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Growing evidence links DNA methylation to tumor immunity. The impact of

DNA methylation (5 mC) on the microenvironment surrounding tumors and

immunotherapy remains to be clarified. Through clustering gene expression of

20 DNA methylation regulators, this study aimed at systematically analyzing

DNA methylation regulator patterns and tumor microenvironment

characteristics of TCGA-GBM patients. Various subtypes of glioblastoma

exhibit different tumor microenvironments and DNA methylation patterns.

Each DNA methylation modification was then assigned a DNA methylation

score (DMS). High DMS was associated with a good prognosis. In contrast, the

low DMS group had a relatively low survival rate. A correlation was also found

between high DMS and enhanced immunotherapy efficacy in two immune

checkpoint blocking treatment cohorts. To conclude, identifying DNA

methylation regulation patterns may prove critical to understanding

glioblastoma progression and differentiation, as well as future therapeutic

targets.
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Introduction

A critical epigenetic mechanism in tumor development and progression is DNA

methyltransferase-mediated methylation of cytosine to produce 5-methylcytosine (5 mC)

(Ghigolea et al., 2015; Angeloni and Bogdanovic, 2019). DNA methylation has been

identified as one of the factors regulating chromatin structure, conformation, stability,

and protein interactions, which in turn affects gene expression (Miranda and Jones, 2007;

Chen et al., 2022; Gong et al., 2022; Liu et al., 2022; Mattei et al., 2022). By binding proteins

to methylcytosine, methylated DNA suppresses gene expression via inhibiting

transcription factor binding (Moore et al., 2013).
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There are approximately 7,000 cases of glioblastomamultiforme

(GBM) every year (Zheng et al., 2022). A patient with GBM has a

poor prognosis after treatment (Smoll et al., 2013; Alifieris and

Trafalis, 2015), with a median survival rate of only 15 months

(median survival). In addition to its genomic and transcriptome

dimensions (Sottoriva et al., 2013; Lee et al., 2017; Cao et al., 2021a;

Zhong et al., 2021), glioblastoma tumor heterogeneity appears to

contribute to therapeutic resistance and relapse (Klughammer et al.,

2018). A considerable amount of research is needed to clarify the

role of the epigenome in the progression of glioblastoma disease. It

has been shown in accumulating evidence that GBM is associated

with epigenetic alterations, such as hypermethylation of tumor

suppressor genes. For patients with malignant gliomas who

respond to alkylating drugs, Esteller and colleagues identified a

correlation between MGMT hypermethylation and an improved

prognosis (Esteller et al., 2000). Several CpG islands weremethylated

at multiple loci in IDH1/2mut glioblastomas (Noushmehr et al.,

2010). FZD9, TNFRSF10A, MEST, TES, PRKCDBP, CD81, and

HOXA11 have also been identified as targets ofmethylation inGBM

(Martinez et al., 2009).

A combination of checkpoint blockade-based immunotherapy

with traditional surgery, radiotherapy, and chemotherapy has been

shown to improve survival in patients with GBM (Urbańska et al.,

2014). Patients with GBM can experience improved short-term

survival when they receive a whole-cell lysate dendritic cell vaccine

as adjuvant immunotherapy (Cho et al., 2012). A variety of

biomarkers have been identified as potential biomarkers for

response to PD-1 blockade-based immunotherapy, including PD-

L1 expression, microsatellite instability, deficient mismatch repair,

and tumor mutation burden (Davar et al., 2015; Dudley et al., 2016;

Chen et al., 2018; Wang et al., 2019). PD-1/PD-L1 blockade can be

used as a new biomarker to assess T cell rejuvenation associated with

exhaustion (Ghoneim et al., 2017). A recently published report

shows that CD96 mutation can be used as a biomarker for immune

checkpoint blocking therapy in GBM (Zhang et al., 2020a). This

study investigated the expression of 20 genes that regulate DNA

methylation in GBM to better understand how they affect the

immune microenvironment and immunotherapy efficacy. An

unsupervised clustering technique identified three distinct DNA

methylation regulatory patterns with differing characteristics of the

immune microenvironment. To assess DNA methylation status

individually, a DNA methylation score (DMS) system was

developed. According to our findings, DMS may be a useful

biomarker for predicting immunotherapy effectiveness.

