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Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can

cause severe disease in immunocompromised individuals, transplant recipients,

and to the developing foetus during pregnancy. There is no protective vaccine

currently available, and with only a limited number of antiviral drug options,

resistant strains are constantly emerging. Successful completion of HCMV

replication is an elegant feat from a molecular perspective, with both host

and viral processes required at various stages. Remarkably, HCMV and other

herpesviruses have protracted replication cycles, large genomes, complex

virion structure and complicated nuclear and cytoplasmic replication events.

In this review, we outline the 10 essential stages the virus must navigate to

successfully complete replication. As each individual event along the replication

continuum poses as a potential barrier for restriction, these essential

checkpoints represent potential targets for antiviral development.
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Introduction

HCMV is a widespread human pathogen with highest infection rates in low

socioeconomic demographics, and seropositivity greater than 90 percent in some

populations (Cannon et al., 2010). HCMV establishes a lifelong latent infection, with

periodic shedding of the virus providing a persistent source of transmission (Goodrum

et al., 2012). Primary infection in healthy individuals is often asymptomatic or

accompanied by symptoms of mild mononucleosis, fever, and sore throat. However,

in rare cases, severe complications including viral hepatitis, colitis, splenomegaly, and

encephalitis can occur (Horwitz et al., 1986; Rafailidis et al., 2008). For the

immunocompromised, including transplant recipients, HIV positive individuals or

those receiving cancer chemotherapy, HCMV infection can cause serious

complications as is illustrated by 90 percent of AIDS patients showing HCMV

cytopathology during autopsy (Reichert et al., 1983). Solid organ and hematopoietic

stem cell transplant (HSCT) recipients are also at elevated risk of HCMV disease due to
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the immunosuppressive drug regimen required to stop

transplant rejection and graft-versus-host disease (Razonable,

2010). The risks are further elevated for HCMV negative

recipients receiving HCMV positive tissue with a bidirectional

correlation between HCMV infection and transplant rejection

(Razonable et al., 2001). For HCMVnegative organs transplanted

to a positive recipient, the inflammatory environment can

reactivate the latent virus, while in the opposite situation, the

immunosuppressive drugs compromise a robust immune

response (Ramanan and Razonable, 2013).

HCMV is also the leading cause of birth defects due to an

infectious agent, which results from intrauterine transmission of

the virus to the developing foetus during productive infection of

the mother (Bonalumi et al., 2011; Manicklal et al., 2013). HCMV

affects approximately 1 in 200 pregnancies (Manicklal et al.,

2013), with a transmission rate to the foetus of approximately

30% during primary infection and 1.2% for reactivation of a

latent infection (Kenneson and Cannon, 2007). Approximately

10% of congenitally infected infants will show symptoms at birth,

the most common being sensorineural hearing and vision

impairments which affect 3.5% of infants infected (Grosse

et al., 2008; Manicklal et al., 2013). Additionally, mild to

severe learning disabilities, failure to thrive, microcephaly or

still birth can occur in the most severe cases.

The frontline drugs for treatment of HCMV infection and

prophylaxis in organ and HSCT recipients are the acyclovir

derivatives ganciclovir and its oral prodrug valganciclovir

(Acosta et al., 2020). They are both synthetic analogues of 2′-
deoxy-guanosine which are selectively phosphorylated by the

viral kinase UL97 in infected cells (Littler et al., 1992). Host cell

kinases provide further phosphorylation to the triphosphate

form which has strong affinity for UL54, the viral DNA

polymerase, which results in chain termination once

incorporated into the daughter strand (King, 1988; Matthews

and Boehme, 1988). Foscarnet, a pyrophosphate analogue, and

cidofovir, a monophosphate nucleotide analogue, also have

increased affinity for UL54 and block DNA replication

through distinct mechanisms (Ahmed, 2011). Both are

reserved as second-line treatments due to considerable

toxicity. Maribavir blocks the action of the UL97 kinase

(Prichard, 2009) and has recently completed a phase III trial

where it achieved the primary endpoints (Avery et al., 2021).

Letermovir is a specific inhibitor of the terminase complex and

was recently licensed for HCMV prophylaxis in HSCT recipients

(El Helou and Razonable, 2019). Maribavir and letermovir are

the first HCMV drugs which do not target UL54, however,

maribavir likely blocks phosphorylation of ganciclovir through

UL97 inhibition which may exclude combination treatment

(Acosta et al., 2020). Monotherapy readily selects for resistant

mutants, particularly given the low genetic barrier to resistance

and chronic persistence of HCMV infection in

immunocompromised patients (Chou et al., 2018; Razonable,

2018; Paolucci et al., 2021). Drug resistant mutants of all licensed

drugs have already emerged, including letermovir, and highlights

the need for new drugs, vaccines and therapeutic strategies (Eid

et al., 2008; Rolling, 2017; Razonable, 2018). Combination

therapy with a cocktail of compatible antivirals, peptides or

antibodies targeting distinct stages of the replication cycle

lowers the required dose thus increasing tolerability while also

reducing the probability of resistant mutants emerging. Another

approach is to drug a host cell protein or pathway which is

essential for completion of viral replication. Resistant mutants

will not be selected for at any meaningful frequency due to higher

genetic barriers to resistance compared to viral targets, however,

toxicity is a serious concern and must be carefully balanced for

overall clinical benefit (Lin and Gallay, 2013; Ji and Li, 2020;

Lingappa et al., 2021). It is for these reasons that the distinct

stages of the viral replication cycle are understood and

characterised, towards identifying vulnerabilities that can be

exploited by novel antivirals.

Stage 1: Viral entry into host cells

HCMV belongs to the Betaherpesvirinae subfamily of viruses

which also includes human herpesvirus 6A, 6B and 7. HCMV has

a 235 kb (strain dependent) linear double stranded DNA

(dsDNA) genome containing more than 170 open reading

frames packaged tightly inside a pseudo-icosahedral

nucleocapsid, a thick layer of tegument proteins, and host cell

derived envelope containing glycoprotein complexes. HCMV can

infect almost all cell types which is consistent with the diverse

symptoms of HCMV disease. HCMV has a strong tropism for

fibroblasts, epithelial, endothelial, smooth muscle and placental

cells (Sinzger et al., 2008; Revello and Gerna, 2010).

HCMV has multiple envelope glycoprotein complexes that

engage unrelated receptors on the cell surface, determining entry

of the virion into different cell types. These are primarily the gH/

gL/gO trimer and gH/gL/UL128/UL130/UL131A pentamer.

HCMV clinical isolates serially passaged in fibroblasts readily

accumulate mutations in UL128, UL130 and UL131A, and are

dispensable for entry into fibroblasts (Dargan et al., 2010; Stanton

et al., 2010), further showing the trimer and pentamer are

mutually exclusive complexes (Ciferri et al., 2015). Platelet-

derived growth factor receptor α (PDGFRα) is highly

abundant on the surface of fibroblasts and was identified as

the predominant receptor for the trimer which interacts through

contact with gO (Soroceanu et al., 2008; Kabanova et al., 2016;

Wu et al., 2017; Wu et al., 2018; Kschonsak et al., 2021), and is

independent of the PDGFRα intracellular kinase domain (Wu

et al., 2018) (Figure 1). Transforming growth factor beta receptor

type III (TGFβR3) functions as a second receptor for trimer,

although it appears to not be able to efficiently mediate entry

(Martinez-Martin et al., 2018; Kschonsak et al., 2021). Trimer-

dependent entry is pH independent and was initially understood

to occur by direct fusion on the target cell surface, although more
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recent work has shown entry to be dynamin II-dependent, and is

consistent with rapid macropinocytosis (Vanarsdall et al., 2012;

Hetzenecker et al., 2016). Recent high-throughput screens of host

cell surface proteins have identified neuropilin 2 (NRP2)

(Martinez-Martin et al., 2018), and OR14I1 (E et al., 2019) as

predominant entry receptors of the pentamer for epithelial,

endothelial and myeloid cell entry, with the structural basis

for NRP2 binding by pentamer solved (Wrapp et al., 2022)

(Figure 1). In addition to this, various integrins have been

identified as potential co-receptors for trimer and pentamer-

dependent mechanisms (Feire et al., 2004; Wang et al., 2005;

Feire et al., 2010). Pentamer-dependent entry also requires

dynamin II (Vanarsdall et al., 2012), but unlike the trimer,

requires low pH in the endosome for delivery of the

nucleocapsid (Ryckman et al., 2006; Vanarsdall et al., 2012)

(Figure 1). Interestingly, overexpression of PDGFRα in

epithelial cells and monocytes can rescue susceptibility to

pentamer-null virus strains, providing evidence that there is

not a cell type specific block in internalisation and membrane

fusion, but rather receptor levels remain below a functional

threshold (Vanarsdall et al., 2012; Wu et al., 2018). Similarly,

restoration of pentamer in the fibroblast passaged strain

AD169 rescued robust extracellular virion production in

epithelial and endothelial cells (ECs) (Wang and Shenk, 2005;

Adler et al., 2006).

It was initially thought that the pentamer alone is sufficient

for epithelial cell attachment and entry, while the trimer is

sufficient in fibroblasts. However, it has been shown that gO

null virus cannot enter epithelial cells, indicating that trimer is

essential for entry into all cell types, including when PDGFRα is

blocked (Zhou et al., 2015; Kabanova et al., 2016). Recently,

functionally important domains of gO have been identified that

function after receptor binding (Chin et al., 2022). The authors

speculated on several models which included activation of gB for

fusion. After receptor binding, when the envelope and target cell

membrane are proximal, gB mediates fusion of the membranes,

FIGURE 1
For infection in fibroblasts, the glycoprotein trimer consisting of gH, gL and gO binds to PDGFRα. Fusion between the envelope and cell
membrane is mediated by gB and the tegumented nucleocapsid is released into the cytoplasm. For infection of epithelial, endothelial, myeloid, and
likely many other cell types, the glycoprotein pentamer consisting of gH, gL, UL128, UL130 and UL131A binds to either OR14I1 or NRP2 on the cell
surface and induces endocytosis of the virion. Pentamermediated entry is dependent on acidification of the endosome aswell as gO. The fusion
step is mediated by gB to release the tegumented capsid into the cytoplasm, and tegument proteins dissociate and begin to reprogram the host cell.
The capsid traffics to the nucleus for genome deposition. PDGFRα, platelet derived growth factor receptor alpha; NRP2, neuropilin; gB, envelope
glycoprotein B.
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independently of receptor binding (Isaacson and Compton,

2009), which is further evidenced by envelope fusion of gB

null virions when gB is expressed in trans on the target cell

surface (Wille et al., 2013). Whether gB interacts with the trimer

to initiate fusion, or solely proximity to the target membrane is

sufficient, remains an open question.

In addition to cell-free virions, cell-to-cell HCMV spread can

occur in tissue culture monolayers. This is likely to be the main

route of dissemination throughout the body, as clinical isolates

are highly cell-associated before passage in culture (Sinzger et al.,

1999; Dargan et al., 2010). It was found that PDGFRα is required
for cell-to-cell spread in fibroblasts for virus strains only

expressing trimer, while pentamer expressing virus could

spread in PDGFRα knock-out cells (Wu et al., 2018).

Pentamer dependent spread is primarily cell-associated, with

fewer passages in culture correlating with higher pentamer

abundance in virions and greater entry efficiency in epithelial

cells (Murrell et al., 2013). Further, pentamer dependent cell-to-

cell spread is resistant to antibody neutralisation compared to

cell-free spread which further supports this mode of

dissemination in vivo (Murrell et al., 2017). It must be noted

that other studies have observed antibody neutralisation of cell-

to-cell spread using different virus strains which have altered

ratios of trimer and pentamer in their envelopes, which may

explain these differences and potentially offer insights into

different mechanisms of spread (Li et al., 2015; Klupp et al.,

2017; Reuter et al., 2022). Curiously, virions lacking the assembly

tegument protein UL99 were still able to spread cell-to-cell in

fibroblasts, despite a defect in virion envelopment, which may

indicate a distinct mechanism (Silva et al., 2005). The exact

mechanism of cell-to-cell spread for different strains and cell

types has not yet been solved explicitly, however, the requirement

for functional target cell receptors, and trimer and pentamer

glycoproteins, point to a conventional entry mechanism between

proximal cells which is resistant to antibody neutralisation at

physiological concentrations, at least with the strains and cell

types assayed. More exotic mechanisms such as micro fusions

between adjacent cell membranes (Gerna et al., 2000) or syncytia

(Gerna et al., 2016; Cui et al., 2017) cannot be ruled out in certain

experimental or physiological conditions (Figure 1).

