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Medicine today faces the combined challenge of an increasing number of

untreatable diseases and fewer drugs reaching the clinic. While pharmaceutical

companies have increased the number of drugs in early development and

entering phase I of clinical trials, fewer actually successfully pass phase III and

launch into the market. In fact, only 1 out of every 9 drugs entering phase I will

launch. In vitro preclinical tests are used to predict earlier and better the potential

of new drugs and thus avoid expensive clinical trial phases. The most recent

developments favor 3D cell culture and human stem cell biology. These 3D

humanized models known as organoids better mimic the 3D tissue architecture

and physiological cell behavior of healthy and disease models, but face critical

issues in production such as small-scale batches, greater costs (when compared

to monolayer cultures) and reproducibility. To become the gold standard and

most relevant biological model for drug discovery and development, organoid

technology needs to integrate biological culture processes with advanced

microtechnologies, such as microphysiological systems based on microfluidics

technology. Microphysiological systems, known as organ-on-a-chip, mimic

physiological conditions better than conventional cell culture models since

they can emulate perfusion, mechanical and other parameters crucial for

tissue and organ physiology. In addition, they reduce labor cost and human

error by supporting automated operation and reduce reagent use in miniaturized

culture systems. There is thus a clear advantage in combining organoid culture

with microsystems for drug development. The main objective of this review is to

address the recent advances in organoids and microphysiological systems

highlighting crucial technologies for reaching a synergistic strategy, including

bioprinting.
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Introduction

We are living in a world in which fewer useful drugs are

discovered in a scenario of increasing untreatable diseases.

Some diseases require the development of new drugs, such as

antimicrobial resistance (Interagency Coordination Group on

Antimicrobial Resistance. 2019), tumors and obesity, but

others mainly require better, more accurate models for the

prediction of toxicity (Corsini et al., 2012), a major cause of

failure in drug development. The whole process of drug

development is considered inefficient (e.g., 94% of drugs

fail in the clinical trial phases (Paul et al., 2010; Scannell

et al., 2012), leading to unsustainable costs in the healthcare

system and drugs with low efficacy and safety to the

population.

An analysis of hundreds of drugs that failed in the later

stage of drug development found that the preliminary assays

conducted in rats and dogs were only able to predict human

toxicity in 71% of cases (Olson et al., 2000). The pharmaceutical

industry is now questioning the quality of in vitro tests

performed during the preclinical stage of drug development,

which include 2D cell culture and animal models. Their

criticisms center on the poor physiological resemblance to

healthy or diseased human tissue (Zhang and Radisic, 2017),

and for animal models, their lengthy time for results, high

financial costs and ethical issues.

The most recent in vitro tests have tried to converge 3D

cell culture and human stem cell biology to achieve better

resemblance with the physiological system. These 3D

humanized models, known as organoids, mimic the 3D

tissue architecture and physiological cell behavior of

healthy and diseased organs. Organoids can better predict

efficacy and safety, improving the quality of preclinical tests

before human clinical trials (Clevers, 2016). Furthermore,

when formed from patient derived cells, they hold the

potential to add valuable information to the field of

personalized medicine. However, this powerful technology

faces crucial issues regarding their limited small-scale

production, lack of automation, costs and reproducibility,

jeopardizing their translation to the pharmaceutical industry

(Garreta et al., 2021). More importantly, organoids are

usually cultivated in a static environment, reducing their

capacity to reach differentiation.

An interesting concept has emerged to address

technological limitations of organoids: the integration of

basic biological knowledge of organoids with advanced

microtechnologies, such as microphysiological systems based

on microfluidics technology. These microphysiological systems

known as organ-on-a-chip mimic physiological conditions

better than conventional cell culture models since they can

emulate perfusion, mechanical and other parameters crucial for

tissue and organ physiology (Jang et al., 2019). However,

organoid and organ-on-a-chip technologies have emerged as

3D cell culture models disconnectedly. A synergistic strategy

can address limitations and add advantages coming from

both technologies. For example we can combine the human

cellular and tissue fidelity found in organoids and the

environmental control of microfluidics chips leading to a

better, more accurate technology for drug discovery and

development in the pharmaceutical industry (Takebe et al.,

2017). In this context, the pharmaceutical industry

estimated a significant reduction in drug development

costs by adopting microphysiological system technologies

which could also replace animal models (Ingber, 2022).

The aim of this mini-review is to address the recent

advances in organoids highlighting crucial technologies

for reaching a synergistic strategy with the microphysiological

systems.

Drug development: Current scenario

Drug development typically comprises four main stages:

1) discovery and development of promising compounds; 2)

preclinical research using in vitro and in vivo tests; 3) clinical

research and 4) application for approval by regulatory

agencies. To reach approval, the novel drug must show

safety and effectiveness in humans (Scannell et al., 2012).

Due to the high failure rate faced today by pharmaceutical

companies, the process has been revised as a whole and raised

important issues of the preclinical stage (Marx et al., 2020),

more specifically that preclinical results come from tests

with cells of non-human origin (cell culture and animal

models) and their misleading results are not replicated in

clinical trials (Van Normal, 2019). The most common

problems are absence of efficacy and unforeseen side

effects, leading to withdrawal of drugs from the market

(Jang et al., 2019).

Governments and public administrations are now under

increasing pressure to find alternatives to animal testing.