Materials and methods

Collection of glioblastoma multiforme
expression profile and clinical data

As a first step, we use the TCGA database (https://portal.

gdc.cancer.gov/) to download data related to GBM expression

profiles and clinical follow-up information. Following are the

steps for processing TCGA-GBM RNA-Seq data: (Angeloni

and Bogdanovic, 2019) remove samples that do not have

clinical follow-up information; (Ghigolea et al., 2015) remove

samples that have a survival time that is unknown, less than

30 days, and no survival status; (Mattei et al., 2022) remove

probes that correspond to multiple genes; (Gong et al., 2022)

take the median expression from gene symbols with multiple

expressions. The summary of the clinical statistics of the

143 tumor samples from the preprocessed TCGA-GBM data

in Supplementary Table S1.

Clustering of DNA5mC-related genes and
identification of differentially expressed
genes

Unsupervised clustering techniques were used to find DNA

methylation patterns that would be effective for grouping

patients for further research. From eight integrated GEO

datasets or the ACRG cohort, 20 DNA 5 mC regulators were

selected to study DNA modification patterns mediated (Zhang

et al., 2020b). A consensus clustering algorithm was performed

using the Pam method in ‘ConsensuClusterPlus’ R package

(Monti et al., 2003), which repeated 1,000 times to ensure the

stability of the classification.

As a result of consistently clustering based on the expression

of DNA 5 mC-related genes, the tumor samples were divided into

DNA 5mC-1, DNA 5mC-2, and DNA 5mC-3 subgroups. Using

the ‘limma’ R package (Ritchie et al., 2015), we identified

differentially expressed genes (DEGs). We have described the

data collection process and analysis elsewhere (Cao et al., 2020;

Cao et al., 2021b; Mao et al., 2021). Using the Ensemble genome

annotation files, we extracted functional annotations in DEGs

based on a significance threshold of 0.05 and log2 (fold

change) > 1.

Gene features dimensionality reduction
and construction of DNA methylation
score model

DNA5mC-related DEGs were used to construct a DNA

methylation score (DMS) model of tumors. To reduce noise

or redundant genes, we first performed a univariate Cox

regression analysis for each DEG. Z-scores were calculated

based on the expression of these DEGs with significant

prognosis. A DMS score was calculated based on the principal

component analysis (PCA). Both PC1 and PC2 were chosen as

signature scores. Using this strategy, the score was concentrated

on the set with the greatest block of highly correlated genes by

down-weighting contributions from genes that did not track with

other members of the set. As shown in the following formula, i
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represents the expression of DNA5mC regulator related genes

(Sotiriou et al., 2006; Zeng et al., 2019).

DMS � ∑PC1(i) +∑PC2 (1)

Gene set enrichment analysis and
functional enrichment analysis

The Effects of Coordinated Gene Set Enrichment on

Phenotypes can be evaluated using GSEA (Gene Set

Enrichment Analysis). To compare differences between DNA

modification patterns, we downloaded all hallmark gene sets

from the Molecular Signature Database (MSigDB). We

performed GO and KEGG enrichment analysis by the

‘clusterProfiler’ R package with a cutoff of p < 0.05 (Mao

et al., 2020; Wu et al., 2021). According to fold change, DEGs

were estimated and sorted between groups with high and low

gene expression.

Statistical analysis and hypothesis testing

To determine the normality of the variables, the Shapiro-Wilk

test was performed. Unpaired t tests were used for statistical analysis

of comparisons between two normally distributed groups, and

Wilcoxon rank-sum tests were used for statistical analysis of

nonnormally distributed data. Kruskal–Wallis tests or one-way

ANOVA were employed as nonparametric or parametric

procedures, respectively, to compare the three groups. Spearman

and distance correlation analyses were used to calculate the

correlation coefficients. Utilizing the survcutpoint function from

the ‘survminer’ R package, the optimal cutoff values for each cohort

were determined. (Kassambara et al., 2017). The Kaplan-Meier

method was used to create the survival curves for the prognostic

analysis, and log-rank tests were applied to see whether there were

any differences between groups (Zhou et al., 2019). For DNA

regulators and genes associated with DNA methylation regulator

patterns, univariate Cox regression analysis was performed. A two-

sided p-value of 0.05 was used for statistical significance. R 3.6.1 was

used to perform all statistical analyses.

