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Brain organoids are produced by the differentiation of pluripotent stem cells

under three-dimensional culture conditions by adding neurodevelopment-

related regulatory signals. They are similar to the cell composition and

anatomical structure of the brain, and can reflect the developmental process

of the brain, as well as their physiology, pathology, and pharmacology. Brain

organoids are good models to study human brain development and brain-

related diseases in vitro. Here, we mainly focus on the construction of brain

organoids and review the application of brain organoids in diseasemodelingand

drug screening.
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Introduction

An organoid is a three-dimensional (3D) cell culture product, which is an organ-

specific product obtained by inoculating stem cells in matrigel or basement membrane

extract under the action of a specific cytokine mixture (Sato et al., 2009; Shariati et al.,

2021). Organoids often contain multiple types of organ-specific cells and can reproduce

some organ functions in vitro. Compared with traditional cell models, organoid models

have more stable genetic and phenotypic characteristics during in vitro culture and more

abundant cell types (Takahashi, 2019; Li et al., 2020; Tang et al., 2022).

The brain is the largest and most complex organ with complex neural activity

(Northcutt and Kaas, 1995). The power of the brain, especially in humans, covers

movement, sensation, vision, hearing, and more advanced brain functions such as

consciousness and memory (Taverna et al., 2014). The complexity of brain structure

and function, especially the unique functional division of the human brain, poses

challenges to brain research. Due to ethical confine and human brain tissue source

constraint, researchers have traditionally used animal models to study human brain

development. Therefore, the research on human brain development often stays at the

common characteristics of mammals and other vertebrates. However, the unique

structure and function of human brain development makes it hard to show the

development feature of the human brain in animal models, especially in many

neurodegenerative diseases highly related to gene variation, such as schizophrenia,

autism spectrum disorder (ASD), Alzheimer’s disease (AD), Parkinson’s syndrome

(PD), etc.
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The development of stem cell technology enables researchers

to use human-induced pluripotent stem cells (hiPSC) to induce

brain-like tissues and organs from a 3D perspective (Takahashi

and Yamanaka, 2006; Lancaster et al., 2013). Brain organoids are

similar to the brain in cell composition and anatomical structure,

and can simulate the developmental process of the brain,

reflecting the physiological, pathological, and pharmacological

characteristics of the brain (Chiaradia and Lancaster, 2020; Sharf

et al., 2022). In the past few years, brain organoid technology has

been realized from unguided whole-brain organoids, gradually to

the cortex, midbrain, hippocampus, cerebellum, spinal cord, and

other brain organoids with regional characteristics (region-

specific brain organoids) and achieved vascularization of brain

organoids (Jo et al., 2016; Qian et al., 2016; Monzel et al., 2017;

Qian et al., 2018; Cakir et al., 2019; Zagare et al., 2021; Cakir et al.,

2022).

Neurodevelopmental disease (NDD) refers to the abnormal

development of the nervous system caused by hereditary or

acquired etiology, resulting in brain dysfunction, including

intellectual disability, autism spectrum disorder, attention

deficit hyperactivity disorder, and other diseases. Analyzing

the pathogenic mechanism of neurodevelopmental diseases

has always been one of the key topics in neurobiology. But

due to the ethics restrain, human and non-human primate

brain tissue shortage, even though a small number of patient

tissues can be obtained, it can only reflect the disease in the

terminal stage, the occurrence and development of the disease

cannot be analyzed. Therefore, the knowledge and understanding

of human brain developmental diseases are mainly derived from

studies on rodents. However, the complex structural and

functional partitions unique to the human brain cannot be

fully reproduced by animal models. The development of stem

cell technology, especially the establishment of induced

pluripotent stem cells, provides an ideal human cell model for

decoding the pathogenesis of neurodevelopmental diseases.

Reprogramming of patient somatic cells with disease genes

into induced pluripotent stem cells (iPSCs) followed by

differentiation into various types of nerve cells has been

widely used in the study of various neurological diseases.

However, neurological disease phenotypes are highly

heterogeneous, including abnormalities in brain structure such

as brain size, and problems with synaptic activity. For this

complexity, traditional two-dimensional (2D) neural culture

can only provide limited insights. Subsequently, a 3D brain

organoid culture protocol was pioneered by improving the 2D

neural culture method, opening new horizons for the study of

neurodevelopmental diseases.

