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Chromatin structural domains, or topologically associated domains (TADs), are

a general organizing principle in chromatin biology. RNA polymerase II (RNAPII)

mediates multiple chromatin interactive loops, tethering together as RNAPII-

associated chromatin interaction domains (RAIDs) to offer a framework for

gene regulation. RAID and TAD alterations have been found to be associated

with diseases. They can be further dissected as micro-domains (micro-TADs

and micro-RAIDs) by clustering single-molecule chromatin-interactive

complexes from next-generation three-dimensional (3D) genome

techniques, such as ChIA-Drop. Currently, there are few tools available for

micro-domain boundary identification. In this work, we developed the MCI-

frcnn deep learning method to train a Faster Region-based Convolutional

Neural Network (Faster R-CNN) for micro-domain boundary detection. At

the training phase in MCI-frcnn, 50 images of RAIDs from Drosophila RNAPII

ChIA-Drop data, containing 261 micro-RAIDs with ground truth boundaries,

were trained for 7 days. Using this well-trained MCI-frcnn, we detected micro-

RAID boundaries for the input new images, with a fast speed (5.26 fps), high

recognition accuracy (AUROC = 0.85, mAP = 0.69), and high boundary region

quantification (genomic IoU = 76%). We further applied MCI-frcnn to detect

human micro-TADs boundaries using human GM12878 SPRITE data and

obtained a high region quantification score (mean gIoU = 85%). In all, the

MCI-frcnn deep learning method which we developed in this work is a general

tool for micro-domain boundary detection.
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Introduction

In eukaryotic nuclei, chromatin is organized into three-

dimensional (3D) conformation with multi-scale and is

essential for gene transcription. By application of ChIA-PET

(chromatin interaction analysis by paired-end tag sequencing)

strategy (Fullwood et al., 2009), it has been suggested that CTCF

(CCCTC-binding factor)-mediated chromatin interaction

anchors tethered together as foci interacting with RNAPII

(RNA polymerase II) by selectively drawing specific genes for

coordinated transcription (Li et al., 2012; Tang et al., 2015).

These loops often interconnect as a daisy-chain-like structure,

where CTCF-mediated chromatin contact domains (CCDs) are

highly consistent with topologically associated domains (TADs)

identified by Hi-C (high-throughput chromosome conformation

capture) (Lieberman-Aiden et al., 2009; Dixon et al., 2012; Nora

et al., 2012), RNAPII-associated interaction domains (RAIDs)

are corresponding to transcription factories (Li et al., 2012;

Zheng et al., 2019). Dysregulations in chromatin interaction

loops or chromatin structural domains have been found to be

associated with certain diseases such as cancer (Li et al., 2012;

Krijger and de Laat, 2016; Wang et al., 2020).

The emerging ligation-free 3D genome techniques for the

identification of multiplex chromatin interactions lead the

chromatin structures of CCDs, TADs, and RAIDs to a high-

resolution sub-domain level to reveal novel aspects of

chromatin organization. These include split-pool recognition of

interactions by tag extension (SPRITE) data, which indicates that

chromatin is separated into discrete contact hubs (Quinodoz et al.,

2018). By chromatin-interaction analysis via droplet-based and

barcode-linked sequencing (ChIA-Drop) data (Zheng et al., 2019),

we uncovered chromatin contacts involving multi-way contacts

that covered different TADs or fall within a single TAD and

clustered into micro-domains with some similarities of interacting

features, which can be visualized directly by MCIBox, a toolkit for

single-moleculemulti-way chromatin interaction visualization and

micro-domain identification (Tian et al., 2022). Previous analysis

has shown that the micro-domains own a distinctive signature of

transcription activity, while their boundary detection has yet to be

thoroughly studied. Although there are more than 20 kinds of

methods for domain boundary calling, they are based on

chromatin contacts’ pileup coverage (Zufferey et al., 2018).

Here, we introduce an intuitive method to define the

boundaries of the micro-domains.

Object detection is a key branch of computer vision

technologies, which aims to use computers to scan and

identify the instances and their locations by mimicking the

human visual system—“What You See Is What You Get.”