Stage 2: Nuclear trafficking and early
viral gene expression

After membrane fusion, the tegumented nucleocapsid is

delivered to the cytoplasm and begins trafficking towards the

nucleus using the host cell cytoskeleton (Ogawa-Goto et al., 2003;

Miller and Hertel, 2009). Concurrently, highly abundant

tegument proteins are known to dissociate from the

nucleocapsid and begin re-programming the host cell (Kalejta

et al., 2008). Tegument proteins have diverse functions which

begin with delivery inside virions but also include newly

synthesised pools of the molecules during infection. Tegument

proteins have multiple functions (beyond the scope of this

review) throughout the replication cycle which poses

challenges for characterisation (Kalejta, 2008). At the nuclear

membrane, the viral genome is understood to be released

through the nuclear pore complex (NPC), based on studies of

herpes simplex virus 1 (HSV-1) [reviewed (Fay and Panté,

2015)]. Only recently have HCMV specific mechanisms of

nuclear entry been investigated, revealing the requirement of

Stimulator of interferon genes protein (STING) for genome

delivery (Hong et al., 2021).

Once nuclear, the HCMV genome circularises, likely by

direct end joining as for HSV-1 (Strang and Stow, 2005), and

early viral gene expression commences. HCMV has three

traditional kinetic classes of gene expression: immediate early

(IE), delayed early (DE) and late (L). IE genes are multifunctional

effectors that disrupt antiviral processes and act as transcription

factors for DE gene expression. DE genes modulate the cell cycle,

nucleotide and lipid metabolism and encode the viral DNA

polymerase complex [reviewed (Shenk and Alwine, 2014)].

They also include non-essential immuno-modulatory effectors

such as major histocompatibility complex (MHC) class 1,

interleukin 10 and fc-gamma receptor mimics among others

(Powers et al., 2008; Corrales-Aguilar et al., 2014). L gene

products are predominantly virion components such as capsid

proteins, tegument proteins and envelope glycoproteins.

Recently, a more complex picture of late gene expression has

emerged (Stern-Ginossar et al., 2012; Weekes et al., 2014;

Rozman et al., 2022), and is further discussed within Stage 5.

The HCMV major immediate early promoter (MIEP) and

enhancer region is a master regulator of HCMV IE gene

expression, that initiates replication cycle progression without

viral protein synthesis (Stinski and Isomura, 2008). The MIEP is

the focal point where diverse host and viral signals are integrated

to initiate or suppress active replication. The MIEP contains a

promoter region (+1 to −40 bp from the transcriptional start site

of IE1/2), an enhancer region (−40 to −550 bp), a unique region

(-550 to -750) and a modulator (−750 to −1,140) [reviewed

(Adamson and Nevels, 2020)] (Figure 2). The MIEP is

bidirectional, however transcription of the UL127 open

reading frame is inhibited by a repressor sequence in the

unique region which is bound by cellular homeobox proteins

(Lundquist et al., 1999; Angulo et al., 2000; Chao et al., 2004;

Lashmit et al., 2004; Lee et al., 2007). The enhancer and

modulator region greatly amplifies transcription and is bound

by a plethora of cellular transcription factors, some of which have

inhibitory function (Adamson and Nevels, 2020). In addition to

transcription factors, herpesviral genomes are chromatinised

during lytic and latent infection, which adds another layer of

transcriptional regulation of viral gene expression. Post

translational modifications of histones including acetylation,

methylation and phosphorylation have all been shown to

modulate transcriptional activity of the MIEP [reviewed
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(Paulus et al., 2010; Nevels et al., 2011; Knipe et al., 2013;

Adamson and Nevels, 2020)]. Transcriptional activity of the

HCMV MIEP is also activated by cellular and immune

signalling pathways, and includes the mitogen and stress

activated protein kinase (MSK) family acting through cAMP-

response element binding protein (CREB) (Kew et al., 2014),

tumour necrosis factor α (TNF-α) and nuclear factor κB (NF-κB)
(Stein et al., 1993; Döcke et al., 1994; Prösch et al., 1995), as well

as reactive oxygen species acting through activator protein 1 (AP-

1) complexes (Kim et al., 2005). The MIEP is also inhibited

directly and indirectly by cellular restriction factors and includes

interferon γ inducible protein 16 (IFI16) (Cristea et al., 2010;

Dell’Oste et al., 2014; Li et al., 2012), lysine demethylases (KDMs)

(Lee et al., 2015) and promyelocytic leukemia (PML) nuclear

bodies (Landolfo et al., 2016). Viral proteins also influence MIEP

regulation. UL82 (pp71) is delivered in virions and inhibits PML

suppression of the MIEP by degrading daxx (Bresnahan and

Shenk, 2000; Hofmann et al., 2002; Ishov et al., 2002) and

promotes viral replication (Figure 2). The activating and

inhibitory functions of these factors on the MIEP play a

fundamental role in regulating the switch from latency to lytic

infection and vice versa and are almost certainly cell type and

context dependent (Goodrum, 2016; Elder and Sinclair, 2019;

Forte et al., 2020).

Principal IE genes are transcribed by host RNA polymerase II

(pol II) from a single transcriptional start site upstream of the

UL123 and UL122 genes, and alternatively spliced to yield the

IE1 and IE2 families of products respectively, with unique

polyadenylation sites (Stenberg et al., 1985; Awasthi et al.,

2004; Arend et al., 2016). The IE1 family consists of the

abundant 72 kda IE1 (IE1-72) and possibly IE1-19 and IE1-17

products, however the latter two have not been functionally

FIGURE 2
Inside the host cell nucleus, viral genomes circularise, and IE gene expression commences independently of viral protein synthesis. The MIEP is
immediately upstream of the IE genes and acts as a hub for transcriptional activation or repression of the IE proteins by diverse host and viral factors.
MIEP regulation also dictates the switch from lytic replication to latency and vice versa. The MIEP begins immediately upstream of the UL122/UL123
ORF and consists of the core (+1 to −40), enhancer (−40 to −550), unique (−550 to −750) and modulator (−750 to −1,140) regions. The IE1 and
IE2 proteins are the main IE effectors which are encoded by the UL122/UL123 ORF by alternative splicing. IE1-72 and IE2-86 are multifunctional
proteins that transactivate DE viral genes, remodel chromatin, disrupt interferon signalling, and inhibit apoptosis to create a conducive cellular
environment for viral replication. IE, immediate early; MIEP, major immediate early promoter; ORF, open reading frame; DE, delayed early; crs, cis-
repression sequence.
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characterised (Awasthi et al., 2004; Paulus and Nevels, 2009). The

IE2 family consists of IE2-86, as well as IE2-60 and IE2-40 which

are expressed from internal promoters and accumulate to peak

levels between 48 and 72 HPI (Stenberg et al., 1989; Puchtler and

Stamminger, 1991; Plachter et al., 1993; White et al., 2007;

Weekes et al., 2014; Parida et al., 2019; Li M. et al., 2020). In

general, IE1-72 and IE2-86, referred to as IE1 and IE2 from here,

are multifunctional proteins that transactivate DE viral genes,

remodel chromatin, disrupt interferon signalling, and inhibit

apoptosis to create a conducive cellular environment for viral

replication. IE1 has been shown to be dispensable for replication

at high multiplicity of infection (MOI), but essential at low MOI

with a failure to accumulate DE transcripts in the mutants,

potentially due to autoregulation of the MIEP by IE1 and

compensated for by transactivating virion tegument proteins

at high MOI (Mocarski et al., 1996; Greaves and Mocarski,

1998; Gawn and Greaves, 2002). IE2 was shown to be

essential for accumulation of DE gene products (Marchini

et al., 2001; Heider et al., 2002) but recently has been shown

to also have important transactivating functions late in infection

when peak expression is observed (Li M. et al., 2020).

Interestingly, IE2 also negatively regulates expression from the

MIEP during late infection through a cis-repression sequence

(crs) within the core promoter (Cherrington et al., 1991; Lang

and Stamminger, 1993; Macias and Stinski, 1993), and likely acts

as a feedback mechanism to tune the transcriptional program

over the course of infection. This is further supported by

observations that IE2 both activates and represses

transcription from multiple viral loci (Li M. et al., 2020; Ball

et al., 2022). The transcriptional regulation mechanisms of

IE1 and IE2 are not clear cut, but also include a chromatin

dependent contribution (Nevels et al., 2004; Paulus et al., 2010;

Nevels et al., 2011; Knipe et al., 2013; Zalckvar et al., 2013).

IE1 and IE2 both exert effects on innate immune signalling, with

IE1 modulating interferon stimulated gene (ISG) expression

primarily through signal transducer and activator of

transcription (STAT) dependent mechanisms (Paulus et al.,

2006; Huh et al., 2008; Krauss et al., 2009; Knoblach et al.,

2011; Reitsma et al., 2013; Harwardt et al., 2016) as well as

disrupting PML nuclear bodies (Lee et al., 2004; Scherer et al.,

2014; Scherer and Stamminger, 2016), while IE2 broadly blocks

cytokine production through STING and NF-kB (Taylor and

Bresnahan, 2005; Taylor and Bresnahan, 2006a; Taylor and

Bresnahan, 2006b; Kim et al., 2017; Botto et al., 2019). DNA

microarray analysis of IE2 expressing cells showed induction of

E2 transcription factor (E2F) regulated genes and was postulated

to drive the cell cycle from G0/G1 to G1/S (Song and Stinski,

2002), however, this may be indirect as negligible transcription or

promoter binding of cellular genes has been observed for

IE2 using PRO-seq and ChIP-seq methods (Spector D. H.

2015; Li M. et al., 2020; Ball et al., 2022). Finally, both

IE1 and IE2 contribute to apoptosis inhibition (Zhu et al.,

1995; Tanaka et al., 1999; Yu and Alwine, 2002; Hsu et al.,

2004), and together with the aforementioned functions, establish

a conducive cellular environment for HCMV replication

(Figure 2).

Stage 3: Establishment of the nuclear
replication compartment

Herpesvirus infections generate an intranuclear structure

termed the viral replication compartment (RC) for viral

DNA replication. Pre-RCs are visible as multiple distinct

puncta from 6 h post infection (HPI) in cell culture, and can

be visualised by the UL112/UL113 proteins (Wright et al.,

1988; Penfold and Mocarski, 1997; Schommartz et al., 2017).

Between 12 and 24 HPI UL44, UL57 and IE2 are visible at

RCs, immediately adjacent to PML bodies (Penfold and

Mocarski, 1997; Ahn et al., 1999). Between 24 and

96 HPI, viral RCs expand and coalesce into larger

structures that usually form a single inclusion that

occupies most of the nucleus, although a minority of cells

maintain two separate structures on either side of the

nucleus (unpublished observations) (Strang, 2015). After

RC enlargement, UL44 and host nucleolin associate with

the RC periphery (Strang et al., 2010; Strang et al., 2012a).

UL84 also associates with the RC periphery and is dependent

on nucleolin for correct localisation (Bender et al., 2014),

with the n-terminal domain the primary determinant for

UL44 interaction (Strang Blair et al., 2012). Nucleolin is also

required for correct RC architecture and UL44 localisation,

but not for viral DNA synthesis, consistent with a scaffolding

function at the RC periphery (Strang et al., 2012b).

UL112/UL113 is key to RC formation, and co-expression

with the 6 core replication fork proteins (discussed in Stage 4)

by transient transfection in Vero cells resulted in RC-like

staining patterns, whilst no RCs form without UL112/UL113

(Ahn et al., 1999). Further, UL112/UL113 is also needed for

correct UL44 localisation and subsequent viral DNA

replication (Kim and Ahn, 2010), with the n-terminal

domain shown to be essential for this (Kim et al., 2015).