The generation of brain organoid technology not only makes

up for the shortcomings of traditional 2D cell culture that cannot

simulate the complex structure of brain tissue and the in vivo

microenvironment, and is difficult to reproduce the complex

phenotypes of neurological diseases, but also breaks through the

lack of human-specific genetic characteristics, brain regions, and

functions, difficulties in comprehensively simulating the

development of the human brain and the limitations of

disease occurrence and development. It is an important tool

to study human brain development and evolution in vitro, to

explore the interaction of different brain regions, brain, and other

organs, and carry out disease simulation and drug screening

in vitro. This article will review the history of the establishment

and development of brain organoids, introduce the progress of

brain organoids in the exploration of brain development,

neurological disease simulation, and drug screening, and

analyze possible future directions.

Construction of brain organoids

In 1981, researchers isolated embryonic stem cells from the

inner cell mass of mouse blastocysts (Evans and Kaufman, 1981).

In 1998, Thomson et al. (1998) successfully isolated human

embryonic stem cells and further differentiated them into

various types of tissue cells, including neuroepithelial and

embryonic ganglion cells. In 2006, Takahashi and Yamanaka

(2006) induced mouse fibroblasts to generate pluripotent stem

cell iPSCs with stem cell properties by overexpressing

transcription factors Sox2, Klf4, Oct3/4, and c-Myc. In 2007,

similarly, they overexpressed four key transcription factors

including Oct3/4 (Pou5f1), Sox2, Klf4, and c-Myc in

differentiated and mature somatic cells to make them return

to a pluripotent state and obtain human-induced pluripotent

stem cells (hiPSCs) (Takahashi et al., 2007). Compared with

embryonic stem cells, hiPSCs are easy to obtain and have a wide

range of sources. They can be obtained from the somatic cells of

patients, avoiding ethical issues and immune rejection, and

providing a new way for individual precision treatment. The

earliest in vitro model used for brain research was the embryoid

body (EB)-derived neural rosettes (NR). Neural rosette is a

human neural tube-like structure that appears during the

differentiation of hiPSCs into cerebral organoids and is the

basis for the differentiation of various nerve cells. The further

development of hiPSCs technology has promoted the generation

of induced pluripotent stem cell neurospheres and three-

dimensional neuroepithelial tissue, which can reflect the

genetic characteristics of the human brain to a certain extent,

but they do not form a complete and complex brain structure,

and they lack the coordination between different sub-subsections

of the brain.

However, traditional neuronal diseases are simulated using

neurons differentiated and developed from human pluripotent

stem cells (hPSCs), which is also a 2D culture-based system

(Avior et al., 2016). Although various types of neurons with stable

homogeneity and high purity can be generated by the current 2D

differentiation system (Tyler, 2012), such as motor neurons,

telencephalic excitatory neurons, and midbrain dopaminergic

neurons (Subramanian et al., 2009), the 2D cultured cell model
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has certain shortcomings, it can neither simulate the

microenvironment composed of various regulatory factors and

endogenous signals in the three-dimensional space of the brain

(Aloysious and Nair, 2014) nor can it simulate the interaction

between cells in the three-dimensional space. The function of

different types of cells in different brain regions in neurological

diseases cannot be well simulated. Therefore, the establishment

of a 3D culture system came into being.

In 2013, Lancaster et al. (2013) for the first time used hiPSCs

to induce differentiation into brain organoids, and study

microcephaly. They induced and directionally differentiated

hiPSCs to produce an embryoid body structure with inner,

middle, and outer germ layers, and then passed through the

neuroectoderm and neuroepithelial layers, and finally formed a

structure similar to the early embryonic cerebral cortex which

can reflect the developmental process of the human brain in the

early embryonic stage. Qian et al. (2016) applied

microbioreactors to maintain Zika virus (ZIKV)-treated brain

region-specific organoids. Kirwan et al. (2015) also successfully

constructed an organoid model of the cerebral cortical neural

network using human iPSC lines, which can simulate the

development and function of the cortical network. Pham et al.

