0)

Yes 1,177 (7.3) 1,047 (7.2) 130 (8.1)

Liver metastasis (%) 0.609

No 12,043 (74.4) 10,843 (74.4) 1,200 (74.7)

Unknown 422 (2.6) 375 (2.6) 47 (2.9)

Yes 3,724 (23.0) 3,364 (23.1) 360 (22.4)

Lung metastasis (%) 0.823

No 11,422 (70.6) 10,279 (70.5) 1,143 (71.1)

Unknown 563 (3.5) 506 (3.5) 57 (3.5)

Yes 4,204 (26.0) 3,797 (26.0) 407 (25.3)

T stage (%) 0.754

T0 346 (2.1) 313 (2.1) 33 (2.1)

T1 1,841 (11.4) 1,655 (11.3) 186 (11.6)

T2 4,219 (26.1) 3,795 (26.0) 424 (26.4)

T3 2,233 (13.8) 2,004 (13.7) 229 (14.3)

T4 4,453 (27.5) 4,037 (27.7) 416 (25.9)

TX 3,097 (19.1) 2,778 (19.1) 319 (19.9)

(Continued on following page)
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neoplasms (not otherwise specified, NOS) vs. squamous cell

neoplasms vs. unspecified neoplasms vs. others], grade (I vs. II

vs. III vs. IV vs. Unknown), T stage (T0 vs. T1 vs. T2 vs. T3 vs. T4 vs.

TX), and N stage (N0 vs. N1 vs. N2 vs. N3 vs. NX). The presence of

metastatic conditions included brain metastasis (no vs. unknown vs.

yes), liver metastasis (no vs. unknown vs. yes), and lung

TABLE 1 (Continued) Patients’ demographics, clinical characteristics, and therapeutic interventions among bone metastatic breast cancer patients.

Characteristic Overall Groups p

Training cohort Validation cohort

N stage (%) 0.132

N0 3,881 (24.0) 3,468 (23.8) 413 (25.7)

N1 6,894 (42.6) 6,255 (42.9) 639 (39.8)

N2 1,443 (8.9) 1,297 (8.9) 146 (9.1)

N3 1,919 (11.9) 1,730 (11.9) 189 (11.8)

NX 2,052 (12.7) 1,832 (12.6) 220 (13.7)

Histologic type (%) 0.471

Adenomas and adenocarcinomas 1,080 (6.7) 973 (6.7) 107 (6.7)

Ductal and lobular neoplasms 13,557 (83.7) 12,205 (83.7) 1,352 (84.1)

Epithelial neoplasms, NOS 1,075 (6.6) 967 (6.6) 108 (6.7)

Squamous cell neoplasms 16 (0.1) 14 (0.1) 2 (0.1)

Unspecified neoplasms 388 (2.4) 352 (2.4) 36 (2.2)

Others 73 (0.5) 71 (0.5) 2 (0.1)

Grade (%) 0.624

Grade I 855 (5.3) 767 (5.3) 88 (5.5)

Grade II 4,170 (25.8) 3,738 (25.6) 432 (26.9)

Grade III 3,705 (22.9) 3,357 (23.0) 348 (21.7)

Grade IV 55 (0.3) 51 (0.3) 4 (0.2)

Unknown 7,404 (45.7) 6,669 (45.7) 735 (45.7)

ER status (%) 0.193

Borderline/unknown 1,483 (9.2) 1,338 (9.2) 145 (9.0)

Negative 2,385 (14.7) 2,172 (14.9) 213 (13.3)

Positive 12,321 (76.1) 11,072 (75.9) 1,249 (77.7)

PR status (%) 0.867

Borderline/unknown 1,656 (10.2) 1,497 (10.3) 159 (9.9)

Negative 4,633 (28.6) 4,167 (28.6) 466 (29.0)

Positive 9,900 (61.2) 8,918 (61.2) 982 (61.1)

HER2 (%) 0.165

Borderline/unknown 2,230 (13.8) 2,001 (13.7) 229 (14.3)

Negative 10,885 (67.2) 9,784 (67.1) 1,101 (68.5)

Positive 3,074 (19.0) 2,797 (19.2) 277 (17.2)

Cancer-directed surgery (%) 0.849

No 12,296 (76.0) 11,077 (76.0) 1,219 (75.9)

Unknown 274 (1.7) 244 (1.7) 30 (1.9)

Yes 3,619 (22.4) 3,261 (22.4) 358 (22.3)