UL112/UL113 encodes 4 isoforms, with only p43 and

p84 essential for viral replication and UL44 localisation

(Schommartz et al., 2017). More recently, it has emerged

that HSV-1 and HCMV RCs are molecular condensates

that form through a process of liquid-liquid phase

separation (LLPS), to create a structure with physical

properties that selectively concentrate viral proteins

essential for DNA replication, repair and transcription

[reviewed (Caragliano et al., 2022a)] (Figure 3). For

HCMV, the intrinsically disordered region (IDR) of UL112/

UL113 induces LLPS around viral genomes and subsequently

recruits essential viral proteins including UL44 (Caragliano

et al., 2022b). Over the course of infection, newly replicated

viral DNA accumulates within RCs as they expand, together
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with UL57 (Strang et al., 2012a; Caragliano et al., 2022b).

UL112/UL113 also becomes less mobile within RCs over time

as RCs display irregular morphologies distinct from their

spherical precursors, which is abrogated by DNA synthesis

inhibitors (Caragliano et al., 2022b) (Figure 3). This is strong

evidence that DNA itself contributes to the physical properties

of the RC. However, this is not the sole determinant of RC

morphology at late times after DNA replication, as deletion of

the RC resident protein UL34 had no impact on the levels of

viral DNA, but altered the size, morphology, and electron

density of RCs (Turner et al., 2022a). Further, fluorescent

labelling of viral genomes showed colocalization with

maturing capsids at the RC periphery, and potentially

indicates that genome replication (Stage 4) and packaging

(Stage 7) is coupled, at least at late times (Mariamé et al.,

2018). Interestingly, maturing capsids also mis-localise when

RC residents UL34 and UL84 are deleted (Strang Blair et al.,

2012; Turner et al., 2022a), further indicating that the RC

periphery is involved in capsid maturation and genome

packaging, although precise mechanisms currently remain

elusive.

Stage 4: Genome replication

HCMV genome replication proceeds from the origin of lytic

replication (oriLyt) situated immediately upstream of UL57

between 91,000 and 94,000 bp in the genome (Masse et al.,

1992; Borst and Messerle, 2005), and is thought to occur by a

rolling circle mechanism that produces lagging strand loops

termed the “trombone” mechanism, based on HSV-1 (Bermek

et al., 2015). Rolling circle replication produces linear,

concatenated viral genomes. Genome replication is performed

by 6 virally encoded replication fork proteins. For HCMV, these

were inferred from homology of the HSV-1 polymerase complex

(Weller and Coen, 2012; Packard and Dembowski, 2021) and

FIGURE 3
HCMV forms an intranuclear replication compartment for viral DNA replication and transcription. The UL112/UL113 proteins coalesce around
viral genomes and together induce a phase separation. Nuclear viral proteins, including DNA replication machinery preferentially localises to the
phase separated compartment, enhancing DNA replication and creating positive feedback. Over the course of infection, multiple small pre-RCs
expand and coalesce into a single large structure that occupies most of the nuclear volume. RC, replication compartment.
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were confirmed functionally in HCMV by Pari et al. using a

transient complementation-based assay (Pari and Anders, 1993;

Pari et al., 1993). These consist of the DNA polymerase catalytic

subunit (UL54), the polymerase processivity factor (UL44),

single-stranded DNA-binding protein (UL57), and the

tripartite helicase-primase complex composed of UL70,

UL102 and UL105 (McMahon and Anders, 2002). UL54 and

UL44 interact (Ertl and Powell, 1992; Nobre et al., 2019) and

together efficiently catalyse DNA synthesis (Weiland et al., 1994)

(Figure 4). Structural characterisation of HCMV UL44 showed it

had strong homology to HSV-1 UL42 (UL44 homologue), and

may function analogously to mammalian proliferating cell

nuclear antigen (PCNA) (Appleton et al., 2004), with the

UL54-UL44 interaction mapped to the c-terminus of

UL54 and the “connector loop” of UL44 (Loregian et al.,

2003; Loregian et al., 2004a; Loregian et al., 2004b; Appleton

et al., 2006). Few HCMV specific studies have been performed to

elucidate the mechanistic contribution of UL57, UL70,

UL102 and UL105 to DNA replication, and their function has

been largely assigned based on HSV-1 [reviewed (Mercorelli

et al., 2008; Packard and Dembowski, 2021)]. In this scheme, the

helicase unwinds dsDNA to form a replication fork and the

primase synthesises short RNA primers to initiate lagging strand

synthesis. The polymerase and processivity factor synthesise

daughter strands by leading and lagging strand synthesis.

UL57 forms filaments on ssDNA to stimulate polymerase and

helicase-primase function and may possess additional strand

annealing activity involved in DNA recombination, based on

HSV-1 function (Tolun et al., 2013; Weerasooriya et al., 2019)

(Figure 4). No structure has yet been solved for the helicase-

primase complex, but some conserved functional motifs have

been identified (Woon et al., 2008; Ligat et al., 2018a).

Trans-complementation experiments by Pari et al. identified a

total of 11 loci as essential for oriLyt dependent DNA replication

(Pari and Anders, 1993; Pari et al., 1993). In addition to the 6 core

replication fork components described above, the IE1/IE2 locus,

UL36-38, IRS1/TRS1, UL112/UL113 and UL84 were found to be

essential. IE1/IE2, UL36-38 and IRS1/TRS1 (see Stage 2), as well as

FIGURE 4
Viral DNA replication proceeds by a rolling circle mechanism to produce linear concatemers. The tripartite helicase-primase complex
composed of UL70, UL102 and UL105 separates the strands to form a replication fork, while the DNA polymerase (UL54) and processivity factor
(UL44) synthesise the daughter strands by leading and lagging strand synthesis. The ssDNA binding protein UL57 forms filaments on ssDNA, which
stimulates polymerase and primase activity. ssDNA, single stranded DNA.
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UL112/UL113 (see Stage 3) all contribute to transactivate core

replication machinery or create a permissive cellular environment

at early times, and likely do not play a direct role inDNA replication.

Herpesviruses encode origin binding proteins that bind to the oriLyt

and initiate DNA replication. UL84 is essential for replication in cell

culture for lab adapted strains (Dunn et al., 2003; Yu et al., 2003),

and extensive experimentation lead to the model that UL84 fulfils

this role for HCMV and is dependent on IE2 [reviewed (Pari et al.,

2008)]. It was subsequently revealed that HCMV strains TR and

TB40E replicate independently of UL84, and this ability wasmapped

to a single amino acid change within IE2 (H388D), that rescued

growth of UL84 dependent strains with UL84 deletion (Spector D.

J. 2015). Further, TB40E UL84 deletion mutants can replicate

plasmids containing oriLyt sequence from a UL84 dependent

strain (Manska and Rossetto, 2021). The exact determinants of

HCMV DNA replication initiation are yet to be resolved but may

depend on IE2 transcriptional activation and repression from the

oriLyt promoter region. HerpesvirusDNA replication also requires a

DNA-RNA hybrid within the oriLyt termed an “R-loop” (Wang

et al., 2006; Rennekamp and Lieberman, 2011). For HCMV, this is

the G-C rich 5’ region of the long non-coding RNA4.9 whichmay be

required to initiate origin binding of the replication machinery (Tai-

Schmiedel et al., 2020). Interestingly, this region strongly binds

AD169 UL84, but not TB40E UL84, but no difference was observed

for IE2 occupancy between strains, and fails to explain the ability of

IE2 (H388D) to initiate DNA replication (Manska and Rossetto,

2021). More work is needed to solve this intricate mechanism of

replication initiation. Finally, host proteins also influence HSV-1

DNA replication and include DNA damage and repair proteins,

topoisomerases, transcription factors and chromatin remodelling

proteins [reviewed (Packard and Dembowski, 2021)]. Recent work

on HCMV has identified a similar repertoire of host proteins

compared to HSV-1, and await functional characterisation

(Manska and Rossetto, 2022).

Stage 5: Late gene expression

Herpesviral late genes are transcribed by RNA pol II, and

predominantly encode structural virion components, with their

FIGURE 5
HCMV late genes are expressed with comparable kinetic profiles, however, distinct mechanisms of transcriptional initiation exist. The first
involves TATA binding by host TBP, recruitment of a canonical PIC and RNA pol II, and transcription initiation akin to the alpha-herpesviruses. The
second involves IE2-based regulation of transcriptional initiation, by binding to a crs-like motif and recruiting the host PIC and pol II for gene
transcription. It must be noted that IE2 is a multifunctional protein that likely influences viral gene activation, repression, and as an elongation
barrier depending on the promoter sequence, bound transcription factors and local chromatin environment. The third mechanism is unique to the
beta- and gamma-herpesviruses that encode a 6-member vPIC that binds to unconventional TATT promoter sequences and recruits host pol II for
transcript elongation. RC, replication compartment; IE2, immediate early 2; TBP, TATA binding protein; PIC, pre-initiation complex; vPIC, viral pre-
initiation complex; pol II, host RNA polymerase II complex.
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classification defined by robust accumulation at late times

following viral DNA replication. Canonically, there are two

distinct late classes for all herpesviruses termed leaky late (LL)

and true late (TL), or gamma 1 and gamma 2, respectively

(Anders et al., 2007). LL products are generally understood to

be transcribed from a canonical TATA box promoter motif, and

expressed independently of DNA replication; however, their

levels are substantially lower in cells treated with viral DNA

polymerase inhibitors, and likely due to low template numbers in

this condition (Figure 5). In contrast, TL products are canonically

defined as being entirely dependent on DNA replication (Gruffat

et al., 2016). This suggests that changes occur to viral DNA

following replication, with the removal of repressive chromatin

and sequestration of replicated genomes in the interior of viral

RCs the current favoured hypotheses (Gruffat et al., 2016).

Despite all herpesviruses having LL and TL expression classes

with superficially similar characteristics, there are mechanistic

differences in the transcriptional initiation of late gene products

between the alpha, and the beta and gamma subfamilies. Namely,

alphaherpesviruses initiate TL gene expression by tuning host

pre-initiation complex (PIC) recruitment to late promoters,

likely through a combination of the TATA box, initiator

element and early viral transactivators (Mavromara-Nazos and

Roizman, 1989; Kim et al., 2002; Dremel and DeLuca, 2019). In

contrast, the beta and gamma subfamilies have a 6-member

virally encoded PIC (vPIC) which recognises a non-canonical

TATTmotif in core promoters which subsequently recruits pol II

for transcriptional initiation (Tang et al., 2004; Isomura et al.,

2008; Gruffat et al., 2012; Aubry et al., 2014; Gruffat et al., 2016; Li

M. et al., 2021) (Figure 5). The 6 sub-units composing the HCMV

vPIC are UL49, UL79, UL87, UL91, UL92 and UL95 (Isomura

et al., 2011; Perng et al., 2011; Omoto andMocarski, 2013; Omoto

and Mocarski, 2014; Turner et al., 2022b) all of which are

essential for replication in cell culture (Dunn et al., 2003; Yu

et al., 2003). UL87 is central to the complex and is thought to bind

DNA directly based on a predicted TATA binding protein (TBP)

fold (Wyrwicz and Rychlewski, 2007) and gammaherpes

analogues (Wong et al., 2007; Gruffat et al., 2012; Davis et al.,

2015).

Recently, PRO-seq was performed at late time of infection

following degradation of IE2 isoforms and vPIC subunits to

profile different transcription initiation mechanisms across the

viral genome (Li M. et al., 2020; Li M. et al., 2021). Degradation of

IE2 isoforms IE-86, IE-60 and IE-40 blocked transcription

initiation for 42 transcripts and repressed 7, with both LL and

TL expression kinetics (Li M. et al., 2020). The majority of

IE2 activated transcripts did not possess a TATW (W = A or

T) motif with 5 TATA and 5 TATT box containing promoters

sensitive to IE2 activation (Li M. et al., 2020). The same

methodology, when applied to degradation of vPIC subunits

UL79 and UL87, showed a substantial reduction in viral

transcription initiation globally, and included promoters with

both LL and TL expression kinetics (Li M. et al., 2021).