(2018) cultured human iPSCs into cerebral organoids,

differentiated iPSCs from the same source into endothelial

cells (EC), and re-embedded the organoids matrigel with 250,

000 endothelial cells after 3D culture for some time, resulting in

vascularized brain organoids. Dang et al. (2016) performed RNA

sequencing on organoids and found that the gene expression

profiles of brain organoids cultured to day 30 were very similar to

those of human fetal brain samples from 8 to 9 weeks of

gestation. Compared with research methods such as animal

models and cell culture, brain organoids can simulate the

developmental process and structural characteristics of the

early human embryonic brain to a certain extent in vitro, and

can better maintain human-specific genotypes and protein

expression levels. With the advancement of bioengineering

technology, the development of pluripotent stem cell-derived

3D brain organoid technology has become more mature, and its

application prospects have become broader and broader. Taken

together, pluripotent stem cell-derived 3D brain organoid

technology can be used to break through the current

bottleneck in the study of brain development and neurological

diseases and has great potential as a model for brain development

and neurological disease research.

Brain organoids and diseasemodeling

Current research on neurological diseases mainly uses animal

models. However, the genetic background, and physiological and

pathological characteristics of model animals are different from

those of humans. So it is difficult to simulate the occurrence and

development of diseases in human brain truly and

comprehensively. As an effective complement, human brain

organoids provide new tools for modeling human brain

development, psychiatry, and degenerative diseases, as well as

for drug screening and gene therapy.

Autism spectrum disorder

Autism spectrum disorder (ASD) is a brain developmental

disorder characterized by language impairment, social

difficulties, and repetitive stereotyped behaviors (Lord et al.,

2018; Lord et al., 2020). Mariani et al. (2015) induced iPSCs of

autistic patients with macrocephaly phenotype into

telencephalic organoids, and found that in the early stage of

brain organoid development, the cell cycle of neural

progenitor cells is shortened, and the increase of

GABAergic neurons leads to excitatory/inhibitory neural

imbalance, the mechanism is caused by the abnormality of

FOXG1 gene and its downstream molecules. One group

constructed a sliced neocortical organoid (SNO), which can

avoid the problem of cell death in the organoid due to long-

term hypoxia and lack of nutrients, thereby generating a larger

progenitor cell area and neural layer (Qian et al., 2020). Using

this organoid model, it was found that the mutation of the

autism susceptibility gene DISC1 leads to the impairment of

WNT/β-catenin signaling and the disorder of cortical neuron

fate differentiation, which leads to the abnormality of lamellar

markers SATB2, TBR1, ROB, and CITP2. These defects can be

rescued by correcting the mutation using gene-editing

methods. Another group constructed iPSCs with

heterozygous deletion of CHD8 by CRISPR-Cas9 and

induced them into brain organoids (Wang et al., 2017). By

comparing the transcriptome data of brain organoids with

CDH8 deletion and isogenic control, they found that

CHD8 regulates ASD-related genes such as TCF4, AUTS2,

differential genes are also involved in neurogenesis, WNT/β-
catenin signaling pathway, GABA neuron differentiation, etc.

Another group found that the volume of brain organoids with

RAB39B mutation increased, and the excessive proliferation of

neural progenitor cells led to the thickening of the

SOX2 positive ventricular zone (VZ), leading to

differentiation disorder. Also, the lack of RAB39B causes

the PI3K-AKT-mTOR signaling pathway excessively

activated. And inhibiting the PI3K-AKT-mTOR signaling

pathway can rescue the autism phenotype (Zhang et al., 2020).

AD

AD, commonly known as senile dementia, is a

neurodegenerative disease characterized by memory

impairment, cognitive dysfunction, and behavioral disorders

with classical pathological features of β-amyloid (amyloid β-
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protein, Aβ) deposition and neurofibrillary tangles

(neurofibrillary tangles, NFTs) (Scheltens et al., 2021; Pleen

and Townley, 2022). However, Existing AD transgenic mouse

models can only show Aβ-induced synaptic and memory

deficits but cannot fully reflect the pathological

characteristics of neurofibrillary tangles (Higgins and

Jacobsen, 2003; McGowan et al., 2006; Chin, 2011).