Radiation (%) 0.862

No/unknown 10,725 (66.2) 9,664 (66.3) 1,061 (66.0)

Yes 5,464 (33.8) 4,918 (33.7) 546 (34.0)

Chemotherapy (%) 0.104

No/unknown 7,642 (47.2) 6,852 (47.0) 790 (49.2)

Yes 8,547 (52.8) 7,730 (53.0) 817 (50.8)

Early death (%) 0.329

No 13,374 (82.6) 12,061 (82.7) 1,313 (81.7)

Yes 2,815 (17.4) 2,521 (17.3) 294 (18.3)

SD, standard deviation; T, tumor; N, nodes; NOS, not otherwise specified; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.
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TABLE 2 Characteristic comparison of early death among bone metastatic breast cancer patients in the training group.

Characteristic Overall Early death p

No Yes

n 14,582 12,061 2,521

Age [mean (SD)] 61.65 (14.04) 60.42 (13.83) 67.51 (13.53) <0.001

Sex (%) 0.279

Female 14,403 (98.8) 11,907 (98.7) 2,496 (99.0)

Male 179 (1.2) 154 (1.3) 25 (1.0)

Race (%) 0.237

American Indian/Alaska Native 92 (0.6) 79 (0.7) 13 (0.5)

Asian or Pacific Islander 1,104 (7.6) 925 (7.7) 179 (7.1)

Black 2,130 (14.6) 1741 (14.4) 389 (15.4)

White 11,201 (76.8) 9,266 (76.8) 1,935 (76.8)

Unknown 55 (0.4) 50 (0.4) 5 (0.2)

Marital status (%) <0.001
Married (which includes common law) 6,370 (43.7) 5,517 (45.7) 853 (33.8)

Separated, divorced, or widowed 4,157 (28.5) 3,243 (26.9) 914 (36.3)

Single (never married) 3,199 (21.9) 2,594 (21.5) 605 (24.0)

Others 856 (5.9) 707 (5.9) 149 (5.9)

Geographic areas (%) 0.013

Metropolitan counties 12,927 (88.7) 10,734 (89.0) 2,193 (87.0)

Nonmetropolitan counties 1,635 (11.2) 1,312 (10.9) 323 (12.8)

Unknown 20 (0.1) 15 (0.1) 5 (0.2)

Laterality (%) <0.001
Bilateral, single primary 90 (0.6) 65 (0.5) 25 (1.0)

Left—origin of primary 6,970 (47.8) 5,828 (48.3) 1,142 (45.3)

Only one side—side unspecified 48 (0.3) 39 (0.3) 9 (0.4)

Paired site, but no information concerning laterality 697 (4.8) 509 (4.2) 188 (7.5)

Right—origin of primary 6,777 (46.5) 5,620 (46.6) 1,157 (45.9)

Brain metastasis (%) <0.001
No 13,031 (89.4) 10,986 (91.1) 2,045 (81.1)

Unknown 504 (3.5) 367 (3.0) 137 (5.4)

Yes 1,047 (7.2) 708 (5.9) 339 (13.4)

Liver metastasis (%) <0.001
No 10,843 (74.4) 9,421 (78.1) 1,422 (56.4)

Unknown 375 (2.6) 284 (2.4) 91 (3.6)

Yes 3,364 (23.1) 2,356 (19.5) 1,008 (40.0)

Lung metastasis (%) <0.001
No 10,279 (70.5) 8,872 (73.6) 1,407 (55.8)

Unknown 506 (3.5) 376 (3.1) 130 (5.2)

Yes 3,797 (26.0) 2,813 (23.3) 984 (39.0)

T stage (%) <0.001
T0 313 (2.1) 257 (2.1) 56 (2.2)

T1 1,655 (11.3) 1,454 (12.1) 201 (8.0)

T2 3,795 (26.0) 3,315 (27.5) 480 (19.0)

T3 2,004 (13.7) 1,739 (14.4) 265 (10.5)

T4 4,037 (27.7) 3,254 (27.0) 783 (31.1)

TX 2,778 (19.1) 2,042 (16.9) 736 (29.2)

(Continued on following page)
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metastasis (no vs. unknown vs. yes). In terms of hormone state,

there were estrogen receptor (ER) status (borderline/unknown

vs. negative vs. positive), progesterone receptor (PR) status

(borderline/unknown vs. negative vs. positive), and human

epidermal growth factor receptor-2 (HER2) (borderline/

unknown vs. negative vs. positive). Cancer therapeutic

approaches included cancer-directed surgery (no vs.

unknown vs. yes), radiation (no/unknown vs. yes), and

chemotherapy (no/unknown vs. yes). Age was patient’s age

at cancer diagnosis. Early death in the study was defined as

patients who died within or at 3 months, and survival outcome

referred to cancer-specific survival.