Results

Molecular characterization of DNA 5mC
mediators in glioblastoma multiforme

The entire study design was illustrated in Figure 1. In this

study, we collected and enrolled 20 DNAmethylation regulators,

including 14 readers (ZBTB33, ZBTB38, ZBTB4, MBD1, MBD2,

MBD3, MBD4, MECP2, UNG, TDG, NTHL1, and SMUG1),

3 writers (DNMT1, DNMT3A, and DNMT3B), and 3 erasers

(TET1, TET2, and TET3). Among them, there are 16 of

20 regulators with mutation rates more than 3%, ranging

from 4% to 19% (Figure 2A). The mutation rates in GBM

patients were extremely low for two readers, UHRF1 and

ZBTB4, while they were high for DNMT3B (19%), TET1

(15%), and DNMT1 (12%). Subsequently, 20 regulators were

FIGURE 1
The overall design of this study.
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examined for their frequency of copy number variation (CNV)

alteration. Over 50% of the TET1 gene had CNV alterations,

which was prevalent across 20 regulators. Many were concerned

with copy number deletions, whereas DNMT1, MBD3, UHRF1,

and DNMT3B showed widespread copy number amplifications

(Figure 2B).

To ascertain whether the above genetic variations influenced

the expression of DNA5mC regulators, the mRNA expression

levels of regulators were investigated between normal and GBM

samples. The results displayed the A significant factor responsible

for perturbing DNA5mC regulator expression was alterations in

CNV. Several DNA5mC regulators were found to be significantly

overexpressed in tumor tissues, including DNMT1, DNMT3B,

TET2, TET3, MBD1, and SMUG1. In contrast to normal tissues,

TET1, MECP2, and ZBTB4 with deleted CNV were prominently

under-expressed (Figure 2C). A striking difference in genes and

expression patterns was observed in DNA5mC regulators

between normal and GBM samples, indicating that DNA5mC

regulator imbalance contributes to the formation and

progression of GBM. According to the STRING database

(https://www.string-db.org/), DNA5mC regulators also interact

with one another at the protein regulatory level (Figure 2D).

Correlation between immune cell
infiltration in glioblastomamultiforme and
DNA 5mC-related genes

DNA5mC genes and the tumor immune microenvironment

were explored using the CIBOERSORT algorithm

(Supplementary Table S2) to measure the overall infiltration

of 22 immune cells, including B cells and natural killer cells.

FIGURE 2
Genetic and expression variation of DNA5mC related genes in GBM (A) Mutation frequencies at 20 DNA5mC regulators in the TCGA-GBM
cohort. (B) DNA5mC regulator CNV variation frequency. (C) A comparison of the expression of 20 DNA5mC regulators between normal tissues and
GBM tissues. (D) Diagram of gene interaction at the protein level.
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FIGURE 3
TCGA-GBM data on immune cell infiltration and DNA5mC regulators. (A) Coexpression network of DNA5mC regulators. (B) Heatmap of gene
correlation with immune cell infiltration. (C) GSEA for high and low gene expression. (D–E) Survival analysis of the TCGA-GBM and IMvigor cohorts.
(F–G) Comparison of gene expression in TCGA-GBM and IMvigor cohorts. (H) Gene expression differences between immunotherapy responders
and non-responders.
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TCGA-GBM dataset was analyzed first for co-expression of

DNA5mC-related genes. Most regulators showed significant

positive correlations (Figure 3A). We then examined the

relationship between DNA 5 mC regulator expression profiles

and 22 immune cell infiltrations (Figure 3B). A distinct difference

was found between different genes and immune cell infiltration.

Infiltrations of Tcells. CD8, macrophages. M2, and neutrophils

were strongly correlated with MBD4. To determine the effect of

high and low expression of MBD4, a GSEA enrichment analysis

was performed. The findings manifested a marked enrichment of

immune activation pathways in samples with high gene

expression levels, including the chemokine signaling pathway,

cytokine-cytokine receptor interaction, and Toll-like receptor

signaling pathway. On the other hand, samples with low gene

expression exhibited an increase in ribosome pathways

(Figure 3C).