Already, the US Senate approved the Humane Research and

Testing Act (HR 1744) and the US Food and Drug

Administration (FDA) Modernization Act of 2021, a bill to

amend the Federal Food, Drug, and Cosmetic Act that will

allow drug manufacturers and sponsors to apply for market

approval with safety and effectiveness results from alternative

methods to animal testing. In the current draft of the bill, the

alternative methods cited specifically include “cell-based assays,

organ chips and microphysiological systems, computer

modeling, and other human biology-based test methods”

(Congress.Gov. 2021).

Simultaneously, in September 2021 the European Parliament

adopted a resolution that goes in the same direction. It plans

actions to accelerate this transition without the use of animals in

research, regulatory testing and education. This resolution invites

the EUCommission, stakeholders andMember States, to develop
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an action plan, to reduce, refine and replace procedures with live

animals. This resolution calls for a scientific discussion to foster

animal welfare and to promote technological innovation

(European Parliament. 2021).

3D Cell culture

2D cell culture and animal models have allowed us to

accumulate knowledge in cellular and molecular biology, but

questions inherent to human cell physiology remain

unanswered. 3D cell culture models, more specifically,

organoids, can recreate human 3D tissue architecture and

spatially and temporally recapitulate morphogenetic events

due to human stem cell differentiation (Kim et al., 2020) while

animal models are not predictable models for several human

diseases and physiological responses, since they are constituted

by animal cells.

The consensus in the scientific literature is that a complex 3D

cell culture model generated from human cells holds the potential

for improving the prediction of drug development (Marx et al.,

2020). In fact, a complex 3D cell culture model fills the gap

between 2D cell culture and animal models, bringing cell model

closer in complexity to human tissues and organs. These complex

3D models only became possible after the recent discovery of

human adult stem cells (including mesenchymal cells) and

human induced pluripotent stem cells (iPS), since these cells

can recapitulate morphogenetic events of tissue and organ

development. This intrinsic differentiation capacity is

optimized in 3D cell culture models using non-adherent

surfaces or matrigel, where cell-cell and cell-extracellular

matrix interactions prevail. These models are currently known

as organoids (Panoutsopoulos, 2021).

In addition to the requirement that organoids be derived

from stem cells or primary sources, they should have at least one

physiologic function from the organ of origin (Rossi et al., 2018).

Even now, several organoids models have been developed,

including pathological models for personalized medicine.

Using iPS derived cells from patients or even primary cells

from intestine or tumor biopsies, it is possible to recapitulate

the disease development and genetic signatures from the disease

of origin (Drost and Clevers, 2018).

Organoids can also be generated from patient-derived cells,

including tumors, being truly representative of a disease state in

comparison with cell lines. Using patient-derived organoids

allows the discovery of new biomarkers for diseases and test

drugs in vitro before patient treatment (personalized medicine)

(Yao et al., 2020). However, complex models frequently lose their

reproducibility, mandatory for the pharmaceutical industry.

Furthermore, unlike 2D models, organoids are not currently

compatible with high-throughput screening. For organoids to

become a predictable, reproducible model suitable for use by the

pharmaceutical industry, a number of challenges must be

overcome: 1) high control over nutrients supply together with

the biochemical and biophysical microenvironments; 2)

Reduction of variability, achievable through higher use of

automated protocols and 3) Better simulation of body

physiology by modeling tissue-tissue and multiorgan

interactions.

A promising pathway to solve these technological challenges

is the integration of organoids with microphysiological systems

based on microfluidics technology. Organ-on-a-chip (or organ

chip) are microfluidic cell culture devices that represent one of

the recent successes in the search for in vitro human

microphysiological systems that can recapitulate organ-level

and even organism-level functions. Methods based on

microfluidics are used today in the development of a drug

candidate. The health authorities (FDA and EMA) are in the

process of carrying out a review comparing organ-on-chip

technologies with conventional methods to validate their level

of reliability. Recently, FDA approved a clinical trial without

animal data for a rare neuromuscular disorder based on results

from an organ-on-a-chip model (ZME SCIENCE. 2022).

Unlike 2D cell culture models, organ-on-a-chip mimics

several physiologic parameters crucial for tissue and organ

physiology (Jang et al., 2019). These systems can also be

connected to each other reaching a multiorgan-on-a-chip

concept, where multiple organ models are interconnected by

the laminar flow (Picollet-D’hahan et al., 2021). More

importantly, they reduce labour cost and human error by

supporting automated operation and reduce reagent use in

miniaturized culture systems. A novel concept emerges—the

organoid-on-a-chip and will be discussed in this mini-review.

Organ-on-a-chip

Organ-on-a-chip technologies are based on microfluidic

devices seeded with cells maintained under constant fluid flow

(Ingber, 2022). The main goal of the earliest organ-on-a-chip

models was to mimic crucial physiological parameters, mainly

based on mechanical stimuli. The first published organ-on-a-

chip model was built to simulate the alveolar-capillary interface

of the human lung using epithelial and endothelial cells. The

device was capable of simulating breathing-type movements and

responding to pathogen stimulus (Huh et al., 2010).