TABLE 2 (Continued) Characteristic comparison of early death among bone metastatic breast cancer patients in the training group.

Characteristic Overall Early death p

No Yes

N stage (%) <0.001
N0 3,468 (23.8) 2,824 (23.4) 644 (25.5)

N1 6,255 (42.9) 5,295 (43.9) 960 (38.1)

N2 1,297 (8.9) 1,140 (9.5) 157 (6.2)

N3 1,730 (11.9) 1,528 (12.7) 202 (8.0)

NX 1,832 (12.6) 1,274 (10.6) 558 (22.1)

Histologic type (%) <0.001
Adenomas and adenocarcinomas 973 (6.7) 734 (6.1) 239 (9.5)

Ductal and lobular neoplasms 12,205 (83.7) 10,489 (87.0) 1,716 (68.1)

Epithelial neoplasms, NOS 967 (6.6) 629 (5.2) 338 (13.4)

Squamous cell neoplasms 14 (0.1) 9 (0.1) 5 (0.2)

Unspecified neoplasms 352 (2.4) 147 (1.2) 205 (8.1)

Others 71 (0.5) 53 (0.4) 18 (0.7)

Grade (%) <0.001
Grade I 767 (5.3) 702 (5.8) 65 (2.6)

Grade II 3,738 (25.6) 3,265 (27.1) 473 (18.8)

Grade III 3,357 (23.0) 2,844 (23.6) 513 (20.3)

Grade IV 51 (0.3) 45 (0.4) 6 (0.2)

Unknown 6,669 (45.7) 5,205 (43.2) 1,464 (58.1)

ER status (%) <0.001
Borderline/unknown 1,338 (9.2) 716 (5.9) 622 (24.7)

Negative 2,172 (14.9) 1,647 (13.7) 525 (20.8)

Positive 11,072 (75.9) 9,698 (80.4) 1,374 (54.5)

PR status (%) <0.001
Borderline/unknown 1,497 (10.3) 850 (7.0) 647 (25.7)

Negative 4,167 (28.6) 3,328 (27.6) 839 (33.3)

Positive 8,918 (61.2) 7,883 (65.4) 1,035 (41.1)

HER2 (%) <0.001
Borderline/unknown 2001 (13.7) 1,249 (10.4) 752 (29.8)

Negative 9,784 (67.1) 8,420 (69.8) 1,364 (54.1)

Positive 2,797 (19.2) 2,392 (19.8) 405 (16.1)

Cancer-directed surgery (%) <0.001
No 11,077 (76.0) 8,722 (72.3) 2,355 (93.4)

Unknown 244 (1.7) 225 (1.9) 19 (0.8)

Yes 3,261 (22.4) 3,114 (25.8) 147 (5.8)

Radiation (%) <0.001
No/unknown 9,664 (66.3) 7,681 (63.7) 1983 (78.7)

Yes 4,918 (33.7) 4,380 (36.3) 538 (21.3)

Chemotherapy (%) <0.001
No/unknown 6,852 (47.0) 4,930 (40.9) 1922 (76.2)

Yes 7,730 (53.0) 7,131 (59.1) 599 (23.8)

SD, standard deviation; T, tumor; N, nodes; NOS, not otherwise specified; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.
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TABLE 3 Multivariate analysis of characteristics for early death among bone metastatic breast cancer patients.