A relationship was then investigated between MBD4 gene

expression, IDH mutation status, and tumor mutation burden

FIGURE 4
TCGA-GBM regulator identification and functional enrichment analysis. (A) Survival KM curve for tumor DNA5mC subtypes. (B) GBM DNA5mC
subtypes differ in immune cell infiltration. (C) GSEA analysis of tumor DNA5mC groups.
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FIGURE 5
Tumor DNA5mC subtypes differ in the expression of immune-related factors. (A) Heatmap displaying the expression profiles of 20 DNA5mC
genes. (B) Different immune-related factors subsets among three DNA5mC subsets. (C) A difference between DNA5mC-2 and -3 subtypes in
immune-related factors. (D) Differential expression analysis between DNA5mC-2 and -3. (E–F) Down-regulated and up-regulated DEGs enriched
with GO terms.
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(TMB) in TCGA-GBM. The expression of MBD4 gene was not

significantly different between groups with or without IDH

mutation (Figure 3F), but the expression of MBD4 gene in

high TMB groups was prominently lower than that in low

TMB groups (Figure 3G). TCGA-GBM samples were further

divided into two groups based on MBD4 expression levels using

the optimal density gradient. There was a significant difference

between the survival curves of the two groups, and the OS of the

low-expression group was superior to that of the high-expression

group (Figure 3D). A similar result was observed in the

IMvigor210 dataset (http://researchpub.gene.com/

IMvigor210CoreBiologies) (Figure 3E). Further, MBD4 was

expressed more frequently in tumor immune

microenvironment and tumor immunotherapy response

groups than in non-response groups (Figure 3H).

Identification and functional enrichment
analysis of DNA5mC groups

Through unsupervised clustering analysis of 20 DNA5mC

regulators, unique DNA5mC modification patterns were

identified, which were then used to categorize patients for further

investigation. A total of three DNA5mC subtypes were identified

with distinct survival differences (Supplementary Figure S1). The

median survival time for DNA5MC-3 was 659 days, which was

mostly better than the median survival time for the other two

subtypes. The median survival time of Dna5mc-2 was 437 days,

which was highly associated with a poor prognosis (Figure 4A). A

comparison was made between the immune cell infiltration of three

DNA5mC subtypes (Figure 4B). We found that DNA5MC-1 and

DNA5MC-2 subtypes were remarkably enriched in CD8 positive

T cells, T cells CD4 memory resting, NK cells resting, and mast cells

resting. DNA5mC-3 exhibited significantly high levels of infiltrated

cells, including follicular helper cells, activated NK cells, and mast

cells.

We also investigated the biological processes that differentiate

DNA5mC subtypes using gene set enrichment (GSEA) analyses

(Figure 4C). KEGG CIRCADIAN RHYTHM MAMMAL, KEGG

PHENYLALANINE METABOLISM, and KEGG LINOLEIC ACID

METABOLISM had the highest enrichment scores for DNA5mC-1

and DNA5mC-2 groups. There was a distinct increase in KEGG

RIBOSOME activity, KEGG RNA polymerization activity, and

KEGG protein export activity in the DNA5mC-3 subtype.

Immune-related factor expression profile
among DNA5mC subgroups

A relationship between DNA5mC subtypes and immune

signaling factors in tumors is worth investigating, since

immune-related signaling factors are crucial to the

development of the tumor immune microenvironment. The

expression profiles of DNA5mC-related genes among disctint

subtypes and clinical features were observed (Figure 5A). We

then found that several immune-related factors were various

among DNA5mC subtypes (Figure 5B) In DNA5mC-1 and

DNA5mC-2 subtypes, immune checkpoint, EMT2, Pan-F-

TBRS, Type II IFN Response, Co-inhibition APC, Co-

inhibition T cell, and MHC-II HLA have higher levels of

activation signals, while Cytolytic Activity has higher levels in

DNA5mC-3 subtype.

Differentially expressed genes (DEGs) among DNA5mC

groups were analyzed to identify possible biological

characteristics. A total pf 612 DEGs were found

(Supplementary Table S3), including 234 that were up-

regulated in DNA5mC-3, and 378 that were highly expressed

in DNA5mC-2 group (Figure 5D). We found significant

dysregulation of immune-related factors, including CD27,

TNFRSF9, MICA, ICAM1, and ITGB2 (Figure 5C). GO

functional enrichment analysis was also performed on DEGs,

and the top 10 enriched pathways in each functional category

were shown in Figures 5E,F. Many of the enriched pathways were

associated with biological processes, including chromosome

stability, nervous system development, and ion channels.