One deep-learning based object detection algorithm, Faster

R-CNN (Faster Region-based Convolutional Neural Network)

(Ren et al., 2015), shares convolutional features using an

attention mechanism between region proposal networks

(RPNs) and Fast R-CNN detectors. Due to their good

performance in terms of detection accuracy and speed, Faster

R-CNN Detectors have been widely used in many areas, such as

self-driving (Agarwal et al., 2019), face detection (Zhan et al.,

2016; Sabir et al., 2022), and disease detection (Ma et al., 2020). In

this study, we set up a new program by adopting Faster R-CNN

algorithm to detect multi-way chromatin interaction clustered

micro-domains, termedMCI-frcnn. The results show that a well-

trained MCI-frcnn can detect the micro-domain boundary

rapidly (~19 ms/image) and with high accuracy of assessment

at the genomic Intersection over Union (gIoU) (more than 75%)

for RAIDs and TADs of Drosophila and human data.

Methods and results

We applied the Faster R-CNN algorithm to developMCI-frcnn,

a deep learning based tool to detect boundaries of micro-domains

robotically. MCI-frcnn includes five phases: data preparing phase,

annotation phase, training phase, detecting phase, and micro-

domain genomic coordinates transforming phase (Figures 1, 2).

Scripts of MCI-frcnn is available at the public repository GitHub

(https://github.com/ZhengMZLab/MCI-frcnn).

Data preparing phase

In the data preparation phase, our main task is to prepare

input images for Faster R-CNN. Using MCIBox clustering-based

visualization tool (Tian et al., 2022), we observed that single-

molecule multi-way chromatin interaction complexes within a

single TAD or RAID can be clustered into different groups of

micro-domains. For example, we can identify micro-TADs by

decomposing a TAD structure via ChIA-Drop data, as well as

obtain several micro-RAIDs by dissecting a RAID via RNAPII

ChIA-Drop data (Figures 1A, 2A).

Micro-TADs and micro-RAIDs are displayed as clustered

fragment-views by MCIBox, in which the fragments of each

chromatin complex are displayed in their linear genomic

alignments along the x-axis, and the different single-molecule

complexes are arranged along the y-axis. After we obtained a

proper clustered Fragment-view of a RAID inMCIBox, we stored

the view as a PNG file, accompanied by the genomic coordinate

of the RAID. All these images were divided into two sets: a

training set and a detection set (i.e., test set), and the training set

were also used as the validation set to perform cross-validation.

Annotation phase

In the annotation phase, our main task was to mark the micro-

domain ground truth boundary box (i.e., bounding box). Using the

interactive interface of the annotation software, LabelMe, we

manually drew a rectangular enclosed line for each micro-
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domain as its ground truth boundary in each training image, and

LabelMe identified the pixel size of the whole image and recorded

the pixel coordinates of each micro-domain bounding box (Figures

1B, 2B). These annotations for all images in the training set were

then collected into a unique document, in which each row represents

one piece of micro-domain information including image path, pixel

coordinates of the left-top point and the right-bottom point of the

micro-domain’s bounding box, and the category of the micro-

domain. In this study, there is only one category, which is

micro-domain (m).

FIGURE 1
Scheme of MCI-frcnn. (A)Using the clustering algorithm based visualization tool MCIBox, we dissected RNAPII-associated interaction domains
(RAIDs) from ChIA-PET data intomicro-RAIDs by RNAPII-enriched ChIA-Drop data, and dissolved topologically associated domains (TADs) fromHi-
C data into micro-TADs by ChIA-Drop data. (B) An image of a RAID with clustered fragment-view of micro-domains for the MCI-frcnn training set is
subjected to LabelMe annotation tool to draw their ground truth boundary boxes. (C)MCI-frcnn trains Faster R-CNN networks using a training
set for boundary identification and recognition of a micro-domain. (D) After a number of epochs (iterations) of training and finetuning, the Faster
R-CNNnetworks are trained and ready for detection. (E) Boundaries (bounding boxes) ofmicro-domains detected byMCI-frcnn fromnew images of
the detecting set, with a detected class name and a classification score. (F) Micro-domain genomic coordinates transformed from pixel boundary
boxes.
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FIGURE 2
MCI-frcnn working flow. (A) Data preparation phase. (B) Annotation phase. (C) Training phase includes these steps: the image preprocessing
step (I), the feature extraction step (II), the RPN training step (III), the Regions of Interest (RoIs) projection step (IV), the Fast R-CNN detector training
step (V), and the finetuned Faster R-CNN step (VI). (D) Detecting phase. (E) Micro-domain genomic coordinates transforming phase.

Frontiers in Cell and Developmental Biology frontiersin.org04

Tian et al. 10.3389/fcell.2022.1050769

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1050769


Training phase

Procedures in the training phase
In the training phase, our main task was to train a Faster

R-CNN for micro-RAID recognition. Faster R-CNN consists of

two major modules, RPN (region proposal network) is a

convolutional network to generate the region proposals, and

Fast R-CNN (Fast Region-based Convolutional Neural Network)

is a detector network. This phase included the following steps

(Figures 1C, 2C): the image preprocessing step (I), the feature

extraction step (II), the RPN training step (III), the regions of

interest (RoIs) projection step (IV), the Fast R-CNN detector

training step (V), and the finetuned Faster R-CNN step (VI).