Currently, those microphysiological systems come in

different sizes and shapes. They contain small and hollow

channels seeded with living cells. Those micro-channels have

sizes comparable to blood capillaries, which provide the

necessary nutrients and oxygen. That way, living tissues are

cultured under dynamic flow. Microfluidic devices recreate

organ structures (co-culture, interphases, 3D-organization)

and mechanical forces (e.g., shear or stretch forces),

conditions necessary to mimic organ physiology and

processes. The biomechanical forces induced by the flow in
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the microchannels mimic the pressures exerted by

vascularization, required for cell differentiation (Stone et al.,

2004). Furthermore, it is possible to connect two or more

organ-on- chips. A “body-on-chip” or “multi organ-on-a-

chip” is a multi-organ system that models whole-body

physiology or pathology (Picollet-D’hahan et al., 2021).

Over the last years, the main methods used to develop

microfluidics devices were conventional manufacturing

techniques, such as photo-patterning, self-assembly and soft

lithography (Carvalho et al., 2021). However, when compared

to those manufacturing techniques, 3D printing includes the

advantages of unlimited design space, freedom of complex

geometries and reduction of waste.

Bazaz and collaborators Bazaz et al. (2020) proposed a new

method for the fabrication of inertial microfluidic devices using

3D printing. The authors achieved relevant geometries for cell

behavior, such as straight, spiral, serpentine, curvilinear and

contraction-expansion arrays. Another study printed the

microfluidic device by extrusion fused deposition modeling

technique (FDM) of transparent polymers and observed that

the cells successfully adhere on the surface of the devices together

with a high viability after the initial 3 days in culture (Mehta et al.,

2021).

Although all advances in organ-on-chip technologies, their

cellular composition and tissue architecture is simple, resembling

co-culture techniques (Takebe et al., 2017). Due to the absence of

stem cell population and tissue microenvironments, under a

pathogen or drug stimulus, the organ-on-a-chip will not go

through a tissue remodeling, which in turns limits their

physiological relevance. This issue applies to all disease

TABLE 1 Recent advances: hallmarks of organoids models.

Hallmarks Doi Year

Cerebral organoids recapitulate the development and disease condition of the native tissue 10.1038/nature12517 2013

Human gastric organoids representing the first complex gastric tissue in vitro model suitable for drug discovery 10.1038/nature13863 2014

Successful production of human lung organoids similar to human fetal lung based on transcriptional characterization 10.7554/eLife.05098 2015

Successful protocol for differentiating hPSCs into multipotent nephron progenitor cells that can form nephron-like structures
containing epithelial nephron-like structures.

10.1038/nbt.3392 2015

Different stages of organoid formations require different microenvironments 10.1038/nature20168 2016

The method to produce endothelialized organoids can be applied for drug screening tests 10.1016/j.biomaterials.
2016.09.003

2016

Successful production of colorectal organoids 10.4103/0366-6999.191782 2016

Description of human whole-brain organoids with high level of maturation 10.1038/nature22047 2017

Patient-derived bladder organoids as a functional model system for studying tumor evolution and treatment 10.1016/j.cell. 2018.03.017 2018

Development of a protocol for medium-high throughput drug screening of human organoids 10.1007/7651_2016_10 2019

Successful production of retinal organoids as a model for drug development 10.7554/eLife.46188 2019

Successful establishment of a model system to engineer patient-specific glioblastoma 10.1016/j.celrep. 2019.02.063 2019

Development of human liver organoids to recapitulate steatohepatitis-like pathology 10.1016/j.cmet. 2019.05.007 2019

Successful differentiation of human iPSCs to kidney organoids 10.1038/s41592-018-0253-2 2019

Development of functional 3D brain spheroids and organoids 10.1038/s41586-019-1289-x 2019

Hepatic organoids as a model to investigate alcoholic liver disease 10.1038/s41422-019-0242-8 2019

Establishment of organoid lines from patent-derived ovarian cancer 10.1016/j.stemcr. 2020.03.004 2020

Successful development of a hepatic organoid platform with human cells to explore complex liver diseases 10.1053/j.gastro. 2020.06.010 2020

Non-small cell lung cancer organoids recapitulates the genomics and biology of patient tumors 10.1158/1078-0432.CCR-19-1376 2020

Development of a standardized approach for production of midbrain organoids 10.1016/j.scr. 2020.101870 2020

Functional brain organoids displayed early and late expression of neuronal markers 10.3390/ijms21030694 2020

Pancreatic ductal adenocarcinoma tumor organoids can be used as a platform for discovering biomarkers 10.1172/jci.insight.135544 2020

SRT1720 can be used as a new effective treatment for bladder cancer 10.1038/s41388-021-01999-9 2021

Fabrication of a new in vitro organoid model to study epithelial regeneration 10.1038/s41422-020-00453-x 2021

Development of a new platform for the transplantation of epithelial cells 10.1038/s41586-021-03247-2 2021

Successful development of multi-lineage/multi-organ organoids 10.1016/j.stem. 2021.11.007 2021

Papillary thyroid cancer organoids can be used as preclinical model for drug screening tests 10.1210/clinem/dgab020 2021

Synovial mesenchymal stromal cell organoids provide a model for Osteoarthritis and drug testing 10.1038/s41392-021-00675-4 2021

Successful production of kidney organoids as a tool for embryonic kidney developmental model 10.1371/journal.pone.0252156 2021

Neuroendocrine carcinoma organoids as in vitro models 10.3389/fendo. 2021.627819 2021

Kidney organoids as a promising model to define the complexities of vascular-nephson interactions 10.1016/j.ydbio. 2021.04.009 2021
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models, but is particularly sensitive in tumorigenesis models, as

tumor biology is quite dynamic, containing various cell

subpopulations at different degrees of mutation.