Moreover, neurons derived from AD patients show high

levels of Aβ toxicity and tau protein phosphorylation but

are also unable to replicate amyloid-β plaques and

neurofibrillary tangles (Choi and Tanzi, 2012; Israel et al.,

2012). Taken together, above mentioned methods cannot fully

mimic the AD disease which limits the mechanism exploration

and drug discovery. As technology advances, people begin to

use organoids as models to study AD. In 2014, one group, for

the first time, constructed the AD brain organoid model

induced by human neural stem cells stably transfected with

APP and PS1 mutant genes. This model reproduced the

pathological features of AD and verified the amyloid

hypothesis of AD. That is, excessive accumulation of Aβ
can lead to neurofibrillary tangles composed of an

aggregation of hyperphosphorylated tau protein (Choi et al.,

2014). Later, another study conducted 2D and 3D

differentiation models of AD-derived iPSCs at the same

time, and found different therapeutic effects of the same

drug in 2D and 3D models, suggesting that the 3D system

can better simulate cell-cell interactions and the

microenvironment of which is more similar to that in vivo

(Lee et al., 2016). Another group established an AD co-

cultured brain organoid model composed of neurons,

astrocytes, and microglia, which can recruit microglia,

simulate axonal damage, and achieve amyloid aggregation

and accumulation of phosphorylated tau protein (Park

et al., 2018). This system provides more physiologically

relevant systems for in vitro human AD culture models to

explore key pathological features of AD. Another study found

that APOE4 may be a potential target for the treatment of AD

by using brain organoids (Zhao et al., 2020). In addition,

several promising drugs screened in AD mouse models failed

to improve cognition in late-stage clinical trials. These

together suggested that 3D brain organoids can not only

provide the possibility to study the complex pathological

mechanisms of human brain diseases but also can be

promising new platforms for the discovery of drugs for

neurodegenerative diseases.

Glioblastoma

Glioblastoma (glioblastoma multiforme, GBM) is the most

common and aggressive primary malignant brain tumor

(Ricard et al., 2012; Omuro and DeAngelis, 2013;

Wirsching et al., 2016; Lapointe et al., 2018). Despite

decades of intensive research, the average survival time of

patients remains at 12–15 months (Aldape et al., 2019). One

big challenge in advancing GBM therapy is the current lack of

ideal models to study the properties of human GBM, especially

the invasion of surrounding brain tissue. Traditional in vitro

culture models, whether monolayer culture or tumor sphere

culture, may take a lot of time to establish and use exogenous

epidermal growth factor, basic fibroblast growth factor, and/or

serum to serially pass tumor cells in a clonal expansion

fashion, which is not conducive to maintaining the various

cell subtypes and key driver gene expression of the parent

tumor, and lack of organoid histological features and

interaction between tumor and normal tissue (Lee et al.,

2006; Schulte et al., 2012). An alternative way is the PDX

(patient-derived tumor xeno-graft) model in which isolated

primary tumor cells are injected directly into mice which are

thought to better preserve these important features of GBM

(Giannini et al., 2005). In addition, genetically engineered

mouse models are also not ideal models due to the divergences

between humans and mice, especially in the brain. Therefore,

we need more accurate models that can not only reproduce the

tumor phenotype and the complex tumor microenvironment

but also can support our detailed study of the mechanism of

tumor occurrence and development.

Organoid models that have emerged in recent years have

made up for the above shortcomings. At present, various types of

organoids have been successfully cultured in vitro, including

brain organoids (Lancaster et al., 2013; Paşca et al., 2015). And

organoids have been applied to models of various cancers,

including liver, breast, pancreatic, prostate, bladder, ovarian,

and gastrointestinal cancers, and have also been used for the

exploration of tumor development and drug resistance

mechanisms (Gao et al., 2014; Phillips, 2014; Khan et al.,

2021). Therefore, the successful establishment of organoids is

of great significance for GBM research.

In 2016, one group developed a tumor organoid culture

system directly derived from GBM specimens (Hubert et al.,

2016). In this system, tumor cells are suspended in matrigel,

which can reach a maximum of about 3–4 mm after 2 months of

culture. Organoid growth slowed significantly in subsequent

cultures, but GBM organoids remained stable and viable

without passage over a year of continuous culture. These

organoids reproduce the features of in vivo tumor hypoxic

gradients and tumor stem cell heterogeneity. Although this

organoid model is promising, further characterization and

validation across multiple GBMs are still required. And the

construction success rate has not been determined and may

be patient specific. The number of model build is relatively low to

moderate throughput, and the time required to set up the culture

is long. Recently, another group reported a new and faster

method for GBM organoid establishment (Jacob et al., 2020).