Complementing these results, RNA-seq profiling revealed a

consistent diminution of transcripts encoding structural virion

and egress associated products in vPIC mutant infections

(Turner et al., 2022b). Analysis of vPIC sensitive promoters

revealed the TATTW (W = A or T) motif to be enriched, and

is concordant with gammaherpesvirus results (Tang et al., 2004;

Wyrwicz and Rychlewski, 2007; Gruffat et al., 2012; Aubry et al.,

2014). However, multiple additional non-canonical motifs were

also present (Li M. et al., 2021). vPIC regulated transcripts

showed a positive correlation with viral polymerase inhibitor

phosphonoformic acid (PFA) sensitivity (Li M. et al., 2021), while

IE2 regulated transcripts displayed a wide range in PFA

sensitivity (Li M. et al., 2020), substantiating the notion that

the HCMV vPIC broadly shapes the late transcriptional program

with a smaller contribution from IE2. Additionally, IE2 and vPIC

regulation appears to be specific to viral genomes, with neither

substantially altering host transcription (Li M. et al., 2020; Li M.

et al., 2021). This could be due to unrecognised cis-regulatory

elements in the viral genome, or more likely, sequestration of

viral DNA replication, transcription and altered chromatin status

within nuclear RCs (Stage 3) where vPIC subunits localise

(Isomura et al., 2011; Perng et al., 2011; Omoto and Mocarski,

2013; Omoto and Mocarski, 2014). Analysis of IE2 occupancy on

the genome suggested IE2 functions as a transcriptional

repressor, activator and elongation barrier depending on the

promoter sequence, bound transcription factors and local

chromatin environment, likely modulated by protein-protein

interactions as well as DNA sequence directly depending on

the context (Ball et al., 2022) (Figure 5). Recent work using DNA

fragmentation factor (DFF) before immunoprecipitation (DFF-

ChIP), which analyses the run-on products of protected

fragments after DNA digestion and immunoprecipitation of

selected proteins, has revealed unprecedented insights into

chromatin status and mechanisms of transcription initiation

of the viral genome (Spector et al., 2022). It was shown that

85% of pol II was not associated with +1 nucleosomes (ie. stalled

transcription) on HCMV promoters, compared to only 18% on

host promoters, and that viral DNA has 100 times less

H3K4me3 modified nucleosomes compared to host DNA.

Taken together, HCMV genes are predominantly transcribed

from unchromatinised DNA (Parida et al., 2019; Spector et al.,

2022), at least at late times, which is concordant with RC

sequestration of viral genomes (Caragliano et al., 2022a;

Caragliano et al., 2022b). Additionally, comparison of

transcription from viral promoters for host TBP PICs and

UL87 vPICs over time using PRO-seq, revealed that the vPIC

preferences kinetically late and PFA sensitive promoters as

previously described (Li M. et al., 2021). However, some

promoters were robustly transcribed using only host TBP

PICs at late times (Spector et al., 2022). Most striking is that

both TBP and UL87 have activity on many viral promoters and

likely compete for occupancy, exemplified by UL22A, which

reveals a dynamic interplay between separate transcription
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initiation mechanisms on the HCMV genome (Spector et al.,

2022).

Herpesviral gene expression kinetics were traditionally divided

into IE, E and L gene products but this view has shifted with

investigations utilising “omics” technology. Weekes et al. profiled

the host and HCMV proteome over 96 h of lytic replication, with

and without PFA treatment, and defined 5 kinetic expression

classes (Weekes et al., 2014). RNA-seq profiling over time yielded

similar groupings with 5 classes (Stern-Ginossar et al., 2012).

Recently, RNA-seq profiling, in combination with PFA and

cycloheximide (translation inhibitor), revealed viral

transcription does not proceed in a sequential temporal cascade

but instead, at most time points, there are transcripts sensitive to

different drugs with similar profiles (Rozman et al., 2022). The

authors used these data to suggest 7 temporal expression classes

(Rozman et al., 2022). Different isoforms also show different

mechanisms of regulation at early and late times [reviewed

(Hale and Moorman, 2021)]. UL44 is a prominent example as

it is expressed early (Leach and Mocarski, 1989), but peak

transcript and protein levels are reached late (Weekes et al.,

2014; Rozman et al., 2022). UL44 has 3 transcription start sites,

the second containing a vPIC dependent TATT motif (Leach and

Mocarski, 1989; Isomura et al., 2007; Isomura et al., 2008; Isomura

et al., 2011), which likely governs these dynamics. IE2 and

UL82 behave similarly with late isoforms transcribed by the

vPIC from TATT containing promoter elements (Li M. et al.,

2020; Li M. et al., 2021). Reconciling temporal expression profiles

with recent insights of late transcriptional regulation by TBP,

IE2 and vPIC, and their preferences and competition for varied

promoter sequences, revealed a complex and dynamic late

transcriptional landscape that was not previously appreciated

(Figure 5). It is clear that early/late classification is inadequate

to account for the observed complexity, as is a definition based

solely on transcriptional initiation mechanism or promoter motif

enrichment, given the sequence diversity of each PIC and

competition or redundancy between these (Parida et al., 2019;

Li M. et al., 2020; Li M. et al., 2021; Ball et al., 2022; Spector et al.,

2022). Given the potential promoter competition between TBP

and vPIC at some promoters, it is conceivable that substantial

compensatory effects may exist depending on the context, such as

in mutant virus infections, certain drug treatments or cell type,

whichmay help or hinder interpretation depending on the context.

There is now a substantial body of data available relating to late

transcription which is ripe for integration and re-analysis, to reveal

new insights and answer outstanding questions (Jürges, 2022).

Stage 6: Biogenesis of the viral
assembly compartment

HCMV infected cells generate a cytoplasmic megastructure

known as the viral assembly compartment (vAC), that serves as

an essential organisational hub for virion cargo recruitment,

tegumentation, secondary envelopment, cytoplasmic

trafficking, and release of infectious virions [reviewed (Alwine,

2012; Jean Beltran and Cristea, 2014; Close et al., 2018)]. The

vAC was first described by Sanchez et al., and was postulated to

be the site of final virion assembly (Sanchez et al., 2000a; Sanchez

et al., 2000b). The major viral markers of the vAC include the

tegument protein UL99 and envelope glycoprotein gB, however,

most virion cargo proteins including gH, UL32 and UL83 localise

to the vAC at late times during infection (Sanchez et al., 2000a;

Sanchez et al., 2000b). Utilising a panel of organelle specific

markers, Das and others further characterised the host cell

features of the vAC, and proposed a vAC model that takes

the form of a flattened disc composed of concentric rings of

organelles centred on a microtubule organising centre (MTOC),

with the whole structure adjacent to an enlarged kidney-shaped

nucleus (Das et al., 2007; Das and Pellett, 2007; Das and Pellett,

2011; Das et al., 2014). Since HCMV inactivates centrosomes

(Hertel and Mocarski, 2004), it was recently shown that the vAC

functions as a Golgi derived MTOC (Procter et al., 2018).

Endosomal vesicles are clustered within a ring of Golgi

membranes with the endoplasmic reticulum (ER) loosely

associated around the periphery (Das et al., 2007; Das and

Pellett, 2007; Das and Pellett, 2011; Das et al., 2014)

(Figure 6). Recent work has suggested that there are multiple

populations of heterogeneous vesicles clustering within the vAC,

potentially containing distinct microdomains (Zeltzer et al.,

2018), consistent with the extensive re-modelling of host

organelles throughout infection (Jean Beltran et al., 2016).

Organelle remodelling and vAC formation is also observed in

murine CMV (MCMV) infected cells, with all the same features

as HCMV (Lučin et al., 2020; Marcelić et al., 2021; Pavišić et al.,

2021; Štimac et al., 2021), showing important conservation.

Observations of HCMV infection by live cell imaging has

provided unprecedented insights into the dynamic nature of

this structure (Procter et al., 2018). The authors observed vACs

splitting and merging throughout infection, while the nucleus

was in constant motion around the vAC, often re-orienting and

rotating through 360° (Procter et al., 2018).

The vAC is a highly complex and dynamic structure however,

the host and viral dependencies remain largely uncharacterised,

and only a handful identified to date. Initial efforts utilised siRNA

to knockdown (KD) 26 selected viral proteins of interest, from

early and late kinetic classes (Das et al., 2014). The screen

identified and validated UL48 and UL103 to be prerequisite

for typical endosome accumulation and Golgi ring formation,

but no detailed mechanistic information was revealed.

UL103 deletion was shown to influence vAC morphology, but

direct contribution to vAC organisation separate from its role in

egress was not assessed (Ahlqvist and Mocarski, 2011). Likewise,

deletion of UL71 (Womack and Shenk, 2010), UL94 (Phillips

et al., 2012) and UL97 (Azzeh et al., 2006) show disruption of

select vAC markers but this may be secondary to defects in

envelopment (Womack and Shenk, 2010; Goldberg et al., 2011;
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Schauflinger et al., 2011; Phillips and Bresnahan, 2012; Dietz

et al., 2018; Read et al., 2019), as well as trafficking of UL99 in the

case of UL94 (Phillips et al., 2012) (see Stage 9). Deletion of the

envelope glycoprotein UL132 was previously demonstrated to

reduce virus titres by 100-fold (Spaderna et al., 2005) and has

recently been shown to be essential for vAC formation (Wu et al.,

2020). The virions released from UL132 deletion infections had

high particle/PFU ratios and altered virion cargo composition,

namely reduced levels of envelope glycoproteins gH and gB, and

outer tegument proteins UL71 and UL99 (Wu et al., 2020).

Virion production, vAC formation, particle/PFU ratio and

virion composition were rescued by expression of the

cytoplasmic domain in trans which demonstrates the entry

defects are not due to UL132 in the virion envelope, as

rescued virions lack envelope UL132 (Wu et al., 2020).

HCMV also encodes multiple miRNAs that target

components of the endocytic system (Hook et al., 2014), and

deletion of these during infection abrogated vAC formation, and

increased particle to PFU ratios analogous to UL132 deletion

(Wu et al., 2020).

Several host proteins have been identified to play important

roles during vAC biogenesis. Examples include the Golgi

residents syntaxin 5 (STX5) (Cruz et al., 2017) and Golgi

reassembly stacking protein 65 kD (GRASP65) (Rebmann

et al., 2016), ER chaperone BiP (Buchkovich et al., 2008;

Buchkovich et al., 2009), and nuclear WDR5 that translocates

to the vAC during HCMV infection (Yang et al., 2021; Yang et al.,

2022). Proper functioning of the host endocytic system is

required for vAC formation (Archer et al., 2017), including

dynamin (Hasan et al., 2018; Štimac et al., 2021). Endocytic

involvement is further supported by the localisation and

requirement for ADP ribosylation factor 1 (ARF1), ARF3,

FIGURE 6
The HCMV vAC is a cytoplasmic virus factory where virion cargo accumulates to enable tegumentation and secondary envelopment. The vAC is
characterised by concentric rings of host-derived organelles, with endosomemembranes surrounded by a Golgi ring, and the ER loosely associated
around the periphery. The structure is adjacent to the enlarged kidney-shaped nucleus and functions as a Golgi-derived MTOC. The cytoskeleton is
central to vAC formation and function, and is connected to the nucleus through polarised LINC complexes. LINC complexes provide a bridge
between the nucleoskeleton and cytoskeleton that allows the vAC to exert control over nuclear morphology, rotation, and internal organisation. ER,
endoplasmic reticulum; EE, early endosome; MT, microtubule; MTOC, microtubule organising centre; LINC, linker of nucleoskeleton and
cytoskeleton; vAC, viral assembly compartment; RC, replication compartment.
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ARF4 and ARF6 GTPases for establishment of pre-ACs in

MCMV infection (Donaldson and Jackson, 2011; Pavišić et al.,

2021). The ras-related in brain 11 (RAB11) family interacting

protein 4 (FIP4) interacts with the gM cytoplasmic tail and all

three are required for correct vAC organisation and efficient

virus production (Krzyzaniak et al., 2009). Bicaudal D1-

dependent localisation of UL32 at late times, but not UL99,

further illustrates the specificity and general importance of

trafficking within the vAC (Indran et al., 2010). Trafficking

within the vAC is complex with a major host cell contribution

and exact mechanisms for each of these has not yet been

determined.