Organoids recapitulating models of
diseases

As 3D cell culture technologies advance, as well as our

understanding of protocols for inducing morphogenesis, the

complexity of organoids increases, including in the diversity

of cell types used and, consequently, their function, compared

to the organ of origin (Mccracken et al., 2014; Zhang et al., 2016;

Achberger et al., 2019; Silva et al., 2021; Sun et al., 2021). These

hallmarks are summarized in Table 1.

Currently, it is possible to generate liver organoids composed

not only by their parenchymal cells, the hepatocytes, but also by

stromal cells such as stellate and Kupffer-like cells. This increase

of cell diversity allowed the organoids recapitulate the main steps

of steatohepatitis, including steatosis, inflammation, and fibrosis

phenotypes (Ouchi et al., 2019; Wang et al., 2019). Furthermore,

they reach a complex tissue architecture; for example a functional

bile canaliculi system, capable of responding to drug stimulus

(Ramli et al., 2020).

The intestinal organoid was the first organoid protocol

described in scientific literature. Using adult stem cells

(lgr5 positive cells) from the human intestine biopsy seeded

on matrigel, these stem cells are capable of anchoring on

extracellular matrix components of matrigel mimicking the

epithelial polarity of intestine without a mesenchymal niche

(Sato et al., 2009). Since then, the complexity of intestinal

organoid has been increased for simulating hyperplastic

intestinal organoids under injury (Qu et al., 2021) and for

mimicking different parts of intestine (Xie and Wu, 2016)

such as the small intestine colon as a regenerative strategy for

short bowel syndrome (Sugimoto et al., 2021). However, the use

of matrigel is a crucial impairment for its translation, since

matrigel is a poorly defined animal-derived matrix causing

animal protein contamination and reproducibility (lot

variation) issues. Researchers are now working on

development of alternative biomaterial, mainly to replace

matrigel with synthetic polymers (Gjorevski et al., 2016;

Garreta et al., 2021) or even with biomaterials derived from

decellularized extracellular matrix (Cho et al., 2021; Kim et al.,

2022). The synthetic polymers have the advantage of tunability,

while the decellularized extracellular matrix shows similarity

with molecular cues of native tissues.

The cerebral organoid was the first organoid described in

scientific literature derived from iPS cells. This organoid

recapitulates human cortical development in healthy and

disease states (Lancaster et al., 2013). The subsequent articles

showed a diversity of cell types related to the human cerebral

cortex (Quadrato et al., 2017; Velasco et al., 2019) with a

correlation of genetic variability according to donor cells

(Velasco et al., 2019). Furthermore, functional aspects have

been shown such as neuronal activity under light stimulation

(Quadrato et al., 2017). Interestingly, the cerebral organoid was

recently used as a tumor model to study invasion behavior of

patient-derived stem cells from glioblastoma. The authors

observed forming tumors close to patient glioblastomas

(Linkous et al., 2019). Midbrain organoids are capable of

recapitulating dopaminergic neuron and astrocyte

differentiation, serving as a model for Parkinson disease

(Chlebanowska et al., 2020; Nickels et al., 2020). The first

described protocol for cerebral organoid in 2013 was time and

cost consuming and since then some degree of optimization to

reduce batch-batch variability has been undertaken (Nickels

et al., 2020), including the use of bioengineering approaches

(Lancaster et al., 2017; Nikolaev et al., 2020; Garreta et al., 2021).

Mainly due to the pandemic of COVID-19, the interest in

lung organoid development considerably increased in the last

2 years (van der Vaart et al., 2021). Pioneer research in the field of

lung organoids is derived from recent studies describing 3D co-

culture techniques of stem cell subpopulations with endothelial

cells (Lee et al., 2014). The lung organoid derived from iPS was

described soon after, showing epithelial and mesenchymal

compartments, together with tissue architecture similar to

native lung (Dye et al., 2015; Chen et al., 2017). Interestingly,

recent advances using extracellular matrix-free and chemically

defined organoid culture derived from single adult human

alveolar epithelial type II (AT2) cells established a

reproducible lung organoid model of human distal lung

infections, including COVID-19 (Salahudeen et al., 2020).

Relevant porgress was reached for kidney organoids

(Morizane et al., 2015; Phipson et al., 2018; Facioli et al.,

2021; Ryan et al., 2021) for tumor organoids as a model of

tumorigenesis (Francies et al., 2016; Lee et al., 2018; Huang et al.,

2020; Maenhoudt et al., 2020; Chen et al., 2021; Dijkstra et al.,

2021; Tan et al., 2021).

Organoids as platforms for drug
development

Organoids represent a powerful tool to model human

tissues and organs at the cellular and molecular levels, with

applications in drug discovery, development and testing

(Yoshida et al., 2020). More importantly, such predictable

models can capture specific characteristics of a person’s

disease, individual responses to drugs, including side-

effects (Mastrangeli et al., 2019). Organoids are now

considered as avatars in personalized medicine (Seidlitz

et al., 2018; Frappart et al., 2020; Jacob et al., 2020; Jian et

al., 2020; Saltsman et al., 2020; Shi et al., 2020; Witte et al.,

2020; Bi et al., 2021; Kazama et al., 2021; Grossman et al.,

2022) with the potential to contribute to reducing the high
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level of drug discovery failure. Recent scientific articles

related to organoids and drug testing are summarized in

Table 2.