Training step (I-II): Image preprocessing and
feature extraction

The purpose of the image preprocessing step (I) was to

rescale the training image to a predefined size and the micro-

domain bounding boxes’ pixel coordinates accordingly. The goal

of the feature extraction step (II) was to feed the preprocessed

image of a domain into the backbone convolutional neural

network to calculate feature maps.

Training step (III): Training RPN
The RPN training step (III) aims to find whether there is a

micro-domain existing in the domain and to find its boundary

proposals, which refer to a set of rectangular bounding boxes

generated by RPN, that highly overlapped with ground truth

bounding boxes of micro-domains. In detail, the RPN training

step includes the following procedure: first, RPN generates many

fixed-size anchor boxes that can evenly cover the entire image;

second, the features mapped out by the extraction module are

passed into a convolutional network, and the following two

sibling (parallel) convolution layers for classification and

regression, respectively. The classification layer seeks to

determine if an anchor box consists of a micro-domain

(foreground) or not (background) and gives out two

classification possibility scores via the softmax function. The

regression layer is used for boundary box regression, which

produces four regression coefficients of each of the anchor

boxes for each pixel in the feature map.

Next, the anchors with high classification scores are subjected

to the calculation of the intersection over union (IoU) value with

ground truth boundary boxes of a micro-domain. Following this,

the anchors with higher IoU scores are classified as candidate

boundaries of micro-domains. Furthermore, a certain number of

micro-domains are randomly selected from individual images as

a mini-batch. For every mini-batch, in order to assess the extent

of the match between the RPN detected boundary and ground

truth boundary of a micro-domain, the RPN loss functions

(rpn_loss = loss_rpn_regression + loss_rpn_classifier) are

obtained by using the smoothL1 and softmax functions,

respectively.

Training step (IV): RoI projection
In the next step, the function of the RoI projection step (IV) is

to export RPN-selected proposals (RoIs) as training samples, by

projecting each proposal (candidate boundary box) from the

feature maps to the Fast R-CNN detector for RoI pooling

operation, which functions to give a fixed size feature map to

meet the requirement of the following two fully connected layers.

Training step (V): Fast R-CNN detector training
The purpose of the Fast R-CNN detector training step (V) is

to perform further classification and boundary location

adjustment based on every RoI from the RPN. First, each

proposal derived from an RPN uses the RoI pooling technique

to normalize them into feature maps of the same size and one-

dimensional feature vectors. Then, the feature vector is sent to the

following two fully connected layers for learning. The learned

features are then sent to the subsequent component classifier

(softmax) and regressor (bounding box regression) for micro-

domain classification recognition and boundary finetuning, and

to generate Fast R-CNN Detector loss functions (fastrcnn_loss =

loss_detector_classifier + loss_detector_regression) for

backpropagate parameters.

Training step (VI): Finetuned faster R-CNN
The finetune Faster R-CNN step (VI) improves the accuracy

of the learning machine by backpropagating parameters of the

current training epoch (iteration) to the learning machine, if the

current total loss (total_loss = rpn_loss + fastrcnn_loss) is smaller

than the average. These backpropagate parameters are saved in

weight files (e.g., model_frcnn.hdf5), and the configuration

information is stored in a configuration file (e.g., config.pickle).

With each epoch of training, the loss curve continues to drop,

the accuracy curve continues to increase, and the parameters are

constantly updated. When the loss curve approaches a stable

value near 0, and the accuracy curve approaches a stable value

near 1, we consider that the Faster R-CNN model for micro-

domain detection is trained and ready for new micro-domain

detection (Figures 1D, 2C).

Detecting phase

In the detecting phase, our goal is to use the trained Faster

R-CNN to detect micro-domains from new images. In the data

preparation phase, we prepared new domain images for Faster

R-CNN to detect micro-domain boundaries (Figures 1D, 2D).