Given that the vAC functions as a Golgi derived MTOC

(Procter et al., 2018), it is not surprising that the cytoskeleton is

also a major determinant of vAC architecture. Treatment of

infected cells with the microtubule (MT) depolymerising drug

nocodazole disrupts the vAC (Sanchez et al., 2000a), which is

reversible following removal (Indran et al., 2010).

Mechanistically, the MT associated end binding protein 1

(EB1) and EB3 are both required for efficient HCMV

replication, but function through distinct mechanisms

(Procter et al., 2018). EB1 depletion caused mislocalisation

of the MT plus end tracking protein CLIP170 along the MT

lattice, while EB3 depletion abrogated formation of acetylated

MTs. Additionally, HCMV requires transforming acidic

coiled-coil containing protein 3 (TACC3), an EB-

independent plus end tracking protein which recruits the

MT polymerase chTOG for correct vAC architecture and

efficient replication (Furey et al., 2021). The cytoplasmic

vAC has previously been linked to effects on nuclear

morphology, with contributions from BiP (Buchkovich et al.,

2010), and strengthened by the knowledge that acetylated MTs

are required for nuclear rotation that is blocked in EB3 knock-

down conditions (Procter et al., 2018). These observations were

extended by Procter et al. (Procter et al., 2020) that established

that HCMV polarises the nuclear membrane linker of

nucleoskeleton and cytoskeleton (LINC) complexes towards

the vAC, via contact with acetylated MTs through dynein to

regulate nuclear morphology and rotation (Procter et al., 2020).

Additionally, intranuclear organisation is controlled by the

cytoskeleton through the LINC. Polarised LINC complexes

alter the localisation of F-actin which segregates host

heterochromatin towards the vAC, while viral DNA is

localised away from the vAC in RCs (Stage 3) (Figure 6).

Taken together, these finding establish that the vAC exerts

control over nuclear morphology, rotation, and organisation,

and that the nuclear RC and vAC are inherently linked (Procter

et al., 2020). Together, this work definitively shows that the

vAC acts as a hub to coordinate efficient virion assembly and

egress by remodelling host membranes and the secretory

system. Elucidating exact mechanisms of vAC function is

complicated with many important proteins likely performing

dual roles.

Stage 7: Capsid assembly and
genome packaging

The pseudo-icosahedral nucleocapsid displays

T16 symmetry and is composed of 150 major capsid protein

(MCP) hexons, with 11 MCP pentons making up each vertex of

the icosahedron (Liu and Zhou, 2007; Gibson, 2008). The 12th

vertex is the portal which is composed of 12 copies of the portal

protein (UL104) arranged in two hexameric rings, creating a

channel for the genome to enter and exit the nucleocapsid

(Dittmer et al., 2005; Li Z. et al., 2021). A single copy of

triplex capsid protein 1 (TRX1, UL46) and 2 copies of TRX2

(UL85) form heterotrimers which fasten theMCP pentamers and

hexamers together at their floor (Yu et al., 2017). A single

smallest capsid protein (SCP) copy sits atop each MCP copy

which provides the interaction surface for the betaherpes specific

UL32/pp150 tegument protein to buttress the pentamers and

hexamers to the triplex floor, and is postulated to provide extra

support to withstand the greater internal pressure from the large

HCMV genome that is packaged within (Yu et al., 2017).

Recently, the structure of capsid vertex specific components

(CVSC) were solved, revealing heteropentamers composed of

2 copies of UL77, two of UL48 and a single UL93 molecule (Li Z.

et al., 2021). CVSCs variably occupy the peripenton registers,

displacing 3 copies of UL32 and sit atop the triplexes at these

locations. The periportal registers are saturated with 5 CVSCs

and replace 4 copies of UL32 at each (Li Z. et al., 2021).

Interestingly, only 13% of peripenton registers are occupied by

CVSC in HCMV (Li Z. et al., 2021), compared with 20% for

Epstein-Barr virus (EBV) (Li Z. et al., 2020), 38% for Kaposi’s-

sarcoma associated herpesvirus (KSHV) (Gong et al., 2019), and

100% for HSV-1 (Liu et al., 2019), which is inversely correlated

with genome size and has previously been suggested to increase

capsid pressure to control pressure balance for optimal genome

ejection through the NPC (Li Z. et al., 2020). A portal cap sits

atop the portal channel to secure the packaged genome and is

formed by 5 dimers of UL77 head domains, likely originating

from each of the periportal CVSCs (Liu et al., 2019; Liu et al.,

2020; Li Z. et al., 2021).

Capsid formation and maturation occurs in cell nuclei

around the periphery of RCs (Mariamé et al., 2018), with

important scaffolding and protease proteins involved. The

UL80 ORF encodes a fusion protein of the n-terminal

protease (UL80a, aa 1-256), linker, and c-terminal scaffold

precursor (UL80.5, aa 336-708) (Varnum et al., 2004). There

is an alternative UL80.5 transcript that only encodes the

scaffold, likely to achieve correct stoichiometry between

protease and scaffold (Welch et al., 1991; Loveland et al.,

2007; Li M. et al., 2021). The scaffold protein contains two

nuclear localisation sequences required for efficient nuclear

import of MCP and other capsid proteins (Nguyen Nang

et al., 2008). In the nucleus, capsid components assemble

around the scaffold to produce a spherical pro-capsid
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(Figure 7). The scaffold catalyses this by self-interactions via the

n-terminus, while the c-terminus interacts with MCP (Beaudet-

Miller et al., 1996; Wood et al., 1997). These interactions likely

underpin HCMV pro-capsid assembly and are analogous to

HSV-1 (Gibson, 2008; Brown and Newcomb, 2011). After pro-

capsid formation, the protease domain of the fusion protein

self-cleaves, releasing the n-terminus, which in turn cleaves the

MCP interacting c-terminus to release it from the interior of the

capsid shell [reviewed (Gibson, 2008)] (Figure 7). For HCMV,

capsid angularisation has been observed when the protease is

inhibited, suggesting that the protease is non-essential for this

step. However, DNA filled capsids were not observed,

confirming the essential function of the protease for further

capsid maturation (Yu et al., 2005). HSV-1 procapsids

spontaneously assembly in vitro and in insect cells when all

capsid proteins are expressed (Newcomb et al., 1999).

Interestingly, a greater proportion of procapsids angularised

in cell extracts, suggesting cellular determinants or co-factors

regulate this process (Newcomb et al., 1994; Newcomb et al.,

1996; Newcomb et al., 1999). These experiments have not been

performed for HCMV and all the viral determinants of pro-

capsid formation await confirmation (Gibson, 2008).

Structural comparisons between HSV-1 procapsids and

angularised capsids revealed different capsid floor

arrangements, with larger pores in the procapsid hexons

(Heymann et al., 2003; Brown and Newcomb, 2011). The

authors suggested that cleaved scaffold may exit the capsid

through these during angularisation (Brown and Newcomb,

2011). During all herpesvirus infections, 3 capsid forms are

observed in infected cell nuclei: A-capsids are empty and lack

scaffold or DNA, B-capsids contain an inner shell of cleaved

scaffold, and C-capsids that contain packaged viral genomes and

mature into infectious virions (Tandon et al., 2015). The exact

maturation process has not been established experimentally, but

a working model has been proposed (Heymann et al., 2003;

Baines, 2011). If the tripartite terminase is engaged during

angularisation, a genome is packaged to produce a C-capsid.

If angularisation occurs sealing the scaffold inside a B-capsid is

formed. While if the capsid is sealed after scaffold exit but

without a genome packaged, A-capsids result (Heymann et al.,

2003; Baines, 2011) (Figure 7).

HCMV genome replication (Stage 4) produces concatemeric

genomes that need to be processed. The tripartite terminase

complex historically composed of UL51, UL56 and UL89 cleaves

FIGURE 7
HCMV capsid subunits self-assemble around the scaffold in the nucleus. Once the spherical procapsid is fully assembled, divergence in capsid
maturation pathways can occur. If the procapsid angularises to the icosahedral form before the scaffold is removed a B capsid is formed that cannot
undergo subsequent maturation. Next, the protease cleaves the scaffold to release it from the interior of the procapsid, and it is ejected through
enlarged hexon pores. If angularisation occurs after this step, but before terminase complex engagement, an empty A capsid is formed. Mature
C capsids are formed when the terminase complex successfully engages the capsid and delivers a genome. The terminase complex provides energy
for genome translocation through ATP hydrolysis, and cleaves unit length genomes from the newly replicated concatemers by endonuclease
activity. TRM, tripartite terminase complex.
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and packages unit length genomes into maturing capsids

[reviewed (Ligat et al., 2018b)], in a process analogous to that

of tailed bacteriophages (Rao and Feiss, 2015) (Figure 7). UL56 is

the large subunit and interacts with the capsid portal (Dittmer

et al., 2005), specifically binds the pac1 and pac2 DNA motifs in

the a’ region of the viral genome (Bogner et al., 1998) and is

thought to transduce the energy for translocation of the genome

given homology to human topoisomerase I (Visalli et al., 2015)

and ATPase activity (Hwang and Bogner, 2002; Scholz et al.,

2003; Wang and McVoy, 2008). UL89 is the small subunit which

performs DNA cleavage (Scheffczik et al., 2002; Couvreux et al.,

2010; Nadal et al., 2010; Theiß et al., 2019) and likely interacts

with the c-terminal domain of UL56 (Ligat et al., 2017). The third

subunit, UL51, was shown to be essential for genome cleavage

and packaging, and interacts with UL56 and UL89 (Borst et al.,

2013). Moreover, sequestration of all three subunits in the

complex protects others from proteosomal turnover (Neuber

et al., 2017). UL56 contains a nuclear localisation sequence (NLS)

(Giesen et al., 2000) and can localise to the nucleus when

expressed exogenously, whilst UL51 and UL89 require

UL56 interaction for correct nuclear localisation (Wang et al.,

2012; Neuber et al., 2017). UL52 is essential for genome cleavage-

packaging and has distinct intranuclear localisation compared to

the terminase sub-units (Borst et al., 2008). Conserved domains

were identified by polymorphism analysis with putative CXXC-

like and zinc finger motif residues functionally validated for

growth (Muller et al., 2021a). The CVSC proteins UL77 and

UL93 are also essential determinants of genome cleavage-

packaging (DeRussy and Tandon, 2015; Borst et al., 2016).

Both proteins can interact with structural capsid components,

but not UL52 (Borst et al., 2016). UL77 and UL93 interaction

with terminase subunits was not detected by Borst et al. (Borst

et al., 2016), but has been reported by others (Köppen-Rung et al.,

2016). Deletion of both proteins abrogated genome cleavage and

FIGURE 8
Mature capsids traverse both nuclearmembranes to enter the cytoplasm for subsequentmaturation. TheNEC consisting of UL50 andUL53 acts
as an organisational hub on the INM to recruit host and viral proteins to facilitate this step. Additionally, the nuclear lamina poses a physical barrier for
exiting capsids. The lamins are phosphorylated by the viral kinase UL97 and subsequently depolymerise. C capsids travel along nuclear actin filaments
to the nuclear membrane where they undergo envelopment at the INMmediated by the NEC, and subsequent fusion with the ONM to release
the nascent capsid into the cytoplasm. NEC, nuclear egress complex; INM, inner nuclearmembrane; ONM, outer nuclear membrane; RC, replication
compartment; PIN1, peptidyl-prolyl cis-trans isomerase NIMA-interacting 1.
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led to accumulation of B-capsids, but no A- or C-capsids,

suggesting potential structural determinants of terminase

engagement (DeRussy and Tandon, 2015; Borst et al., 2016).

Finally, UL34 deletion reduces viral titres by 100-fold and

abrogates capsid maturation analogous to terminase mutants

(Turner et al., 2022a). The precise function of UL34 is not yet

clear, however RC and chromatin organisation may be involved

(Turner et al., 2022a).