Tumor organoids or tumoroids have been extensively used

for tumor cell expansion in culture. These tumoroids maintain

cellular and genetic heterogeneity from their tumor of origin and

TABLE 2 Recent advances of organoids models for drug testing.

Advantages Doi Year

A co-culture of human hepatocytes and hepatic stellate cells as 3D spheroids recapitulated a hepatocyte-mediated and drug-
induced liver fibrosis.

10.1016/j.biomaterials. 2015.11.026 2016

Generation of colonic organoids representing populations of cells from colon rather than small intestine. The colonic organoids
derived from patient-derived iPSCs replicated the mutations. The authors found that geneticin efficiently targeted the mutation
and restored normal proliferation of cells.

10.1038/nm.4355 2017

Lung cancer organoids and normal bronchial organoids derived from patient tissues represented individual patients,
responding to drugs based on their genomic alterations.

10.1038/s41467-019-11867-6 2019

A biobank of patient-derived pancreatic cancer organoids were exposed to extensive drug screens, revealing unique drug
sensitivity profiles.

10.1073/pnas.1911273116 2019

Human gastric cancer organoid cultures showing genetic profile in accordance to their tumor of origin as well as the response to
drug treatments.

10.1136/gutjnl-2017-314549 2019

Ovarian cancer organoids were expanded in culture showing correlation with morphology, genetic profile and response to drug
treatment according to their tumor of origin.

10.1038/s41598-020-69488-9 2020

Patient-derived tumor organoids from different breast cancer subtypes were established showing restoration of
chemosensitivity in drug resistance.

10.3390/cancers12123869 2020

Ovarian cancer organoids maintain the genomic features of the original tumor lesion and recapitulate patient response to drug
treatment. Drug screening resulted in responsiveness to at least one drug for 88% of organoids.

10.1016/j.celrep. 2020.107762 2020

Non–small cell lung cancer organoids were established from primary lung patients and PDX tumor tissue. Organoids retained
morphological and genetic characteristics and also the sensitivity to targeted drugs.

10.1158/1078-0432.CCR-19-1376 2020

A biobank of glioblastoma organoids was generated to test personalized therapies by correlating mutational profiles to drug
response.

10.1016/j.cell. 2019.11.036 2020

Pharmacokinetic functions (membrane permeability and metabolic stability) of organoids from human intestinal epithelial
cells were evaluated after their dissociation.

10.1038/s41598-020-63151-z 2020

A comparison between patient-derived xenograft tumor (PDX) and PDX-derived organoids was carried out. Organoids
recapitulated morphology, protein profile and genomic alterations. A small-scale pharmacotyping platform was also
established.

10.1177/2050640620905183 2020

Organoids derived from human colorectal cancer primary tumors were transplanted in the murine spleen as an in vivo
xenograft model of liver metastases, showing preservation of protein profile.

10.1186/s12967-020-02407-8 2020

Liver organoids were generated by co-culturing primary hepatocytes with mesenchymal stem cells. Long-term survival of the
primary hepatocyte organoids, as well as stable functionality, was demonstrated.

10.4252/wjsc.v12.i10.1184 2020

Hepatoblastoma tumor organoids were generated from aggressive hepatoblastoma primary tumors. Organoids recapitulate the
key elements of patient tumors, including the hepatoblastoma pathophysiology, besides responding to drug stimulus.

10.3390/cancers12092668 2020

Renal tubular organoids were generated from human urine-derived stem cells showing responsiveness to acetone and cisplatin. 10.1021/acsbiomaterials.0c01468 2020

Renal cell carcinoma organoids recapitulated morphology of primary tumors as well as genetic profile exhibiting differential
responses to drug treatment.

10.3892/or. 2021.8177 2021

iPS-derived alveolar organoids were generated as a model of pulmonary fibrosis. The use of this model allowed assessing anti-
fibrotic mechanisms of potential drugs.

10.1038/s41420-021-00439-7 2021

iPS-derived cardiac organoids were obtained by micropatterning, showing contracting cardiomyocytes in the center
surrounded by stromal cells distributed along the surface. The pattern sizes affect contraction functions. Organoids were
responsive to nine pharmaceutical compounds tested to reveal embryotoxic potential of this model.

10.1016/j.stemcr. 2021.03.013 2021

Prostate cancer organoids were established using a scalable pipeline for automated seeding, drug treatment and analysis. 10.1177/24725552211020668 2021

Cerebral organoids were used for the first time as a model of screening potential drugs for human prion diseases. 10.1038/s41598-021-84689-6 2021

Human hepatocyte-like cells derived from organoids were bioprinted into porous constructs. Cell viability was maintained for
up to 10 days. The bioprinted construct was responsive to an established hepatotoxic compound.

10.1002/mabi.202100327 2021

Patient-derived organoid models of endometrial and ovarian cancer tissues were established. The model recapitulated the
sensitivity to relevant chemotherapeutic agents and predicted postoperative chemotherapy of one patient.

10.3390/cancers13122901 2021

Organoids derived from pancreatic ductal adenocarcinoma showed correlation of drug response with clinical treatment in
individual patients.

10.1158/1078-0432.CCR-20-4116 2022

iPS-derived hepatic organoids were established showing a high drug metabolic activity. Organoids showed remarkable
CYP450 activity and recapitulated the metabolic clearance, CYP450-mediated drug toxicity, and metabolism.