This method does not separate and digest tumor specimens, but

slices the specimens into pieces around 1 mm, and establishes

Frontiers in Cell and Developmental Biology frontiersin.org04

Chen et al. 10.3389/fcell.2022.1029873

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1029873


organoids without matrigel and serum, without the addition of

EGF and FGF. Using histopathology, immunohistochemistry,

single-cell transcriptomics, mutational analysis, and other

methods, the researchers confirmed that the organoid can

accurately reproduce the histological features, cell diversity,

gene expression, and mutational characteristics of the parental

tumor (Jacob et al., 2020). GBOs (glioblastoma organoids)

reproduce tumor tissue architecture rather than the brain,

more closely reproduce the complexity and heterogeneity of

the primary tumor, and have great potential for studying

GBM biology and predicting treatment response. Their main

limitation is that they need to be re-transplanted back into the

body to study their interaction with healthy brain tissue. Another

interesting study reported that immunodeficient mice began to

die within a few months after injecting organoid-derived tumor

cells unilaterally into the hippocampus (Ogawa et al., 2018). They

found that organoid-derived tumor cells spread along blood

vessels, and HE staining showed extensive invasiveness and

nuclear pleomorphism, similar to the biological features of

human GBM. In addition, areas of tumor cell foci showed

extensive Ki-67 expression, strong CD31 staining

demonstrated that the tumor was highly angiogenic, and

displayed GBM tumor stem cell positive markers such as

SOX2 and GFAP. This study demonstrated that organoid-

derived GBMs possessed full oncogenic potential and

characteristics of human tumors. In another study, the

researchers co-cultured patient-derived GBM spheroids with

brain organoids derived from early mouse embryonic stem

cells (da Silva et al., 2018). They found that GBM spheroids

spontaneously attached to organoids and subsequently fused and

invaded brain tissue. Compared with control neural progenitor

cells, GBM cells have greater migratory capacity and infiltrate the

inner layers of brain organoids more efficiently. Taken together,

organoids mimic glioblastoma invasion with time advantages,

high engraftment efficiency, strong invasiveness, and retention of

key driver mutation expression. This provides a good platform

for further research on the underlying mechanism and

subsequent treatment of glioma.

Sandhoff disease

Sandhoff disease is a lysosomal aggregation disorder in which

GM2 gangliosides are deposited in the brain due to lack of

hexosaminidase A (HexA) and hexosaminidase B (HexB)

activity (Parenti et al., 2015; Marques and Saftig, 2019;

Martina et al., 2020). At the same time, the final products of

β-hexosamine, glycolipids, glycoproteins, and oligosaccharides

are also deposited in the brain and internal organs. One group

constructed brain organoids using iPSCs derived from infant

fibroblasts with Sandhoff disease and used CRISPR/

Cas9 technology to create isogenic (HEXB-corrected) controls

(Allende et al., 2018). They found that organoids from Sandhoff

disease showed GM2 gangliosides accumulation, whereas the

controls did not. Diseased organoids also exhibited increased

volume and cell proliferation compared to their isogenic controls.

Transcriptomic analysis also reveals impaired development of

Sandhoff disease organoids. It can be seen that as a model of early

developmental diseases, brain organoids can well represent the

pathological characteristics of Sandhoff disease, providing an

important research method for such rare diseases.

Fragile X syndrome

Fragile X syndrome (FXS) is an intellectual disability

syndrome caused by mutations in the FMRP gene on the X

chromosome (Salcedo-Arellano et al., 2020). Researchers

constructed FMR1 gene-truncated iPSCs by CRISPR/Cas9 and

simulated some phenotypes of FXS in vitro by 2D neural culture

and 3D brain organoids, respectively (Brighi et al., 2021).

Compared with isogenic control brain organoids, FXS brain

organoids exhibited larger size and more GFAP-positive glial

cells, which is consistent with the observed effect of the

FMR1 gene on neural progenitor cell proliferation under 2D

culture conditions, suggesting that the brain organoid model can

be used to explore the pathological mechanism of X-linked

intellectual disability and provide a new platform for the

treatment of such diseases.

Lissencephaly

Lissencephaly, also known as the smooth brain, is a neuronal

migration disorder (Koenig et al., 2021). Among them, Miller-

Dieker syndrome (MDS) is the most serious one, which is caused

by a massive loss of heterozygosity on human chromosome

17p13.3, involving PAFAH1B1, YWHAE, and other genes

(Toyo-oka et al., 2003; Liu et al., 2021). Due to the absence of

oRG cells in the cortex of rodents, the phenotype of

Pafah1b1 mutant mice is much weaker than that of

PAFAH1B1 mutant human patients (Shitamukai et al., 2011).