Stage 8: Nuclear egress

Maturing virions must overcome the barrier of the nuclear

envelope to progress to the cytoplasm for envelopment and

cellular egress. Nuclear egress proceeds through a process of

envelopment at the inner nuclear membrane (INM), and de-

envelopment at the outer nuclear membrane (ONM) (Figure 8).

The process is broadly conserved across all herpesviruses and has

been extensively reviewed (Marschall et al., 2017; Marschall et al.,

2020; Arii, 2021; Draganova et al., 2021; Sanchez and Britt, 2021).

The virally encoded nuclear egress complex (NEC) is composed

of heterodimers of the transmembrane UL50, and soluble

UL53 proteins (Dal Monte et al., 2002; Milbradt et al., 2009;

Schmeiser et al., 2013; Sharma et al., 2014; Sonntag et al., 2016)

with phosphorylation of both subunits required for efficient

nuclear rim localisation and function (Sharma et al., 2015;

Sonntag et al., 2017). Structures of herpesviral NECs have

been solved (Bigalke and Heldwein, 2015; Hagen et al., 2015),

including HCMV, which revealed a hook-into-groove binding

interaction between the UL53 hook and UL50 groove (Leigh

et al., 2015; Lye et al., 2015; Walzer et al., 2015; Muller et al.,

2020). UL50-UL53 dimers oligomerise to form hexameric rings,

which themselves associate as a planar lattice in the INM (Bigalke

and Heldwein, 2015; Hagen et al., 2015; Leigh et al., 2015; Lye

et al., 2015; Walzer et al., 2015; Muller et al., 2020). HSV-1 NECs

spontaneously form vesicles in vitro, suggesting the NEC alone

can mediate primary envelopment and membrane scission

(Bigalke et al., 2014; Lorenz et al., 2015). Further, interaction

of an HSV-1 CVSC (UL25/CVC2) with the NEC coat induced

formation of pentameric NEC rings, and presents a potential

mechanism for membrane curvature by formation of icosahedral

assemblies (Draganova et al., 2020; Draganova et al., 2021).

Interactions between the CVSCs and NEC subunits has been

observed by some (DeRussy et al., 2016), but not others (Borst

et al., 2016), and may contribute to the interactions between

capsids and the NEC, as is observed for HSV-1 (Marschall et al.,

2017; Sanchez and Britt, 2021). Interestingly, UL53 was observed

directly on maturing capsids by immuno-gold staining (Milbradt

et al., 2018), which led the authors to propose that capsid bound

UL53 induces NEC lattice formation and primary envelopment

(Figure 8). Recent work has validated this observation and shown

that capsid bound UL53 does not influence capsid localisation to

the nuclear membrane (Wilkie et al., 2022). This model is further

supported by the observation that the HSV-1 homologue of

UL53 recruits the UL50 homologue into complexes, but is

dispensable for membrane remodelling in vitro (Lorenz et al.,

2015). Interestingly, the NEC has selectivity for genome

containing C-capsids, as few cytoplasmic B-capsids are

observed (Tandon et al., 2015). For alpha herpesviruses, this

selectivity has been suggested to be due to the presence of CVSCs

on C-capsids (Klupp et al., 2006; Trus et al., 2007; Toropova et al.,

2011; Yang et al., 2014). However, for HCMV, CVSCs were

observed on all capsid types in approximately equal proportions

(Borst et al., 2016). HCMV C-capsid specific structural elements

including CVSC conformation, portal cap or capsid associated

tegument proteins may contribute, but await investigation.

The NEC is not the sole determinant of HCMV nuclear

egress, but has been proposed as a hub which recruits additional

viral and cellular factors to overcome the physical nuclear barrier,

and increase nuclear egress efficiency (Marschall et al., 2020).

The dense nuclear lamina is a meshwork of polymerised lamins,

and provides structural support to the nucleus. Whilst it

facilitates nuclear organisation, phosphorylation of lamin

monomers is known to cause depolymerisation and lamina

breakdown (de Leeuw et al., 2018). Fascinatingly, HCMV

induces lamina breakdown in areas adjacent to the vAC

(Stage 6), and is mediated by the viral kinase UL97 (Marschall

et al., 2005; Hamirally et al., 2009; Kuny et al., 2010; Milbradt

et al., 2010). Deletion of UL97 results in an uninfected-like

nuclear lamina and nuclear egress block (Krosky et al., 2003).

Host kinases (Marschall et al., 2020), including protein kinase C

(PKC) (Muranyi et al., 2002; Milbradt et al., 2007) have also been

suggested to facilitate lamina breakdown and nuclear egress. The

cellular protein p32 has been suggested to recruit UL97 to

redistribute the lamina (Marschall et al., 2005). Later work

showed that UL97 was recruited by the NEC but not PKC or

cyclin dependent kinase 1 (CDK1) (Sharma et al., 2014).

Comparison between UL97, CDK1 and PKC inhibitors

revealed no effect on nuclear egress for CDK1 but a lamin-

independent effect for PKC was observed (Sharma and Coen,

2014). Interestingly, UL97 has augmenting classification with

deletion reducing virus titres by 100-fold (Prichard et al., 1999;

Krosky et al., 2003), perhaps indicating limited redundancy in

this process. Mechanistically, lamin phosphorylation is not

sufficient for lamina disassembly, but instead requires the

prolyl isomerase PIN1 (Milbradt et al., 2010; Milbradt et al.,

2016) (Figure 8). Interaction studies have identified additional

cellular proteins associated with the NEC which include p32 and

emerin (Milbradt et al., 2009; Milbradt et al., 2014), with

knockdown of both reducing virus production (Milbradt et al.,

2014). Finally, WD repeat-containing protein 5 (WDR5) is

required for efficient nuclear egress but a precise mechanism

remains elusive (Yang et al., 2018).

During nuclear egress of HCMV, the precise mechanisms

enabling membrane scission following primary envelopment at

the INM, and de-envelopment at the ONM remain unknown.
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For HSV-1 and EBV, evidence has emerged that endosomal

sorting complex required for transport (ESCRT) sub-units are

required for efficient envelopment at the INM (Lee et al., 2012;

Arii et al., 2018; Arii et al., 2022). Considering the HSV-1 NEC

can form vesicles in vitro (Bigalke et al., 2014; Lorenz et al., 2015),

ESCRT may augment the process to increase efficiency in the

cellular context. For HCMV, little data exists, although no major

defects in virus growth were observed in dominant negative

ESCRT expressing cell lines (Streck et al., 2018). The de-

envelopment process for HSV-1 and the related

alphaherpesvirus pseudorabies virus (PRV), torsin A and B

have been implicated (Maric et al., 2011; Hölper et al., 2020),

as well as the envelope glycoprotein gB for HSV-1 (Farnsworth

et al., 2007; Wright et al., 2009). Interestingly, PRV has no

dependence on gB for de-envelopment and this suggests

mechanistic differences within the same subfamily (Schulz

et al., 2013), precluding other assumptions based on related

virus species. For nuclear de-envelopment of HCMV, no

specific studies have yet been reported.

Maturing capsids must travel a significant distance from the

site of capsid assembly and genome packaging at the RC

periphery (Stage 7), to the cytoplasmic vAC (Stage 6) for

secondary envelopment and egress (Stages 9–10). The LINC

complex connects cytoplasmic microtubules to the

nucleoskeleton [reviewed (Starr and Fridolfsson, 2010; Simon

and Wilson, 2011)]. Procter et al. have recently demonstrated

that the LINC is integral to both nuclear and cytoplasmic

organisation during HCMV infection including nuclear

F-actin rearrangement and chromatin localisation (Procter

et al., 2020). F-actin filaments are induced by HCMV

infection and form along the RC periphery and extended to

the nuclear rim (Wilkie et al., 2016). Inhibition blocked virus

production, cytoplasmic capsid accumulation and localisation of

nuclear capsids to the nuclear rim (Wilkie et al., 2016). Follow-up

work showed the motor protein myosin Va colocalised with

F-actin and capsids, with knock-down resulting in similar capsid

localisation and nuclear egress defects (Wilkie et al., 2018)

(Figure 8). In addition to lamina breakdown at the INM

adjacent to the vAC (Marschall et al., 2005; Hamirally et al.,

2009; Kuny et al., 2010; Milbradt et al., 2010), the perinuclear

space enlarges during infection and increases in permeability,

with binding immunoglobulin protein (BiP) and possibly SUN

domain proteins involved (Buchkovich et al., 2010; Klupp et al.,

2017). 3D tomography of the nuclear membrane during infection

further reinforces the notion that the nuclear membrane is

dramatically remodelled (Villinger et al., 2015). Large

infoldings of the INM were typical, with perinuclear virions

and vesicles observed within these (Figure 8). Strikingly, second

and third order infoldings were also observed consistent with a

large expansion of the INM and a “pushing membrane”model of

capsid envelopment (Villinger et al., 2015). Taken together, the

nuclear membrane is remodelled during infection and the

F-actin-LINC-microtubule continuum influences nuclear

morphology and traffic of maturing capsids from the RC to

the cytoplasm. These observations will inform future mechanistic

investigations of HCMV nuclear egress.

Stage 9: Envelopment of maturing
nucleocapsid

Key evidence supporting the vAC as the final site for virion

envelopment comes from the localisation of viral envelope

glycoproteins gL, gH and gB. These were shown to co-localise

with various markers of the trans-Golgi network (TGN),

endocytic, and secretory pathways within the central areas of

the vAC (Homman-Loudiyi et al., 2003). Interestingly, many of

these markers were also detected in infected cell culture

supernatant and purified virions including CD63, TGN46,

transferrin receptor (TFRC) and cation-independent mannose-

6-phosphate receptor (CI-M6PR/IGFR) (Cepeda et al., 2010).

Based on these observations, a model whereby HCMV generates

a hybrid membrane compartment at the centre of the vAC

exhibiting characteristics of both endosomal and TGN

membranes for virion envelopment was proposed (Cepeda

et al., 2010). Building on this, Schauflinger et al. (Schauflinger

et al., 2013) generated 3D models of the HCMV vAC using

cryogenic electron microscopy sections. This revealed

nucleocapsids accumulate in a zone bounded by the Golgi

ring. Furthermore, single virions were observed budding into

short cisternae as well as multiple enveloped virions inside a

single multivesicular body (MVB). In some instances, enveloped

virions were observed alongside intraluminal vesicles (ILV), in a

single MVB, which has been observed by others (Fraile-Ramos

et al., 2002; Fraile-Ramos et al., 2007; Schauflinger et al., 2011)

(Figure 9). The late endosomal marker CD63 was also detected in

HHV6 virion envelopes as well as adjacent ILVs by immuno-gold

labelling (Mori et al., 2008), suggesting MVB envelopment is

conserved across the betaherpes subfamily. Rather than

generating entirely new cellular processes, HCMV is known to

beneficially hijack existing host pathways (Alwine, 2012), and

interestingly, the MVB pathway is inexorably tied to exosome

biogenesis.

Exosomes are membranous nanovesicles 30–200 nm in size

and secreted from all cell types. Inward budding of endosomal

membranes form ILVs within a limiting endosomal membrane

to form an MVB. MVBs can fuse with lysosomes resulting in

cargo degradation, or they can traffic to the plasma membrane to

release the ILVs into the extracellular space as exosomes

[reviewed (Raposo and Stoorvogel, 2013; Colombo et al., 2014;

Hessvik and Llorente, 2018)]. Exosomes have emerged as

important players in a suit of normal and pathological

processes, including cell-cell communication and metastatic

niche formation (Weidle et al., 2017). Isolation and proteomic

profiling of uninfected cell exosomes, HCMV infected cell

exosomes (viral exosomes) and virions revealed complete
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incorporation of the exosome proteome into mature virions,

further suggesting a common membrane origin for both

populations (Turner et al., 2020). Analysis of the viral protein

composition of viral exosomes revealed enrichment of envelope

glycoproteins (Zicari et al., 2018; Streck et al., 2020; Turner et al.,

2020; Bergamelli et al., 2022), including UL132 (Turner et al.,

2020; Wu et al., 2020), as well as outer tegument proteins

involved in envelopment (Turner et al., 2020), further

supporting the intrinsic nature of the exosome pathway in the

egress continuum. Complementing these findings, recent work

using 3D CLEM showed unequivocally that HCMV virions and

other vesicles bud into and accumulate in MVBs positive for

markers of the endocytic trafficking system and the exosome

pathway (Flomm et al., 2022). Compilation and re-analysis of

multiple HCMV and extracellular vesicle proteomes has revealed

signatures that suggest envelopment occurs on membranes

derived from tubular recycling endosomes (Mahmutefendić

Lučin et al., 2022). Intriguingly, comparison of envelopment

between fibroblasts and ECs revealed divergence in cellular

markers on MVB limiting membranes (Momtaz et al., 2021).