Characteristic OR 95% CI p

Lower limit Upper limit

(Intercept) 0.071 0.024 0.209 <0.001

Age 1.025 1.021 1.029 <0.001

Sex

Female Reference

Male 0.958 0.594 1.545 0.861

Race

American Indian/Alaska Native Reference

Asian or Pacific Islander 1.391 0.624 3.100 0.419

Black 1.423 0.646 3.134 0.381

White 1.284 0.588 2.803 0.531

Unknown 0.529 0.147 1.904 0.330

Marital status

Married (which includes common law) Reference

Separated, divorced, or widowed 1.145 1.011 1.296 0.033

Single (never married) 1.360 1.188 1.556 <0.001
Others 0.977 0.780 1.223 0.838

Geographic areas

Metropolitan counties Reference

Nonmetropolitan counties 1.312 1.126 1.529 0.001

Unknown 2.914 0.724 11.734 0.132

Laterality

Bilateral, single primary Reference

Left—origin of primary 1.021 0.588 1.774 0.940

Only one side—side unspecified 0.379 0.142 1.009 0.052

Paired site, but no information concerning laterality 0.734 0.408 1.320 0.302

Right—origin of primary 1.037 0.597 1.801 0.897

Brain metastasis

No Reference

Unknown 0.901 0.662 1.226 0.507

Yes 2.326 1.962 2.757 <0.001

Liver metastasis

No Reference

Unknown 1.107 0.773 1.586 0.578

Yes 2.821 2.514 3.165 <0.001

Lung metastasis

No Reference

Unknown 1.057 0.778 1.437 0.723

Yes 1.510 1.352 1.687 <0.001

T stage

T0 Reference

T1 0.963 0.654 1.420 0.850

T2 1.082 0.749 1.562 0.675

T3 1.124 0.767 1.646 0.550

T4 1.441 1.001 2.075 0.049

TX 1.272 0.895 1.806 0.179

(Continued on following page)
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Model development and estimation

Selection of significant risk factors for early death was

achieved by utilizing multiple logistic regressions. Models were

developed with significant variables that had a p-value of less

than 0.01. Four models—the logistic regression, gradient

boosting tree, decision tree, and random forest—were

introduced to train and optimize models in the training

group. The most effective model super-parameters were

discovered via grid search or random hyper-parameter search.

TABLE 3 (Continued) Multivariate analysis of characteristics for early death among bone metastatic breast cancer patients.

Characteristic OR 95% CI p

Lower limit Upper limit

N stage

N0 Reference

N1 0.868 0.762 0.989 0.033

N2 0.891 0.714 1.112 0.308

N3 0.838 0.685 1.025 0.085

NX 1.159 0.983 1.366 0.079

Histologic type

Adenomas and adenocarcinomas Reference

Ductal and lobular neoplasms 0.843 0.697 1.021 0.080

Epithelial neoplasms, NOS 1.249 0.993 1.571 0.058

Squamous cell neoplasms 1.675 0.453 6.202 0.440

Unspecified neoplasms 1.552 1.135 2.122 0.006

Others 0.991 0.531 1.849 0.977

Grade

Grade I 0.631 0.470 0.846 0.002

Grade II Reference

Grade III 1.175 1.004 1.375 0.045

Grade IV 0.754 0.294 1.936 0.557

Unknown 1.158 1.009 1.328 0.037

ER status

Borderline/unknown Reference

Negative 0.795 0.507 1.248 0.318

Positive 0.351 0.229 0.537 <0.001

PR status

Borderline/unknown Reference

Negative 1.679 1.096 2.571 0.017

Positive 1.106 0.726 1.684 0.640

HER2

Borderline/unknown Reference

Negative 0.910 0.747 1.108 0.347

Positive 0.861 0.685 1.082 0.199

Cancer-directed surgery

No Reference

Unknown 0.373 0.223 0.623 <0.001
Yes 0.298 0.246 0.361 <0.001

Radiation

No/unknown Reference

Yes 0.623 0.553 0.702 <0.001

Chemotherapy

No/unknown Reference

Yes 0.217 0.192 0.245 <0.001

OR, odds ratio; CI, confident interval; SD, standard deviation; T, tumor; N, nodes, NOS, not otherwise specified; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal

growth factor receptor-2.
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In the validation group, measures of prediction performance

were used to evaluate models, and these measures included mean

predicted probability, Brier score, intercept, calibration slope,

area under the curve (AUC), discrimination slope, specificity,

sensitivity (recall), negative predictive value (NPV), positive

predictive value (PPV, precision), Youden index, and

accuracy. The Brier score was the mean squared error

between the actual outcome and estimated risk (Huang et al.,

2020), as shown in the below equation:

Brier score � ∑
N
i�1 Ei − Oi( )2

N
.