10.1016/j.biomaterials.
2022.121575

2022

iPS-derived lung organoid was infected with SARS-CoV-2 as a model of drug testing. The potential drugs caused a significant
reduction of viral entry and a modulation of genes involved in innate immunity and inflammatory response.

10.3390/cells11071235 2022
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are considered as avatars for precision cancer medicine. Several

studies have demonstrated maintenance of the genomic

alterations from the original tumor during long-term culture

(Choo et al., 2021), including those from ovarian cancer (Nanki

et al., 2020), lung cancer (Kim et al., 2019), breast cancer

(Campaner et al., 2020) and pancreatic cancer (Driehuis et al.,

2019). Once challenged with drugs, these tumoroids are a

powerful tool to identify resistant cell populations (Campaner

et al., 2020). Furthermore, several biobanks have been created

(Crespo et al., 2017) and characterized by DNA and RNA

sequencing (Driehuis et al., 2019), allowing drug testing before

patient treatment of genetic similar tumors. Currently, the main

limitation found in tumoroids is the absence of stroma and

immune cells. The presence of these cells can avoid an additional

step of xenograft models.

Renal tubular organoids and iPS-derived cardiac organoids

showed responsiveness ti drug treatment (Guo et al., 2020;

Hoang et al., 2021). Lung organoids as a model for fibrosis

and SARS CoV-2 infection were used for drug testing (Kim et al.,

2021; Spitalieri et al., 2022). Liver organoids are useful as disease

models, but perhaps more importantly as a predictable model for

drug safety. Several models have been developed (He et al., 2020),

including co-culture of human hepatic progenitor and stellate

cells for the simulation of a fibrotic condition (Leite et al., 2016).

For drug testing these organoids must show metabolic

competence, mostly evaluated by CYP induction and albumin

secretion (Kim et al., 2022). Recently, a bioprinted model of

human hepatocyte-like cells derived from organoids was tested

under exposition of a known hepatotoxic compound, showing an

expected decrease in cell viability (Bouwmeester et al., 2021).

Brain organoids are useful tools for neurodegenerative

disease models. Recently, a human brain organoid model was

tested for their capacity to internalize and propagate human

prions. Besides, brain organoids were responsive to an

established anti-prion compound, supporting their potential as

a drug screening model (Groveman et al., 2021). In order to

increase their reproducibility, studies have developed platforms

based on automation resulting in more homogeneous organoids

in terms of size, gene expression and structure compared with the

pioneer protocols. However, the authors still observed a distinctly

lower variability in several parameters, including survival in

toxicity studies. They attributed this variability to the innate

donor variability found in iPS (Renner et al., 2020). Another

important limitation of organoids derived from iPS is the need

for a long-term culture. These organoids must be matured for, in

general, at least 30 days.

3D bioprinting of organoids

3D bioprinting has been used to engineer more complex and

physiologically relevant tissue models. Higher resolutions can be

achieved during the bioprinting process and the hierarchical

organization of cells, organoids, biomaterials and growth factors

that can be obtained in an automated and pre-designed way.

There is also an increasing interest in the application of 3D

bioprinting for the production of organoids in a high throughput

system for drug screening tests (Grix et al., 2018).

Recent studies of 3D bioprinted mammary organoids in

hydrogels showed a better efficiency when compared to non-

bioprinted organoids (Mollica et al., 2019; Reid et al., 2019). In a

model of 3D bioprinted kidney organoids, the authors showed

that the bioprinting process was accurate and that the organoids

had consistent nephron patterning in a large scale tissue (Lawlor

et al., 2021). In a similar approach, Brassard and collaborators

Brassard et al. (2021) presented a new 3D bioprinting platform

named bioprinting-assisted tissue emergence (BATE). The

bioprinted organoids were able to be organized as an

intestinal tube tissue structure with a phenotype similar to the

one found in vivo. Other studies have bioprinted organoids for

drug screening assays (Maloney et al., 2020; Bouwmeester et al.,

2021). An interesting approach was performed by Maloney and

collaborators (2020); here tumor organoids were directly

bioprinted in 96 well plates, allowing the drug test to be

carried out without the need to transfer the organoids.

The convergence of organoids and
organ-on-a-chip: Organoids-on-a-
chip

Physiological membranes are commonly recreated in

microfluidic devices, using different cell types located in

different sides of a porous membrane, but parenchymal

tissues such as fat, liver and kidney are better replicated using

complex 3D cell culture models, as for example organoids

(Picollet-D’hahan et al., 2021). While organoids offer a more

complex 3D model, their use is limited, due to their low

throughput and reproducibility (Garreta et al., 2021).