Detection of DEG-related subtypes in
glioblastoma multiforme

After obtaining the 612 DNA5mC phenotype-related

genes, we implemented unsupervised clustering analysis

using DEG. cluster-1 and 2 (Figure 6) to categorize

patients into various genomic subgroups. DEG signatures

distinguished two distinct gene clusters in the analysis. IDH

mutant status correlated primarily with DEG. cluster-2

(Figure 7A). A worse prognosis was associated with

cluster-1 in GBM patients. Conversely, the prognosis of

patients in DEG. cluster-2 was better (Figure 7B).

Immune-related signaling factors were

expressed differently in the two DNA5mC gene clusters

(Figure 7C).

Based on DEGs between DNA5mC subtypes,

dimensionality reduction analysis was performed on the

DEG expression profiles using the PCA algorithm, and

finally the weights of each sample in PC1 and PC2 were

summed up to form DNAmethylation score (DMS). Then, we

calculated the optimal density gradient threshold (-2.08) of

tumor DMS score to classify patients in TCGA-GBM dataset

(Figure 8A). As shown in Figure 8B, the survival rates of the

two groups with high and low DMS scores differed markedly.

We further examined the distributions of DMS among tumor

mutational burdens (TMBs), DNA5mC subtypes, and DEG.

clusters, which indicated that significant differences existed

between the above groups in terms of DMS. As shown in

Figures 7D–G, high DMS score was enriched in high TMB
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group, DNA5mC-3 subgroups, and DEG. cluster-2

subgroups. Increasing evidence showed that anti-PD-1/PD-

L1 immunotherapy produced a long-lasting therapeutic

response in patients with high TMB status (Wang et al.,

2020). These findings may offer novel perspectives on the

mechanisms underlying gene mutation and DNA5mC status

in GBM.

Characterization of DNA methylation
score in validation datasets

The DEGs-based DMS was further evaluated with two

GEO datasets (GSE16011 and GSE4271) to further evaluate

its robustness for predicting overall survival in GBM

(Kassambara et al., 2017; Wu et al., 2021). The optimal

density gradient threshold for tumor DMS and survival

was calculated using the DEGs screened in the previous

steps, and the ‘Survminer’ R package was used to calculate

the DMS for GSE16011 and GSE4271 databases. The two

GEO datasets were divided into two groups based on DMS

scores, and an important difference in survival was observed

between the low and high score groups (Figures 9A–C). DMS

exhibited some correlation with other clinical characteristics

in the two GEO datasets, as illustrated by the

heatmap (Figures 9B–D). Further analysis showed that

Meth. cluster-3 tended to have a lower DMS, which was

associated with better prognosis. DMS in

DNA5mC subtypes (Figures 9E,F) confirmed previous

findings.

Tumor DNA methylation score as a
predictor of anti-PD-1/L1 immunotherapy
outcome

Immunophenoscore (IPS) assesses tumor immunogenicity

and predicts how immunotherapy will treat various types of

cancers (Charoentong et al., 2017). A significant difference was

also observed between IPS scores in the high DNA methylation

score (High_DMS) and the low DNA methylation score

(Low_DMS) groups (Figures 10A–D). According to this

finding, immunotherapy may be beneficial to patients with a

high DMS.

There has been a significant progress in the treatment of

cancer thanks to PD-L1 and PD-1 blockage immunotherapies

(Hoffman-Censits et al., 2016). Using data from anti-PD-L1

(IMvigor210) and anti-PD-1 (GSE78220) cohorts, we studied

whether the DMS signature could predict the effectiveness of

immune checkpoint blockade therapy. It was found in both

FIGURE 6
Consistent clustering of DEG. cluster-1 and -2 subgroups. (A–D) Sample clustering heat map when k = 2, k = 3, k = 4, k = 5, respectively. (F–I)
Kaplan–Meier survival curves with k = 2, k = 3, k = 4, k = 5, respectively. (E) CDF curve distribution of consistency clustering. (J) Distribution of area
under the CDF curve for consensus clustering.
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FIGURE 7
Identification and characterization of DEG. cluster-1 and -2 subtypes. (A) An overview of differential gene expression profiles. (B) Survival curves
for distinct DEG. cluster groups. (C) A comparison of immune signaling factors among DEG. cluster subgroups. (D–F) Different DNA DMS for TMB
groups, DNA5mC subtypes, and DEG. cluster subtypes. (G) Dynamic flow diagram of each GBM sample grouping and state transition.
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IMvigor210 (Figures 10E–G) and GSE78220 (Figures 10H–J)

databases that individuals with high DMS showed considerable

therapeutic benefits. Patients with high DMS responded well to

anti-PD-1/L1 immunotherapy when compared to those with low

DMS. According to these findings, DNA5mC-related DEGs may

contribute to establishing a correlation between immunotherapy

response and DNA methylation.