Here, N stands for the number of patients, Ei for the

predicted risk for patients i, and Oi for the actual outcome for

patients i. Since it includes components of both discrimination

and calibration (Rufibach, 2010), the Brier score is a metric

that is used to evaluate overall prediction ability of models,

with lower values indicating better calibration. A Brier score of

more than 0.25 suggests a useless model. The calibration slope

is determined by comparing the predicted probability of early

death against the actual probability of early death in

calibration curves (Steyerberg and Vergouwe, 2014). The

AUC is a crucial metric to evaluate the model’s capacity for

discrimination. AUC values of greater than 0.80 represent

FIGURE 2
Area under the curve (AUC). (A) Logistic regression (AUC value: 0.819); (B) gradient boosting tree (AUC value: 0.829); (C) decision tree (AUC
value: 0.797); (D) random forest (AUC value: 0.828).
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favorable discrimination. The discrimination slope is the

mean difference of predicted probability between patients

with and without early death (Pencina et al., 2017).

Regarding the evaluation of specificity, sensitivity, NPV,

and PPV, confusion matrix was used for analysis

(Supplementary Figure S1). The Youden index is the sum

of sensitivity and specificity, with a larger value indicating

better performance of models. In addition, the decision curve

analysis was used to evaluate the model’s clinical usefulness

through calculating the net benefits in a range of threshold

probabilities. After thoroughly evaluating each model’s ability

to predict, the best model could be identified.

Model explainability and risk stratification

The optimal model was used to present model explainability

using the SHapley Additive exPlanations (SHAP). Furthermore,

the variable importance was summarized on the basis of the

contributions to early death in the study. In terms of the

threshold of the optimal model, the risk stratification was

carried out. To be specific, patients were divided into two

groups: those with a predicted probability of less than the

threshold and those with a predicted probability of more than

the threshold, referred to as the low-risk and high-risk groups,

respectively. A Kaplan–Meier survival curve was plotted among

patients stratified by the two risk groups, and the difference

between the two risk groups was compared using the log-

rank test.

Statistical evaluation

While the quantitative variables were presented as mean ±

standard deviation (SD), the qualitative variables were depicted

as proportions. The comparison of the quantitative variables

was achieved using the t tests, and the comparison of the

qualitative variables was achieved using the Chi-square tests

and adjusted continuity Chi-square tests. Python (version 3.9.7)

was used to perform modelling analysis, model explanation,

and variable importance, and the R programming language

(version 4.1.2) (https://www.r-project.org/) was used to carry

out the statistical analysis. The significance level was set at 0.05

(two-tailed sides).

Results

Patients’ demographics and clinical
characteristics

A total of 16,189 patients were enrolled for analysis in the

study. The mean age was 61.67 ± 14.04 years. The majority of the

patients (98.8%) were female, 76.9% were white, 43.6% were

married, and 88.6% were from metropolitan counties. Regarding

organ metastasis, the lung (26.0%) was the most common site,

and this was followed by the liver (23.0%) and brain (7.3%).

Ductal and lobular neoplasms represented the most typical

histologic type (83.7%). Patients’ T stage, N stage, and tumor

grade are shown in Table 1. As for the hormone status, a

TABLE 4 Prediction performance of machine learning approaches for predicting early death among bone metastatic breast cancer patients.

Measure Approach

Logistic regression Gradient boosting tree Decision tree Random forest

Mean predicted 0.176 0.176 0.176 0.175

Brier score 0.112 0.109 0.117 0.111

Intercept 0.06 0.06 0.05 0.07

Calibration slope 1.01 1.06 0.96 1.20

AUC (95% CI) 0.819 (0.791–0.847) 0.829 (0.802–0.856) 0.797 (0.767–0.826) 0.828 (0.801–0.855)

Discrimination slope 0.240 0.258 0.216 0.223

Specificity 0.766 0.823 0.764 0.775

Sensitivity (recall) 0.745 0.704 0.707 0.752

NPV 0.931 0.926 0.921 0.933

PPV (precision) 0.416 0.472 0.402 0.427

Youden 1.511 1.527 1.471 1.526

Accuracy 0.762 0.801 0.754 0.770

Threshold 0.191 0.203 0.191 0.193

AUC, area under the curve; CI, confident interval; NPV, negative predictive value; PPV, positive predictive value.
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multitude of patients were ER+ (76.1%), PR+ (61.2%), and HER2−

(67.2%). Cancer-directed surgery, radiation, and chemotherapy

accounted for 22.4%, 33.8%, and 52.8%, respectively. Of all

enrolled patients, 17.4% had an early death. The median

survival time was 29.00 months [95% confident interval (CI):

28.22–29.78 months].