In the pharmaceutical industry, early drug screening is based on

high-throughput assay, and efficacy is first tested in 2D cell lines to

discard the vast majority of compounds. Current tools for organoids

development and testing are incompatible with high-throughput,

making them incompatible for early drug screening, even when

taking into consideration that their better prediction rates would

reduce the number of tests needed to achieve reliable results. Instead,

organoids assays could be used to test a relatively small number of

compounds just before clinical trials. However, reproducibility must

be improved for organoids, which can be achieved through

biomaterials development and better control over culture

environment. The pioneer protocols of organoids rely on the

spontaneous stem cell differentiation and the use of Matrigel that

shows bath-to-bath variability. Using bioengineering approaches,

such as for example, synthetic hydrogels, desired tissue architecture

can be generated from a guided stem cell differentiation, increasing

reproducibility (Lancaster et al., 2017).
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The culture environment of organoids at the moment suffers

from the absence of vascularization, reduced organoid lifespan,

and variability of tissue-specific architecture and functionality

(Garreta et al., 2021). A microfluidic system includes laminar

flow, therefore cells are maintained under a regular flow of cell

culture medium, mimicking in part, a vascular system. Besides, the

regular flow reaches a better perfusion and control of morphogen

gradients compared with static cell culture, increasing cell viability

and differentiation in long-term cultures. The increase of cell

differentiation impacts positively on the development of tissue-

specific architecture, maturation and the functionality of organoids

(Homan et al., 2019; Wang et al., 2020). Besides better control of

cell function, microfluidics also allows a real time monitoring of

responses through sensors (Takebe et al., 2017). Microfluidic

systems must ensure material consideration, including using

polymers compatible with manufacturing processes, which uses

thermoplastics polymers for mass-production. One recent

development is the replacement of the most commonly used

non-thermoplastic polydimethylsiloxane (PDMS) with an

alternative biocompatible, transparent, and thermoplastic

polymer, Flexdym (Lachaux et al., 2017). This allows a faster

translation of scientifically validated prototype into commercially

available products.

Although organoid and organ-on-a-chip pursue the same

goal of mimicking tissue and organ physiology, they have

emerged as 3D cell culture models disconnectedly. Organ-on-

a-chip provides control and monitoring of cell functions, but are

commonly simplistic models of the target organ. Organoids are

based on spontaneous stem cell differentiation to recapitulate

cellular and molecular events of tissue and organ formation,

adding some relevant degree of variability. A synergistic strategy

can address limitations and add advantages coming from both

technologies. Organoids-on-a-chip will partially address the

limitations of organoid models, facilitating translation to

industry (Figure 1).

Recent advances of the convergence

In recent years, advances have been made in the convergence

of organoids and organ-on-a-chip technologies for drug

screening, disease modeling and personalized medicine. iPS-

derived liver organoids were tested on a microfluidic chip for

hepatotoxicity screening. In this study, liver organoids were co-

cultivated with endothelial cells and macrophages in an

automated platform to seed cells, dose with drugs, collect and

replenish media (Bircsak et al., 2021). The Nonalcoholic fatty

liver disease (NAFLD) model was tested using iPS-derived liver

organoids-on-a-chip system. These liver organoids showed

upregulated expressions of lipid metabolism-associated genes

in a long-term culture. These alterations indicate the

abnormal lipid metabolic process found in NAFLD (Wang

FIGURE 1
Organoids culture. (A) Traditional organoid culture relies on several disadvantages that can be partially solved by culturing organoids in a
microfluidic chip (B). The laminar flowofmicrofluidics provides a controlled dynamic environment increasing the reproducibility while reducing cost
of organoid culture. The large scale can be reached by parallel microfluidic devices. (C) The cell suspension of iPS-derived hepatic progenitors cells
were injected inside a microfluidic chip to form spheroids maturated into liver organoids. The maturation was followed by an increase on their
average diameter during organoid culture. “Adapted with permission from Wang et al., 2020. Copyright 2020 American Chemical Society.” (D) Co-
culture spheroids from human lung adenocarcinoma cells (A549) and endothelial cells (HUVECs) were transferred to amicrofluidic device previously
seeded with endothelial cells and lung fibroblasts embedded in a hydrogel. The tumor spheroids were capable of integration with the microvascular
network and to drug response evaluated by Live and Dead assay. “Adapted with permission from Paek et al., 2019. Copyright 2019 American
Chemical Society.” Both systems described the convergence of organoids andmicrofluidic, however, the increase of the complexity in (D) decreases
its susceptibility to automation, large scale and reproducibility.
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et al., 2020). Another organoids improvement with microfluidics

includes iPS-derived kidney organoids, which are avascular and

immature despite having glomerular and tubular like

compartments. In millifluidic chips, kidney organoids under

flow expand their pool of endothelial progenitor cells and

supported angiogenesis, which in turn, improved the

maturation of tubular compartments (Homan et al., 2019).

Another study also showed the importance of in vitro

vascularization. Using a perfusable 3D microvascular beds

containing a co-culture of human vascular endothelial cells

and fibroblasts, the authors showed that the integration of

microvascular beds with other cell types recapitulates organ-

specific cellular heterogeneity and structural organization of

vascularized human tissues, such as adipose tissue and the

blood-retinal barrier (Paek et al., 2019).

Microfluidics chips also have been tested with patient-

derived organoids from solid tumors. The combination of

primary human clear cell renal carcinoma with human

endothelial cells in a chip results in the molecular signature of

donor variation (Miller et al., 2018). In a more complex model

containing patient-derived organoids and stromal cells, Haque

and collaborators showed that the microfluidic chip device

increased the viability of their 3D construct. Furthermore,

stroma-depleting agents resulted in an increased loss of cancer

cell viability in the chip device in comparison to monolayer

culture (Haque et al., 2022).