In a previous study, people used iPSCs from patients with MDS

to culture and analyze brain organoids, and found that in the

stages of neuroepithelial cell expansion, neuronal migration and

oRG progenitor cell mitosis, neural stem cells in MDS organoids

were massively apoptotic, and oRG cells exhibit a delay in

mitosis, leading to defects in neuronal migration (Bershteyn

et al., 2017). Another group found that MDS organoids

exhibited premature neurogenesis, decreased cortical

expansion rate, significantly reduced organoid tissue volume,

and accompanied by ventricular zone radial glia cells transition

from symmetric to asymmetric cell division, the N-cadherin/β-
catenin/WNT signaling pathway is inhibited, and administration

of an agonist of WNT signaling can alleviate the MDS phenotype

(Iefremova et al., 2017).
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MCPH (autosomal recessive primary
microcephaly)

Autosomal recessive primary microcephaly is a

neurodevelopmental disorder caused by autosomal

aberrations, which is mainly characterized by small brains,

especially cerebral cortical changes (Faheem et al., 2015;

Naveed et al., 2018). Among the genes known to be associated

with microcephaly, CDK5 regulatory subunit-associated protein

2 (CDK5RAP2) regulates the replication process of centrosome

proteins, and loss or mutation of CDK5RAP2 can cause

microcephaly disease (Hassan et al., 2007; Abdullah et al.,

2017; Sukumaran et al., 2017). However, previous studies

demonstrated that mice are not an ideal model for mimicking

MCPH, because they observed that the cerebral cortex of

CDK5RAP2 mutant mice was not significantly smaller than

that of human patients (Lizarraga et al., 2010). To overcome

the shortage, one group constructed brain organoids derived

from iPSCs of microcephaly patients carrying

CDK5RAP2 mutations (Lancaster et al., 2013). Compared to

controls, patient-derived organoids displayed smaller

neuroepithelial regions and smaller overall dimensions, well

mimicking the symptoms of microcephaly patients. Based on

this research, many studies using brain organoids to explore the

mechanism of Zika virus (ZIKV)-induced microcephaly have

been reported. ZIKV infection caused an overall reduction in the

size of organoids, ZIKV also induced apoptosis in neural

precursor cells, attenuated precursor cell proliferation, and

increased the size of the lumen of the ventricular structure

(Cugola et al., 2016; Dang et al., 2016; Garcez et al., 2016;

Qian et al., 2016; Sutarjono, 2019). These results are

consistent with a clinical case report describing the lumen of

enlarged ventricular structures observed in ZIKV-infected

human fetal brains (Driggers et al., 2016). It can be seen that

the brain organoid model can help researchers to explore the

mechanism of neural and brain development.

Schizophrenia

Brain organoids, as an emerging in vitro model, have played

an important role in the study of psychiatric disorders.

Schizophrenia is a highly heritable mental disorder, and a

study based on DNA whole-genome sequencing of

schizophrenia patients found that 15q11.2 gene copy number

variation is one of its risk factors (Levinson et al., 2011; Malhotra

and Sebat, 2012). Yoon et al. (2014) compared iPSCs-derived

human neural precursor cells with 15q11.2 copy number

microdeletion with those without deletion and found that

15q11.2 copy number microdeletion can lead to defects in

neural precursor cell adhesion junctions and apical polarity.

Disrupted-in-schizophrenia 1 (DISC1) is a potential

susceptibility gene for many psychiatric disorders, including

schizophrenia, depression, and bipolar disorder. Although

there are many studies on DISC1, how does DISC1 protein

Interacting with other proteins to affect brain function is

rarely reported. The researchers induced the differentiation of

pluripotent stem cells from schizophrenia patients with

DISC1 mutations into brain organoids and found important

results: DISC1 and nuclear distribution protein nudE-like 1

(NDEL1) binding can regulate neural Stem cell division,

DISC1 mutations cause retarded nerve cell division in

TABLE 1 Application of brain organoids: diseases modelling and drug screening.