Selection of model predictors

Patients from the entire cohort were split into a training

group and validation group. Table 1 demonstrates that the

two groups were comparable because all variables were

similarly distributed between the two groups (All p-values

FIGURE 3
Probability curve and discrimination slope. (A) Logistic regression; (B) gradient boosting tree; (C) decision tree; (D) random forest. Green curve
indicates patients without early death and red curve indicates patients with early death. Probability curve was plotted with predicted probability of
early death against density. On calculating discrimination slope, actual status was plotted against predicted probability.
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were more than 0.10). The selection of the model predictors

was performed in the training group.

To begin with, a comparison of the clinical characteristics

was performed on the basis of the presence of early death

(Table 2). When compared with patients who did not have

early death, this study found that patients of early death had

older age (p < 0.001); a higher proportion of separated, divorced,

or widowed marital status (p < 0.001); nonmetropolitan counties

(p = 0.013), paired site laterality (p < 0.001), more organ

metastasis (p < 0.001), a higher rate of T4 stage (p < 0.001)

and NX stage (p < 0.001), a lower rate of ductal and lobular

neoplasms (p < 0.001), and a higher rate of unknown grade (p <
0.001). In addition, early death had a significant lower proportion

of ER positive status (p < 0.001), PR positive status (p < 0.001),

and HER2 positive status (p < 0.001), and less cancer-directed

surgery (p < 0.001), radiation (p < 0.001), and chemotherapy (p <
0.001).

Then, the multivariate analysis demonstrated that older

age (p < 0.001), single marital status (p < 0.001),

nonmetropolitan counties (p = 0.001), brain metastasis

(p < 0.001), liver metastasis (p < 0.001), lung metastasis

(p < 0.001), and histologic type of unspecified neoplasms

(p = 0.006) were significantly associated with more early

death (Table 3), while a lower grade (p = 0.002), positive ER

status (p < 0.001), cancer-directed surgery (p < 0.001),

radiation (p < 0.001), and chemotherapy (p < 0.001) were

significantly protective factors for early death. Significant

variables with a p-value of less than 0.01 were included to

develop models. Finally, 12 variables were selected for

modeling.

FIGURE 4
Calibration curve. (A) Logistic regression; (B) gradient boosting tree; (C) decision tree; (D) random forest. Calibration curve is plotted with
predicted probability against actual probability. Red dotted line indicates ideal consistency between predicted and actual probability of early death.
Intercept-in-large value and calibration slope are both shown in the curves.
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Model development and estimation

This study used four approaches (the logistic regression,

gradient boosting tree, decision tree, and random forest) to

develop and optimize models. Supplementary Table S1

summarized the full super-parameter weights of all the four

models. Among all the four models, the gradient boosting tree

had the highest AUC [0.829, 95% confident interval (CI):

0.802–0.856], and the next highest AUCs were found in the

random forest (0.828, 95% CI: 0.801–0.855) and logistic

regression (0.819, 95% CI: 0.791–0.847) models (Figure 2).

The corresponding accuracy rates of the three models were

0.801, 0.770, and 0.762, respectively (Table 4), and the

corresponding discrimination slopes were 0.258, 0.223, and

0.240, respectively (Figure 3). With the lowest overlap and the

greatest separation of the two groups in the probability curves, all

models, particularly the gradient boosting tree and logistic

regression models, had significant separation of patients with

and without early death. In addition, the gradient boosting tree

model had the lowest Brier score (0.109), followed by the random

forest (0.111) and logistic regression (0.112) models. The

calibration curves are shown in Figure 4 and decision curves

are shown in Figure 5. The above results indicate that the

gradient boosting tree model had the optimal predictive

performance in comparison to the other models.

Model explanation, predictor importance,
and risk stratification

Therefore, model explainability was achieved based on the

gradient boosting tree model. Four individual cases were

FIGURE 5
Decision curve analysis. (A) Logistic regression; (B) gradient boosting tree; (C) decision tree; (D) random forest. Decision curve is plotted with
different risk threshold against net benefit. A larger space between red line and two references indicates more favorable clinical usefulness.
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presented in the study to show examples of how to calculate

the risk probability of early death and reasons behind it. The

first two cases (Figures 6A,B) showed that patients with a low

predicted probability of early death survived for more than

3 months (true-negative), while the latter two cases (Figures

6C,D) presented patients with a high predicted probability of

early death who died within 3 months (true-positive). The

weights of contributing to early death based on the top ten

variables in each given case are individually shown in the plots.