Although recent advances in this field, there are still

crucial limitations. Most microfluidics systems were not

designed for organoids, featuring very large chambers

(millifluidic chips) that accommodate together many

organoids with an absence of organoid size control. When

organoids are close to each other, they can fuse, forming

distinct and more complex structures (Panoutsopoulos,

2021). More importantly, these chambers are not capable of

forming organoids: organoids are formed first in cell culture

plates and then transferred to the microfluidic device. This

FIGURE 2
3D Bioprinting approaches can contribute to scalability of organoids-on-a-chip. (A) A cell suspension can be bioprinted inside a predesigned
chip to form organoids or (B) organoids can be directly bioprinted inside a regular chip. In both scenarios the development of a specific composition
of bioink according to the type of organoid is required. (C) Themicrofluidics chips can contain sensors, for example, tomeasure the real-time oxygen
consumption from each organoid. Additional assays can be carried out inside the chip. The organoid culture supernatant can be harvested, and
the levels of cytokines measured using multiplex assays. Optical transparent chips also allow fluorescent-based assays such as live and dead viability
assay (D).
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process, besides time consuming, increases the cost also

because many organoids are lost during transfer. Current

microfluidics systems designed for organoids formation are

of low throughput, with only dozens of chambers per device,

and too small to accommodate organoids bigger than 400 μm

in diameter, making them incompatible with several organ

models. In general, the process is not automated, with few

exceptions (Bircsak et al., 2021).

3D bioprinting approaches could be added to different

steps of the process to address the challenge of automation.

For example, cell suspension can be seeded by 3D bioprinting

inside the chip, providing scalability to the process. In this

sense, a bioink composed of endothelial cells, smooth cells and

gelatin-methacryloyl was bioprinted inside a microfluidic

chip. Cells showed high viability and when compared to

traditional cell culture methods, the 2D constructs had an

upregulated expression of vascular proteins (Abudupataer

et al., 2019). Yi and collaborators Yi et al. (2019)

performed extrusion bioprinting inside an open glass chip

with one inlet without perfusion. The authors used a brain

decellularized bioink seeded with glioblastome or endothelial

cells resulting in a circular tumor tissue with distinct layers of

cells. Recently, MCF-7 spheroids were individually and

precisely positioning into the microelectrode wells using a

particular bioprinting approach for monitoring oxygen

consumption in the absence of laminar flow (Dornhof

et al., 2022). These studies open the door for more

ambitious approaches, where cell suspension bioprinted

inside the chips could form organoids (Figure 2).

Advantages and limitations of the
convergence

In summary, there are a set of advantages in combining

organoids culture with microfluidic technologies: 1) can

reduce the variability, since microfluidic devices can

provide better environmental control; 2) can reduce

labour cost and human error by supporting automated

operation; 3) can reduce reagent use in a miniaturized

culture system. This is relevant for organoids due to the

high cost of recombinant growth factors used as morphogens

in long-term cultures; 4) can reduce the time needed to a full

maturation of organoids.

However, as an emergent field, the organoid-on-a-chip

creates new technological challenges. The development of new

designs for microfluidic devices is needed to generate scalable

technologies and to accommodate all stages of organoid culture,

since their formation until maturation. New designs imply on

new methodologies for microfluidic device microfabrication.

Furthermore, current microfabrication is not scalable,

highlighting the needed for alternative materials.

FIGURE 3
Organoids-on-a-chip for drug development. (A)Human primary cells can be isolated from healthy and unhealthy tissue biopsies and expanded
in numbers. The resulting cells can be used to form organoids (B). (C)Organoids can be embedded into hydrogels serving as a bioink for bioprinting
protocols inside a chip. To provide scalability to the process, the resulting cells can be embedded into hydrogels serving as a bioink for bioprinting
protocols to form organoids inside a chip (D). The convergence of organoids andmicrofluidic technologies is named in this review as organoids
on a chip, serving as a complex 3D organ model for drug development (E).
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Concluding remarks

The preclinical stage of drug development comprises 2D

cell culture and animal models. Currently, there is a consensus

in the scientific community that the poor predictability of

such models hinders drug development and testing.

Regulatory entities recognize that alternative methods, such

as organoids and microfluidics, can create more reliable

results, and are preparing for them to be integrated into

the drug approval process. In this context, organoids

emerge as a powerful technology to reduce or even replace

animal models as personalized living avatars inside

microfluidic chips (Figure 3).

To enable the full deployment of organoids in

pharmaceutical industry, limitations around reproducibility

and automation must be addressed. Microfluidic devices have

already been shown to be effective for mimicking physiological

barriers, drug stimulus and pathogen interactions with host cells.

With organoids, microfluidics can help reduce the challenge of

spontaneous differentiation of stem cells during development,

providing enhanced control over spontaneous morphogenesis.

Organoids-on-a-chip benefits frommajor advances in organoids,

microfluidics, and 3D bioprinting to create models of increasing

complexity, closer to their physiological counterparts. However,

to reach full integration, some improvements in organoid

development and microfluidics devices fabrication must be

reached, with advances in 3D printing and bioprinting

approaches potentially providing a high level of automation to

the process.

The development of innovative, reliable, and predictable

organoid-on-a-chip models of healthy and diseased tissue will have

a tremendous impact on population health in the next decade. The

expected breakthrough will reduce animal models and costs of drug

development, adding better prediction and security to the process.We

have the scientific knowledge and the technologies to reach this goal.

Their integration is straightforward, but it is of the upmost importance

that this technological development translates into use by the

pharmaceutical industry, namely ensure high-throughput,

reproducibility, and compatibility with industrial manufacturing.
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