In both cell types, virions and ILVs were observed in common

MVBs, however, host markers of the limiting membranes

differed. Endocytic and exosomal membranes associated with

fibroblast MVBs, while golgi and autophagic markers were

present for ECs (Momtaz et al., 2021) (Figure 9). Autophagic

membranes have also been suggested as sites of HCMV

envelopment in fibroblasts (Taisne et al., 2019), however,

these proteins had low virion enrichment compared to other

host proteins (Turner et al., 2020), and moderate fold changes in

virion production when depleted (Taisne et al., 2019).

Interestingly, secretory autophagy is known to produce

extracellular vesicles (Ponpuak et al., 2015; Pleet et al., 2018)

FIGURE 9
Cytoplasmic envelopment of nascent virions occurs on MVB membranes or short cisternae within the vAC. In fibroblasts and likely epithelial
cells, envelopment is mediated bymultiple envelope glycoproteins and themembrane associated tegument proteins UL71 and UL99. The site of final
envelopment as well as the virion envelope are enriched in exosome markers that indicates a common membrane origin. In endothelial cells, final
envelopment also occurs on MVBmembranes. However, these are not enriched in exosome markers, but rather contain Golgi and autophagic
markers. Additionally, the viral proteins UL135 and UL136 are important for envelopment in endothelial cells, but are entirely dispensable in
fibroblasts. Note: UL71 and UL99 are included in the diagram for endothelial cell envelopment, as they are well conserved in clinical strains. However,
they have not been directly assayed in endothelial cells. MVB, multivesicular body; gB, envelope glycoprotein B.
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and may be co-opted by HCMV for envelopment in some

contexts.

HCMV envelopment has proven to be more complex than

HSV-1, with the involvement of ESCRT components remaining

controversial. Consistent with HSV-1, tumor susceptibility gene

101 (TSG101) and ALG-2-interacting protein X (ALIX) were

reported to be dispensable for HCMV production (Fraile-Ramos

et al., 2007; Tandon et al., 2009), however, the ESCRT-III

complex and vacuolar protein sorting 4 (VPS4) phenotypes

appear to be somewhat dependent upon the inhibition system

and virus strain used. Fraile-Ramos et al. (Fraile-Ramos et al.,

2007) demonstrated that transient knockdown of VPS4 using

siRNA increased virus production and concluded that VPS4 was

dispensable for HCMV envelopment. This was subsequently

refuted in a follow-up study by Tandon et al. (Tandon et al.,

2009) who employed a dominant-negative system to inhibit

ESCRT-III component Charged multivesicular body protein 1

(CHMP1) and VPS4, and observed a significant reduction in

production of infectious virus in cell lines overexpressing both

dominant negative CHMP1 and VPS4 by cell-to-cell spread. The

former study was criticised for the incompatibility between the

fibroblast specific AD169 virus strain and retinal pigment

epithelial cells (RPE-1) used (McSharry et al., 2001). The most

recent work to investigate ESCRT-III and VPS4 involvement in

HCMV envelopment utilized stable cell lines with inducible

expression of dominant negative forms of the protein to

control for any cellular toxicity (Streck et al., 2018). All

ESCRT components and VPS4 were dispensable for

extracellular virus production, but a modest defect in cell-to-

cell spread was observed, in partial agreement with Tandon et al.

(Tandon et al., 2009). With the emergence of ESCRT-

independent ILV formation (Hessvik and Llorente, 2018),

HCMV may hijack these processes, a hypothesis congruent

with low ESCRT enrichment observed in HCMV virions and

exosomes from infected cells (Turner et al., 2020). Virion

envelopment is known to be dependent on multiple viral

proteins, and a more definitive understanding of the

contribution from host proteins is ongoing.

From the viral perspective, the tegument protein

UL99 localises to the centre of the vAC during infection

(Sanchez et al., 2000a), and is known to be essential for virion

production (Silva et al., 2003). An acidic cluster of amino acids at

the N-terminus is essential for UL99 traffic to the vAC (Seo and

Britt, 2006), as is phosphorylation (Seo et al., 2020). UL94 and

M94 are essential for secondary envelopment (Maninger et al.,

2011; Phillips and Bresnahan, 2012), with interactions between

UL99 and UL94 required (Phillips et al., 2012). UL71 is also

involved in envelopment by several independent groups using

viruses lacking UL71 (Womack and Shenk, 2010; Schauflinger

et al., 2011). In the absence of UL71, partially enveloped virions

aggregated around the periphery of enlarged MVBs, and an

overall reduction in viral titre was observed by both. An

N-terminal tyrosine trafficking motif is required for

UL71 localization to the vAC (Dietz et al., 2018), and

mutation of a C-terminal tetralysine motif resulted in similar

envelopment defects to complete UL71 deletion (Read et al.,

2019) (Figure 9). An egress defect post envelopment was

suggested for UL103, however a precise mechanism was not

reported (Ahlqvist and Mocarski, 2011). The HSV-1 homologue

of UL103 (UL7) forms a complex with the UL71 homologue

(UL51) to mediate envelopment (Butt et al., 2020). Interestingly,

structural homology between HSV-1 UL51 and ESCRT-III

subunits was revealed, which suggests herpesviruses encode

protein complexes to bypass ESCRT mediated budding, and

perhaps scission (Butt et al., 2020). The envelope

glycoproteins also appear to be an important determinant of

envelopment, with gM and gN forming a stable complex through

disulphide bonds (Mach et al., 2000; Mach et al., 2005). The

cytoplasmic tail of gM has a trafficking motif required for vAC

localisation of gM/gN, with deletion inhibiting virion maturation

(Krzyzaniak et al., 2007). The cytoplasmic domain of gN contains

essential cysteine residues, with substitution mutations causing a

likely defect in envelopment (Mach et al., 2007). Additionally, a

contribution from gO to secondary envelopment in fibroblasts

and ECs has been demonstrated (Jiang et al., 2008).

The divergent MVB membrane composition between

fibroblasts and ECs is further illustrated by the requirement

of the UL133/8 locus for efficient tegumentation and

envelopment in ECs, but not fibroblasts (Bughio et al.,

2013). In ECs, deletion of UL135 abrogates envelopment at

the MVB membrane and UL136 mutants display enlarged

dense bodies (Bughio et al., 2015) (Figure 9). Likewise,

deletion of the UL133/8 locus alters vAC morphology in ECs

(Bughio et al., 2013). Deletion of UL133/8 is completely

dispensable for envelopment and viral growth in fibroblasts

when deleted from the endotheliotropic TB40E or FIX strains

(Bughio et al., 2013), while the locus is entirely lost from

fibroblast passaged AD169 and Towne (Cha et al., 1996;

Murphy et al., 2003). Interestingly, robust viral titres were

recovered from epithelial cells infected with AD169 when

susceptibility was restored either by repairing the pentamer

(Wang and Shenk, 2005; Adler et al., 2006), or overexpression

of the trimer ligand PDGFRα on the target cell (Vanarsdall

et al., 2012; Wu et al., 2018), which strongly suggests epithelial

cells are permissive for replication after successful entry. Similar

results were also observed for ECs infected with AD169 with

repaired pentamer, although absolute titres were much lower

(Wang and Shenk, 2005; Adler et al., 2006), but nonetheless

diverges from the UL133/8 deletion results (Bughio et al., 2013;

Bughio et al., 2015). The different MOIs, time points and viral

strains used between studies complicates direct comparisons

which awaits confirmation. Additionally, it has been observed

that different cell types release distinct virus populations with

altered tropism and envelope composition (Scrivano et al.,

2011). Cell-type specific mechanisms of virion cargo

recruitment and envelopment likely influences viral
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dissemination in vivo, with wider implications for clinical

management of HCMV.

Stage 10: Virion egress and release

After secondary envelopment, MVBs containing ILVs and

virions traffic to the plasma membrane and undergo fusion to

release infectious progeny extracellularly. Early observations of

virion egress using fluorescently labelled capsids indicated it to be

a random and inefficient process. Capsids showed small irregular

movements with no clear direction, yielding approximately

1 infectious virion per cell per hour in culture (Sampaio et al.,

2005). More recent investigations have reported that egress

occurs intermittently, with bulk release of virions and vesicles

at the PM followingMVB fusion (Flomm et al., 2022) (Figure 10).

Additionally, given the differences in envelopment mechanisms

for ECs versus fibroblasts, egress mechanisms in different cell

types may diverge or have redundancies depending on the

cellular context (Wedemann et al., 2022). Illustrating this,

pentamer expression appears to influence not just tropism,

but also extracellular versus cell-to-cell spread. AD169 with

repaired pentamer resulted in reduced extracellular viral titres

in fibroblasts compared to the parental virus, highlighting a

possible assembly, envelopment, or egress contribution (Wang

and Shenk, 2005; Adler et al., 2006). Whether pentamer

dependent effects on viral envelopment and/or egress are

fitness enhancing in vivo, has not yet been established.

Molecular and mechanistic knowledge of cellular egress in

general is lacking, however, some proteins have been identified.

Interestingly, cellular egress appears to be primarily driven by

host proteins, and many of these are implicated in exosome

biogenesis and secretion, featuring Rab GTPases and SNAREs.

RAB27A localised to virion membranes and the vAC, and knock-

down reduced virus titre by approximately 3-fold (Fraile-Ramos

et al., 2010). Whilst this is a modest reduction, RAB27A

inhibition reduced exosome production by only 2-fold

(Ostrowski et al., 2010), and similar undiscovered

redundancies may exist as for exosome secretion. Inhibition of

RAB4B (McCormick et al., 2018) and RAB11 (Krzyzaniak et al.,

2009) also reduced viral titres, as did STX3 (Cepeda and Fraile-

Ramos, 2011), with synaptosome associated protein 23

(SNAP23) inhibition reducing virus titres by approximately

1000-fold (Liu et al., 2011). Little mechanistic work has been

performed to pinpoint these exact defects, with likely function

inferred from known functions in the cell in the absence of

FIGURE 10
Following envelopment, MVBs containing enveloped virions and ILVs traffic to the PM, fuse, and release virions and exosomes into the
extracellular space through a bulk release mechanism. Simultaneously, virions that undergo envelopment on individual vesicles are thought to fuse
directly with the PM to release single virions. Few regulators of virion egress have been characterised to date, however, many host proteins linked to
exosome secretion have been associated with viral growth with involvement in egress. Cell type specific divergence, as well as cell-to-cell
spread mechanisms, may exist in contrast to the schematic outlined. MVB, multivesicular body; vAC, viral assembly compartment.
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infection. Given the complete remodelling of the vAC and MVB

membranes during infection, pre-envelopment dependencies

cannot be excluded for all host factors mentioned.

Discussion

Viral replication is a remarkable logistical feat that occurs at

the molecular level, with both host and viral processes

underpinning various stages along the replication continuum.

We described 10 stages in total: 8 essential viral replication steps

and the biogenesis of 2 virally-induced cellular megastructures

(RCs and vAC). Based on the literature to date, and our own

observations, the idea emerging is that progression to the

following stage is dependent on initiation of the previous

(Figure 11). We appreciate that our model may be somewhat

simplified as this biological system is incredibly complex, and

there may be concurrent processes, feedback loops and cross-talk

at various stages which are not yet appreciated. Nonetheless, the

sequential nature of virion maturation, and the linked

dependency provides multiple cellular loci to halt the entire

replication process and provides a useful framework to

investigate defects in viral replication progression. Each stage

represents an inherent vulnerability for future antiviral

development, with multiple specific targets likely within each.