Figure 7 illustrates the importance of predictors, which

demonstrated chemotherapy, ER status, and liver metastasis

which were the top three important features in both the

training and validation groups.

Based on the optimal threshold (20.00%) from the gradient

boosting tree model, patients were categorized into two groups

(Table 5). Patients in the high-risk group (46.31%) had a greater

six-fold chance of early death than those in the low-risk group

(7.50%). Figure 8 shows the Kaplan–Meier survival curve was

plotted for patients between the low-risk and high-risk groups,

and it demonstrates that patients in the two groups were

significantly separated (p < 0.001, log-rank test), indicating

favorable discrimination.

Discussion

This study developed a prediction model to categorize the

likelihood of early death specifically among bone metastatic

breast cancer patients. In the study, logistic regression and

three machine learning models were introduced, and it then

examined and compared the four model’s predictive ability to

arrive at the best model. The gradient boosting tree model

showed the best predictive effectiveness with the lowest Brier

score, indicating the best overall predictive performance, and

the greatest AUC value and discrimination slope, both of

which indicated the best discriminative ability among all

models. Along with having the highest specificity,

precision, Youden index, and accuracy, the gradient

boosting tree model represented the model with the best

prediction performance. Therefore, significance of features

and risk stratification were both carried out via the gradient

boosting tree model.

In the present study, the incidence of early death was 17.4%

and the median survival time was 29.0 months among all

patients. Based on the previous studies, breast cancer patients

with bone metastases had a median survival duration of

FIGURE 6
SHAP explanation based on the optimal model. (A) Patients with a predicted probability of 2.69% were classified into the low-risk group; (B)
patients with a predicted probability of 17.19% were classified into the low-risk group; (C) patients with a predicted probability of 31.91% were
classified into the high-risk group; (D) patients with a predicted probability of 45.54% were classified into the high-risk group. In each plot, features
are ranked according to importance in individual cases. Every feature can obtain a weight in reference to x-axis score. When there is a light-blue
bar located at the left of the plot, it denotes that the feature was a protective factor, while that located at the right of the plot represents that the
feature was a risk factor. Patients’ predicted probability of early death and category of risk groups are shown in the plot.
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24.0–30.0 months (Mou et al., 2021; Pan et al., 2021). For these

patients, a precise and personalized forecast of survival time is

crucial because it can greatly influence the implementation of

effective therapy regimens. By contrast, inappropriate estimation

of survival could result in over- or under-treating patients.

Currently, certain prediction models have been developed to

predict the survival prognosis among bone metastases patients

(Forsberg et al., 2011; Ratasvuori et al., 2013; Willeumier et al.,

2018; Anderson et al., 2020; Thio et al., 2020; Errani et al., 2021).

For example, Thio et al. (2020) used machine learning models to

construct and internally test a preoperative survival prediction

model of extremity metastatic disease. In the study conducted

by Thio et al. (2020), a total of 1,090 patients surgically treated

for long bone metastases were included for analysis, and the

majority of features that were used to develop the models were

laboratory examinations, such as the albumin level, neutrophil-

to-lymphocyte ratio, alkaline phosphatase level, hemoglobin

level, and calcium level. Although the AUC value for the

model was relatively high (0.86) and machine learning

models were introduced in this study, the study included

many data from laboratory tests and these features might not

be easily available to users. Errani et al. (2021) created a

prognostic score to choose the best treatment for long bone

metastases after analyzing 159 patients with metastatic bone

disease who were surgically treated with stable fixation or

prosthetic replacement. The prognostic score only included

two features: C-reactive protein and tumor diagnosis.

Primary tumor was classified into two clinical profiles on the

basis of 12-month survival. In the study, after comparing with

the other three models, that is, OPTIModel, Scandinavian

Sarcoma Group, and PATHFx models (Forsberg et al., 2011;

Ratasvuori et al., 2013; Willeumier et al., 2018), the prognostic

score had the highest AUC value (0.816). Willeumier et al.

(2018) created a prognostic model to predict survival using

three independent prognostic features (primary tumor,

Karnofsky performance score, and the presence of visceral

and/or brain metastases) in 1,520 patients with symptomatic

long bone metastases who were treated with orthopedic surgery

and/or radiotherapy, and the Harrell C-statistic of this score was

only 0.70. In 2011, the PATHFx model was developed by

FIGURE 7
Important analysis of predictors using the SHAP summary plot. (A) Training group; (B) validation group.