Application Gene References

ASD FOXG1 Mariani et al. (2015)

ASD DISC1 Qian et al. (2020)

ASD CHD8 Wang et al. (2017)

ASD RAB39B Zhang et al. (2020)

AD APP, PS1 Choi et al. (2014)

AD — Lee et al. (2016); Park et al. (2018)

AD APOE4 Zhao et al. (2020)

GBM — Hubert et al. (2016; Jacob et al. (2020); Ogawa et al. (2018); da Silva et al. (2018)

Sandhoff — Allende et al. (2018)

FXS FMR1 Brighi et al. (2021)

Lissencephaly Bershteyn et al. (2017); Iefremova et al. (2017)

MCPH CDK5RAP2 Lancaster et al. (2013)

ZIKV-induced microcephaly Cugola et al. (2016); Dang et al. (2016); Garcez et al. (2016); Qian et al. (2016); Sutarjono, (2019)

Schizophrenia 15q11.2 copy number microdeletion Yoon et al. (2014)

Schizophrenia DISC1 Ye et al. (2017)

Drug screening Phan et al. (2017); Dang et al. (2021)
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schizophrenia (Ye et al., 2017). Other group also used similar

technology to study this (Srikanth et al., 2015).

Brain organoids and drug screening

Brain organoids are expected to become an efficient platform for

drug development, screening, and testing. Drug safety evaluation is

an important reference for drugs to enter the clinical stage. Brain

organoids are expected to become important models for drug

screening and reduce the testing burden of clinical trials due to

their high molecular and structural similarity to the source tissue.

Zika virus research with brain organoid technology not only reveals

the relationship between Zika virus outbreaks and the incidence of

congenital microcephaly but also has great potential for drug testing,

including the preparation of potential Zika virus antiviral drugs. In

addition, brain organoids are also widely used in other common

drug screenings. Some studies have used a brain organoid model

constructed by neural progenitor cells, glial cells, and neurons to

explore the effects ofMETH on the human brain (Dang et al., 2021).

The study found that in METH-treated brain organoids, cytokine

CXCL8 was up-regulated, and neuroinflammation-related gene

expression was also up-regulated, indicating that brain organoids

are immune responsive, and METH treatment triggered

neuroinflammation in brain organoids. More excitingly, neuronal

organoids reproduced the characteristics of the blood-brain barrier

during co-culture with endothelial cells, thus providing the

possibility for screening drugs targeting the central nervous

system (Phan et al., 2017). Therefore, brain organoids have great

potential in testing drug effects and side effects due to their high

reduction of the structure and function of human organs.

Conclusion and perspectives

Since its establishment, in vitro organoid culture technology

has experienced rapid development and has shown strong

application value. In general, organoids can well mimic the

corresponding tissues in patients at the gene level and

morphological characteristics, are also suitable for high-

throughput drug screening and provide a research model for

personalized treatment of diseases.

Human brain organoids have attracted great interest in

recent years due to their potential to study human brain

development and neuropathology without the constraints of

animal models. The development of 3D brain organoid

technology is less than 10 years and is still in its infancy. In

terms of their cellular and molecular composition, the current

architecture of brain organoids can mimic the second-

trimester human fetal brain. However, since cerebral

organoids lack vascular circulatory system, they mainly rely

on free diffusion for oxygen exchange and nutrient uptake

from the culture medium. When cultured for a long time

in vitro, cells in the middle of the organoid undergo massive

apoptosis due to a lack of oxygen and nutrients. Therefore, the

establishment of an improved circulatory system of brain

organoids is the general trend. In addition, current brain

organoid technologies still suffer from significant

limitations, especially in the functional assessment of neural

network activity and cellular interactions, and neural circuit

functions relevant to neurodevelopmental and

neuropsychiatric pathologies (Quadrato et al., 2017).

In summary, although the current brain organoid culture

system still has technical defects, it does not have the 3D structure

and complex functions of human natural organs. However, it is

undeniable that the 3D brain organoid model has brought great

progress to human research on brain development and disease

mechanisms (Table 1). The construction and application of brain

organoids will still be the focus of attention in the field of life

medicine in the future. And the application of organoid

transplantation to replace drug therapy to cure neurological

diseases is still an important development direction of

precision medicine in the future. For example, one group

successfully recoded human and mouse fibroblasts to form

sensory ganglion organoids, and the induced sensory neurons

had electrophysiological properties and calcium ion response

properties (Xiao et al., 2020). In the future, the induced sensory

ganglion organoids may be widely used as an important cell

source for replacement therapy of damaged or degenerated

sensory neurons. As an emerging biological culture

technology, brain organoids have great research potential and

application value in the study of human brain development,

disease mechanism, tissue replacement therapy, and drug

screening.
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