Discussion

In glioma and neural development, DNAmethylation and

demethylation play critical roles in physiological and

pathological processes (Papanicolau-Sengos and Aldape,

2022). Several DNA5mC regulators interact with DNA5mC

modification to affect inflammation, innate immunity, and

antitumor effect. There is a lack of understanding of the

global TME infiltration features mediated via the integrated

roles of multiple DNA5mC regulators. Thus, elucidating the

role of DNA5mC modification patterns in TME cell

infiltration will aid in the development of more effective

immunotherapy strategies against TME.

In this study, we explored three DNA5mC methylation

modification patterns based on 20 DNA5mC regulators.

Infiltration of TME cells in these three patterns was prominently

different. Furthermore, this study demonstrated changes in mRNA

transcriptomes across different DNA5mC modification patterns

significantly linked to DNA methylation and immune-related

pathways. These differentially expressed genes were identified as

DNA5mC-related signature genes. Then, two genomic subtypes

were clustered based on DNA5mC signature genes, which were also

correlated with immune activation. These findings revealed that the

DNA5mC modification was of great significance in shaping

different TME landscapes. Our understanding of infection by

TME cells will be improved by analyzing DNA5mC modification

patterns comprehensively.

A quantification of DNA5mC modification patterns has become

imperative due to the individual heterogeneity of DNA5mC

modifications. We developed a scoring system for evaluating

DNA5mC modification patterns in GBM patients. DMS scores and

tumor mutation burden showed a markedly correlation. Moreover,

DMS scores were found to be reliable and robust tools for estimating

TME infiltration patterns or tumor immune phenotypes from

DNA5mC modification patterns of individual tumors. We also

validated the predictive value of the DMS score in two cohorts that

received anti-PD-1 and anti-PD-L immunotherapy. In addition, our

study demonstrated that DNA5mC methylation patterns shaped

different immune TME landscapes, suggesting DNA5mC

modification may influence immune checkpoint blockade efficacy.

PD-L1 expression, immune TME status, and mutations in

DNA5mC genes could be more effective predictive biomarkers for

immunotherapy than DNA5mC regulators alone.

To summarize, the DMS score could be used in clinical

practice to assess the methylation patterns of DNA5mC as

FIGURE 8
DNA Methylation Score (DMS) gradient grouping for tumors. (A) DMS distribution density statistics and optimal threshold determination. (B)
Survival curves between groups with high and low DMS.
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FIGURE 9
Features of tumor DNAmethylation scores in external GEO cohorts. (A–B) Survival curves between high and low DMS groups in GSE16011 and
GSE4271 datasets, separately. (C–D) Relationship between clinical special diagnosis and DMS distribution in GSE16011 and GSE4271 datasets,
separately. (E) Different methylation subtypes differ in DMS. (F) A dynamic flow diagram illustrating each grouping and state transition of the tumor
sample.
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FIGURE 10
Tumor DNAmethylation score (DMS) as a predictor of immunotherapeutic benefit. Immunophenoscore (IPS) differences between high and low
DMS groups (A–D). E and H show the difference in ICI scores between IMvigor210 and GSE78220 cohorts. (F,I) Survival curves for high and low ICI
score groups in IMvigor210 and GSE78220 cohorts, respectively. (G,J) Differences between high and low ICI score groups in IMvigor210 and
GSE78220 cohorts.
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well as the corresponding TME cell infiltration within a GBM

patient, to determine the immune phenotypes of tumors, and

to guide clinical practices more effectively. The findings of

our research provided new insights into improving

immunotherapy patients’ clinical outcomes, discovering

various tumor immune phenotypes, and advancing tailored

cancer immunotherapy.
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