TABLE 5 Risk stratification of patients based on gradient boosting tree.

Risk group Observed probability (%) Actual probability (n = 1,607) p-valuea

Low risk (&20.00%) 8.14 7.50% (87/1,160)
<0.001

High risk (>20.00%) 42.08 46.31% (207/447)

aindicates a comparison of actual probability between low-risk and high-risk groups using Chi-square test.
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Forsberg et al. (2011) in a cohort of 189 patients who underwent

surgery for skeletal metastases. Anderson et al. (2020) updated

the PATHFx model in a series of 397 patients in 2020, 189 of

whom were originally used to develop the PATHFx model, and

the updated model was externally validated in two data sets (n =

197 and n = 192).

In addition, a number of studies have developed survival

prediction models among breast cancer patients. For instance,

Han et al. (2021) developed a nomogram to estimate survival

outcomes among 17,543 small breast cancer patients using the

SEER database, and the nomogram included histologic grade,

lymph node stage, estrogen or progesterone receptor status, and

molecular subtypes of breast cancer with a C-index of 0.72. Kalafi

et al. (2019) used machine learning and deep learning approaches

to develop models for predicting survival outcomes among

4,902 breast cancer patients after analyzing 23 clinical

variables, and the multilayer perceptron classifier showed the

highest accuracy (88.2%).

Of note, the majority of the above-mentioned models were

designed inclusively for surgically treated patients with bone

metastases after enrolling various primary cancer types or

breast cancer patients without bone metastases. Mou et al.

(2021) developed a nomogram to predict the overall survival

among 145 patients undergoing breast cancer and bone

metastasis surgeries after enrolling five clinical

characteristics, namely, radiotherapy, pathological type,

lymph node metastases, serum alkaline phosphatase, and

lactate dehydrogenase. Our study used machine learning to

develop models specifically for breast cancer patients with bone

metastases, and all the model features were from clinical routine

and easily available to orthopedic surgeons and oncologists who

could use the model to guide the making of therapeutic

strategies for patients with bone metastases. In addition, in

the present study, we found that older age, single marital status,

nonmetropolitan counties, brain metastasis, liver metastasis,

lung metastasis, and histologic type of unspecified neoplasms

were risk factors for early death, with a lower grade, positive ER

status, cancer-directed surgery, radiation, and chemotherapy

being protective factors. The finding suggested that some

measures to prevent metastasis in the brain, liver, or lung,

clearly determined the histologic type of neoplasms, and

treating patients with cancer-directed surgery, radiation,

and/or chemotherapy if appropriate would be considerably

beneficial for patients’ survival prognosis.

Risk classification of patients was accomplished in the study,

and patients were split into two risk categories based on the ideal

threshold, allowing for the personalized execution of therapeutic

strategies. Patients in the high-risk group had above 6.00-time

greater odds of early death than those in the low-risk

group. Consequently, patients in the high-risk group required

more attention. To the author’s knowledge, this study is the first

to provide survival prediction models utilizing machine learning

techniques exclusively for breast cancer patients with bone

metastases. The suggested model raises the performance of

nonexpert radiologists and oncologists to that of experts and

can be used clinically to predict the survival benefit of breast

cancer patients with bone metastases without the need for

additional training for staff.

Limitations

Certain limitations still exist. To begin with, although this study

analyzed a variety of potential clinical characteristics, some variables

were not incorporated, such as performance status, specific

chemotherapy regimens, and laboratory test parameters, due to

unavailability in the SEER database. Then, we should be aware that

deciding whether to conduct a surgery or not is still a challenging

issue and there are other factors to consider when developing

treatment plans. Last but not the least, our study offered three

machine learning methodologies, and the best model was identified

after thoroughly assessing the predicted efficacy of each model.

However, the model was not externally tested, necessitating the

continued requirement for prospective validation cohorts.

Conclusion

The gradient boosting tree model demonstrates promising

performance with favorable discrimination and calibration in the

study, and this model can stratify the risk probability of early

FIGURE 8
Kaplan–Meier survival curve stratified by risk groups (low vs.
high, p < 0.001, log-rank test).
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death among bone metastatic breast cancer patients. This model

may be a pragmatic tool to guide clinical therapeutic strategies

and allow information sharing between patients and doctors.
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