It is clear that some replication stages are understood in more

detail than others. For example, our knowledge of cellular entry

(Stage 1) and nuclear egress (Stage 8) is greater than for late viral

transcription mechanisms (Stage 5), capsid assembly (Stage 7),

envelopment (Stage 9), and virion egress (Stage 10). From our

FIGURE 11
HCMV lytic replication proceeds sequentially through 10 checkpoints, with completion of each essential for production of infectious virions.
These are 1) entry, 2) early gene expression, 3) RC biogenesis, 4) viral genome replication, 5) late gene expression, 6) vAC biogenesis, 7) capsid
assembly and maturation, 8) nuclear egress, 9) envelopment, and 10) cellular egress. IE, immediate early; DE, delayed early; DNA pol, viral DNA
polymerase complex; RC, replication compartment;, PIC, pre-initiation complex; vPIC, viral pre-initiation complex; pol II, RNA polymerase II
complex; TRM, tripartite terminase complex; NEC, nuclear egress complex; vAC, viral assembly compartment.
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perspective, understanding the mechanistic details of these

events will deliver potential for the development of future

therapeutics.

Late viral gene transcription, exemplified by the betagamma

vPIC, but also including IE2 dependent mechanisms (Stage 5)

(Figure 5), represent a distinct checkpoint in the replication cycle

(Figure 11) with limited antiviral development. The vPIC

specifically binds viral promoters and recruits host RNA pol II

for viral gene transcription. Based on studies in both beta- and

gamma-herpesviruses, it is thought that UL87 and its analogues

substitute for host TBP in the PIC (Wyrwicz and Rychlewski, 2007;

Gruffat et al., 2012; Davis et al., 2015; Gruffat et al., 2016;

Castañeda et al., 2020). The vPIC alone is an attractive antiviral

target as there are 6 sub-units in the complex, all of which are

essential for replication, which likely requires a constellation of

compatible mutations to yield a resistant mutant that retains

fitness. Given the vPIC substitutes for components of the host

PIC, an alternative inhibition strategy could be designed to target

the vPIC-pol II interface providing the selectivity and tolerability of

traditional antivirals while also blocking pol II function in the host-

viral complex, and thus reduce the emergence of drug-resistant

mutant viruses further. Regardless of the exact inhibition strategy,

a vPIC specific inhibitor would offer an additional alternative to

existing licensed drugs and be compatible in combination. Future

mechanistic work defining the functional domains, interaction

interfaces, and complete structures of the vPIC and vPIC-Pol II

complex is therefore of significant clinical interest.

While pro-capsids can self-assemble in vitro, complete capsid

maturation to form DNA-filled C-capsids is more complex and

requires additional steps. These include capsid angularisation,

scaffold cleavage and removal, addition of CVSCs, binding of

capsid-associated tegument proteins (e.g., UL32), terminase

engagement with the portal complex, genome translocation,

genome cleavage, and portal capping [reviewed (Heming

et al., 2017; Muller et al., 2021b)]. The order and concurrent

progression are not currently known for any herpesvirus, but

some interdependencies can be inferred. When the HCMV

maturational protease is inhibited, angularised capsids

superficially similar to B-capsids form (Yu et al., 2005).

Protease null capsids display filamentous connections between

the scaffold ring and the capsid floor, indicating that cleavage of

the scaffold c-terminal domain is not essential for capsid

angularisation (Yu et al., 2005), but is probably required for

scaffold removal. Additionally, protease null capsids have

decreased density inside the scaffold ring which suggests

much of the protease resides there, even after cleavage of the

c-terminal scaffold domain (Yu et al., 2005). Cleaved scaffold is

removed from the capsid before DNA is packaged, but how this is

initiated and how it proceeds is not known. It has been suggested

that cleaved scaffold is extruded through channels in the pro-

capsid shell before or during angularisation, based on structural

comparison between pro-capsids and B-capsids in HSV-1

(Brown and Newcomb, 2011), but there is no direct evidence.

While there remains much to uncover in terms of mechanisms,

what is clear is that maturational protease executes an essential

function and represents an excellent target for antiviral

development. Viral protease inhibition using small molecules

has precedent (Borthwick, 2005), and is further highlighted by

HIV and HCV protease inhibitors in widespread clinical use

(Kurt Yilmaz et al., 2016).

Envelopment of HCMV capsids is intimately entwined with

host cell architecture andmembrane organisation. Assignment of

a precise cellular origin of the virion envelope is complicated by

the dramatic remodelling of host cellular organelles during

HCMV infection which masks their former identity (Jean

Beltran et al., 2016). Profiling virion proteomes and

cataloguing cargo, combined with functional validation assays

offers an unbiased approach to describe the cellular envelope

origin and uncover important mechanisms. It is emerging that

the ESCRT complexes and associated VPS4 are non-essential for

HCMV replication (Fraile-Ramos et al., 2007; Tandon et al.,

2009; Streck et al., 2018). Therefore, there is no definitive

evidence of any host proteins that mediate envelopment of

HCMV virions, but future work may yet uncover examples.

Also, yet to be defined host processes likely facilitate trafficking of

essential viral proteins to the site of envelopment, as well as shape

MVB microdomains essential for envelopment. Evidence of

divergent MVB membrane composition between fibroblasts

and ECs (Momtaz et al., 2021), bolstered by the requirement

for the UL133/8 locus in these cells (Bughio et al., 2013; Bughio

et al., 2015), adds further complexity to these processes, as does

the effect of pentamer expression on virus titres in fibroblasts,

which appears to modulate envelopment or egress (Wang and

Shenk, 2005; Adler et al., 2006). To overcome these hurdles and

characterise the cell type specific envelopment pathways, and the

viral dependencies of each, multiple virus strains and cell types

will need to be utilised in side-by-side assays. Additionally,

introducing deletion and repair mutations (e.g., UL128-

UL131A and UL133/8 loci) in each strain will provide

valuable mechanistic insights. For efficient dissemination,

HCMV targets specific cell types in an orchestrated manner

(Jackson and Sparer, 2018). Assembling distinct populations of

virions in different cell types with varied virion composition and

tropisms is one viral strategy which has experimental support

(Scrivano et al., 2011), and offers potential explanations for the

divergent envelopment and egress pathways between cell types.

The core viral proteins UL71, UL94, UL99 and UL103 have all

been reported to localise to the vAC and support envelopment of

cytoplasmic virions, with UL71 the most well characterised

(Womack and Shenk, 2010; Schauflinger et al., 2011; Dietz

et al., 2018). Considering recent work, it is likely

UL71 mediates membrane budding analogously to ESCRT-III,

as its HSV-1 homologue oligomerises to form filaments with

structural homology to these subunits (Streck et al., 2018; Butt

et al., 2020). Precisely how membrane scission is executed, and

whether it is mediated by host or viral proteins, or both, remains
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an open question. Mechanistic detail of how these host and viral

proteins function and interact is not yet established. The

opportunity to study these processes in more depth is

emerging, with advances in technology, notably super

resolution fluorescent microscopy. Characterisation of

molecular mechanisms governing envelopment will reveal

essential enzymatic activity or interaction interfaces during

this replication stage. Furthermore, delineating cell type

specific envelopment and egress mechanisms, and the

influence on virion composition and tropism, will be valuable

for the clinical management of HCMV.

Cytoplasmic egress, and the associated cellular mechanisms, is

by far the least understood stage of the replication cycle. What we

can conclude is that host cell vesicular trafficking proteins are of

high interest, including the Rab GTPases and SNAREs (Stage 10).

Viral proteins may perform essential virion egress functions, but

none have yet been definitively demonstrated. Defining processes

occurring during the final stage of the replication cycle is

particularly difficult given the potential for non-specific, or toxic

cellular effects stalling viral progression at earlier replication stages

and confounding the results. Method development to overcome

these challenges will be of immense value. For example, optimising

inducible cellular promoters or degradation tag systems in

permissive cell types to study host protein function late in

infection will help to define the critical host and viral

determinants of virion egress, and unlock novel antiviral targets.

The development pipeline for new HCMV antivirals is

constantly evolving as established candidates fail and new

compounds are discovered or repurposed. The licensed drugs to

date, as well as multiple related derivatives, target UL54 (Stage 4),

the terminase (Stage 7), and UL97 (Stage 8) (Table 1) (Britt and

Prichard, 2018). Prospective smallmolecule inhibitors have recently

been reviewed by others and overwhelmingly target the previously

mentioned proteins together with viral entry (Table 1) (Bogner

et al., 2021). Viral inhibition through active and passive

immunisation is a broad area of investigation and beyond the

scope of this review and has been covered in detail by others

(Plotkin et al., 2020; Griffiths and Reeves, 2021). The complex

herpesvirus replication cycle offers diverse and numerous

replication stages for restriction which have been outlined in

this review. At each replication stage there exist multiple

opportunities for restriction (Table 1), with more to emerge in

the future as additional mechanisms are characterised. In our

opinion, inhibitors of the helicase-primase complex (Stage 4),

betagamma vPIC (Stage 5), maturational protease/UL80a (Stage

7), NEC (Stage 8) and UL71 (Stage 9) offer the most opportunity to

screen for inhibitors based on current knowledge (Table 1). There is

still much to learn about the fundamental mechanisms of HCMV

replication which will illuminate new candidates for restriction

along the replication continuum.

Broad spectrum or pan herpes antiviral molecules could also

offer clinical benefit as multiple herpesvirus species can reactivate

simultaneously following transplantation (Dzieciatkowski et al.,

2016; Quintela et al., 2016; Anderson-Smits et al., 2020). This is

not an intractable proposition as core herpesvirus genes drive

multiple stages of the replication cycle and are largely conserved

across subfamilies. DNA replication (Stage 4), capsid assembly and

genome packaging (Stage 7), and nuclear egress (Stage 8) share

many similar mechanisms across subfamilies, which in our view,

currently offer the most promising opportunities to pursue this

approach. As more details emerge, it is likely that additional

molecular mechanisms will converge across the herpesviruses and

reveal development opportunities for broad spectrum inhibitors.

For successful completion of the replication cycle, HCMV

must progress through each of the 10 essential stages outlined in

this review. For each event there is a contribution from both host

TABLE 1 Summary of approved HCMV antivirals and putative targets for future antiviral development.

Stage Approved drug (s) Target
(s)

Putative target (s)

1: Viral entry into host cells Trimer, pentamer, gB

2: Nuclear trafficking and early viral gene
expression

IE1

3: Establishment of the nuclear replication
compartment

UL112/UL113

4: Genome replication Ganciclovir, Valganciclovir, Cidofovir,
Foscarnet

UL54 DNA pol (UL44, UL54), helicase-primase (UL70, UL102, UL105)

5: Late gene expression vPIC (UL49, UL79, UL87, UL91, UL92,UL95), IE2, RNA pol II

6: Biogenesis of the viral assembly
compartment

UL132

7: Capsid assembly and genome packaging Letermovir UL56, UL89 Maturational protease (UL80a), terminase (UL51, UL56, UL89),
UL52, UL77, UL93

8: Nuclear egress Maribavir UL97 NEC (UL50, UL53), UL97, PIN1, LINC, F-actin, MYO Va

9: Envelopment of maturing nucleocapsid UL71, UL94, UL99, UL103?

10: Virion egress and release Rab GTPases? SNAREs?
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and viral factors, and targeting this nexus may help to limit

antiviral mutation. Research to date has at least partially

characterised the majority of the essential HCMV genes, with

some critical structures such as envelope glycoproteins, the

capsid and NEC having complete structures solved. For

others, mechanisms are still lacking, with the late cytoplasmic

stages encompassing virion envelopment and egress the most

poorly understood. From the host perspective, only a handful of

essential proteins have been identified, and the depth of

mechanistic knowledge can be improved. In the future, large

scale screening approaches to identify all host and viral

determinants of each replication stage will be valuable if

technical limitations can be overcome, and appropriate assays

designed. This will pave the way for development of new drugs

and therapies inhibiting not just the viral DNA polymerase, but

also multiple steps along the replication continuum. Effective

combination therapy will guard against the emergence of future

resistant strains, and preserve the efficacy of existing drugs.
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