After inputting the waiting-detection images into the trained

model, the micro-domain detection process is begun. The final

step of this detection process is directly outputting the testing

results, instead of backpropagating parameters for finetuning the

machine during the training process. The detecting phase is

relatively rapid, we can recognize all micro-domains in an entire

image within 20 ms. Thus, in this phase, we can obtain the final
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FIGURE 3
MCI-frcnn Performance. (A) Illustration of values of the intersection over union value (IoU), genomic IoU (gIoU), and vertical IoU (vIoU). (B)
Curves of classifier accuracy for bounding boxes from RPN, and the total loss value of Faster R-CNN (total_loss = loss_rpn_regression +
loss_rpn_classifier + loss_detector_classifier + loss_detector_regression). (C) Receiver operator characteristic (ROC) curve and the value of area
under ROC curve (AUROC). (D) Precision-Recall (P-R) curve and mean average precision value (mAP). (E) Example of micro-domains genomic
boundaries detected by MCI-frcnnmachine, together with gIoUs when compared with their ground truth genomic regions. (F) Errors obtained from
the 46 micro-RAIDs from the 10 testing images listed in Figure 4, including values of accuracy, precision, recall, and F1 score, by comparing MCI-

(Continued )
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detection results of MCI-frcnn, which includes micro-domain

boundary classification scores (the probability of being

recognized as a micro-domain) and boundary box coordinates

(the occupation area of the micro-domain), as shown in Figures

1E, 2D.

Micro-domain genomic coordinate
transforming phase

The function of the micro-domain genomic coordinate-

transforming phase is to identify micro-domain genomic

coordinates according to their pixel boundary boxes detected

by Faster R-CNN (Figures 1F, 2E). First, if there are multiple

detected boundary boxes that cover one micro-domain area with

vertical IoU (vIoU) (Figure 3A; Supplementary Material) more

than 80%, they becomemerged. Next, the coordinates of the most

left and right points of the bounding box are transformed into

genomic coordinates and regarded as the micro-domain’s

genomic boundary. With this, MCI-frcnn finally defines

micro-domain boundaries.

Applied MCI-frcnn for micro-RAID
boundary detection

We prepared 50 images of RAIDs by MCIBox on RNAPII

ChIA-Drop data from Drosophila melanogaster S2 cell line as the

Faster R-CNN training set, obtaining 261 micro-RAIDs in total.

Then, we drew ground truth bounding boxes for each of the

261 micro-RAIDs, using LabelMe.

Before the training phase, we performed a 5-fold cross-

validation on the same training set of the 50-RAID images,

training 300 epochs of each group independently. To evaluate

the detection efficiency of the micro-RAID boundary, we used a

new coefficient: genomic intersection over union (gIoU), which

calculates the ratio of the genomic length of the overlapping

region over the whole union of the two genomic regions

(Supplementary Material). This reflects the similarity between

two micro-domains from MCI-frcnn and ground truth

(Figure 3A). The 5-fold cross-validation results show that the

mean gIoU value of each validation group is 76.2% (79%, 70%,

77%, 79%, and 76%, individually), which indicates that MCI-

frcnn shows better generalization ability in adapting to new

samples.

Subsequently, these images of the training set were subjected

to training. We found both the accuracy curve and the loss line

reached a stable phase after ~200 epochs of training by running

about 11 h (Figure 3B). Theoretically, the Faster R-CNN

implemented here is sufficiently trained for testing. However,

the ultimate criterion for evaluating the quality of a learning

machine is its ability to identify micro-domain boundaries, and

we found the detection results are still not sufficient for the

beginning of the stable phase. To obtain a more accurate detector,

we continuously trained the machine for a longer time. Until

3,500 epochs (~170 h, i.e., ~7 days), we did not detect any more

obvious changes occurring in the loss curve, suggesting that we

had obtained a well-trained Faster R-CNN detector (Figure 3B).

The final performance of a deep learningmodel is assessed by its

ability to detect objects in a new image. We prepared 10 new RAID

images as a testing set to evaluate the efficiency and accuracy of the

well-trained Faster R-CNN detector. As described previously, we

marked the ground truth boundary boxes in these images to identify

micro-RAIDs for comparison later on. Using the same computation

conditions as the training phase, the MCI-frcnn detecting phase has

a speed of 5.26 fps (frame per second)—how many images (frames)

can be processed within a second. From predictions using the

ground truth information on micro-RAIDs, we obtained the area

under receiver operator characteristic value (AUROC = 0.85)

(Figure 3C), and mean average precision value (mAP = 0.69)

from the precision-recall (P-R) curve, indicating we have

obtained a high precision classification model (Figure 3D). By

manually compared boundary boxes in each pair of images of

those micro-RAIDs detected by MCI-frcnn (right column in

Figures 3E, 4) and their ground truth (left column in Figures 3E,

4), we found that the gIoU value (mean gIoU = 76%) could indicate

the efficiency of MCI-frcnn should be enough.

The errors were then assessed as shown in Figure 3F, for all

the 46 ground truth micro-RAIDs identified via LabelMe, and

45 of them were detected via MCI-frcnn, regarding as the true

positive (TP) error; only 1 of them was not detected, that is,

showed a false negative (FN) error. The important evaluation

metric in machine learning F1 score is 99%, which indicates that

we have gotten a robust algorithm of micro-domain for binary

classification (yes or no). These reflect a low error level of MCI-

frcnn when performing detection (Figure 4).

FIGURE 3 (Continued)
frcnn with ground truth. (G) Screenshot of micro-RAIDs at chr2R:3220194-3419924 with track of micro-RAIDs in fragment view, following by
domain view defined by LabelMe, MCI-2kde, and MCI-frcnn programs. (H) Scatterplot presents the correlation of intersect region from MCI-2kde
versus LabelMe to MCI-2kde versus MCI-frcnn. Pearson correlation coefficient (R) value is shown. (I) Example of micro-TAD boundary identified
using MCI-frcnn on SPRITE data from the human GM12878 cell line. Left panel presents the screenshot from MCIBox of the micro-TADs at
chr14:68257986-69357986 (bottom), which is zoomed-in from TADs (up); right panel indicates the boundaries detected byMCI-frcnn and LabelMe,
m:# (such as m:99) represents micro-domain: detectable percentage.

Frontiers in Cell and Developmental Biology frontiersin.org07

Tian et al. 10.3389/fcell.2022.1050769

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1050769


We then further compared the boundaries defined by MCI-

frcnn with MCI-2kde, which is a two-dimensional kernel density

estimation contour map-based micro-domain caller described

previously (Tian et al., 2022). Specifically, the example screenshot

shows highly consistent micro-RAID boundaries defined by

LabelMe, MCI-2kde, and MCI-frcnn programs (Figure 3G).

When the intersecting region of micro-RAIDs from MCI-2kde

versus LabelMe was compared to that of micro-RAIDs from

MCI-2kde versus MCI-frcnn, we obtained high correlation

(Figure 3H), indicating MCI-2kde was a good method for micro-

RAID boundary definition automatically and MCI-frcnn is an

alternative good method for micro-RAID boundary definition.

Taken together, these results confirm that micro-RAID

boundaries defined by deep learning-based MCI-frcnn, were

FIGURE 4
MCI-frcnn detection results. Table of the results of micro-domain boundaries detected from the 10 new RAID clustering images using MCI-
frcnn (right side), and their corresponding ground truth boundaries on the left-side. gIoU and error type of each micro-domains are listed in the
middle column.
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highly consistent across annotations performed by LabelMe

manually and by the machine learning-based MCI-2kde method.

Applied MCI-frcnn for micro-TAD
boundary detection

We also used MCI-frcnn for micro-TAD boundary detection

using human SPRITE data from the GM12878 cell line (Quinodoz

et al., 2018). From the detection results, except for one tiny micro-

TAD boundary that was missed, all of the five other micro-TAD

boundaries were detected with high accuracy (mean gIoU = 85%)

(Figure 3I). This result indicates MCI-frcnn and can also be used for

detecting other types ofmicro-domains in addition tomicro-RAIDs.

Discussion and conclusion

MCI-frcnn is developed for micro-domain boundary detection,

which adopts a deep learning-based object detection algorithm

Faster R-CNN to define the boundaries of high-resolution

topologically associated domains calling. MCI-frcnn includes five

phases: the data preparing phase, annotation phase, training phase,

detecting phase, and micro-domain genomic coordinates

transforming phase. By applying MCI-frcnn to identify micro-

TADs and micro-RAIDs of single-molecule chromatin

interactions data generated from ChIA-Drop and SPRITE

methods in Drosophila and humans, we approved the high

performance of MCI-frcnn on micro-domain boundary

detection. In addition, we demonstrated the comparability for

micro-domain assessment between MCI-frcnn and MCI-2kde

which is a two-dimensional kernel density estimation algorithm

to identify micro-domain boundary automatically (Tin et al., 2022).

MCI-frcnn offers alternative approaches of chromatin topology

analysis for single-molecule chromatin interactions data.

In summary, in this work, we developed a deep learning-

based Faster R-CNN detector, MCI-frcnn, for helping scientists

automatically define the boundaries of micro-domains. MCI-

frcnn shows high accuracy and fast speed for micro-domain

boundary detection. In addition, MCI-frcnn is generalizable and

can be used on source data from different techniques and species.
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