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Ischemic stroke (IS) is a common and grievous nervous system disease. Both

autophagy activation and immune response after cerebral ischemia play

important roles in the development of IS. Many studies have revealed a

close interplay between autophagy and immunity. However, little is known

about how autophagy influences the immune characteristics of IS. Hence, the

study aims to systematically explore the role of autophagy and its impact on

immune characteristics in IS. We first compared the expression differences of

autophagy genes in a training set and identified 20 dysregulated autophagy

genes between healthy and IS samples. An autophagy-related classifier

composed of seven genes was further established and could well distinguish

healthy and IS samples. Then, the association between autophagy and immune

characteristics, including infiltrating immunocytes, activity of immune

reactions, and HLA gene expression, was investigated. The results showed

that autophagy closely correlated with immune characteristics, such as

NAMPT and ARNT significantly related to infiltrating immunocytes; PPP1R15A

and CASP3 significantly related to activity of immune reactions; and NAMPT and

ATG16L2 significantly related to HLA genes. Next, two distinct autophagy

expression patterns were identified by unsupervised clustering analysis, and

diverse immune characteristics were discovered between them. A total of

5481 autophagy phenotype-related genes were obtained between two

expression patterns, and their biological functions revealed that these genes

were involved in immune-related biological pathways. Finally, five dysregulated

autophagy genes (FOS, MAP1LC3B, ERO1L, ARNT, and PPP1R15A) were proved

between IS and healthy samples using another two validation sets. Our results

illustrated that autophagy had a dramatic effect on the immunity of IS and

provided a novel sight into understanding the pathogenesis of IS.
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Introduction

Ischemic stroke (IS), one of the most common and

devastating diseases, is a leading cause of death and disability

worldwide (Collaborators GN Global, 2019). It usually occurs

due to the disruption of the blood supply to some brain regions,

thus resulting in neuron death or permanent neurological deficit

(Hossmann, 2006). Inflammation and immunity have been

demonstrated to be key elements of the pathophysiology of

stroke (Iadecola and Anrather, 2011). The inflammation

process, an integral part of the ischemic cascade, starts at the

intravascular compartment immediately after arterial occlusion,

while circulating innate immune cells are quickly activated at the

onset of arterial occlusion, ultimately causing invasion of the

ischemic brain by blood-borne immune cells and activation of

brain-resident cells (Iadecola and Anrather, 2011; Iadecola et al.,

2020). Microglial cells, the resident macrophages of the brain, are

highly activated after brain injury. Studies suggest that microglial

cells may limit post-stroke inflammation by phagocytizing dead

cells and neutrophils, generating neurotrophic factor IGF-1 and

inhibiting astrocyte activation, and the depletion of microglial

cells worsens stroke outcomes (Lalancette-Hébert et al., 2007; Jin

et al., 2017; Otxoa-de-Amezaga et al., 2019). Neutrophils are the

earliest immune cells recruited into the ischemic brain, which

contribute to ischemic insult by releasing proteases and forming

neutrophil extracellular traps (Iadecola et al., 2020). In addition

to innate immune cells, adaptive immune cells (T and B cells)

also exert critical roles in the mechanism of IS (Qin et al., 2020).

However, post-stroke immunity is a double-edged sword, which

can be either beneficial or detrimental, and is worth exploring

deeply.

Recent studies illustrate that autophagy plays a crucial role in

the pathogenesis of IS, and regulation of the autophagy activity

may affect the outcome of IS (Shi et al., 2021). Autophagy is a

dynamic process of self-degradation of intracellular components

mediated by multiple lysosomal enzymes, through which

unnecessary or dysfunctional components, including certain

long-lived proteins, insoluble proteins, and impaired

organelles, are eliminated to maintain cell homeostasis

(Klionsky, 2008). Based on the method of cargo delivery to

the lysosomes, autophagy is classified into three different

types, namely, microautophagy, macroautophagy, and

chaperone-mediated autophagy (Wang et al., 2018). Generally,

moderate autophagy exerts a neuroprotective effect in IS by

regulating neural survival and death with variable mechanisms

(Wang et al., 2018). For example, in a vessel occlusion mouse

model, the autophagy activator rapamycin could reduce the

infarction volume and improve motor deficits (Hwang et al.,

2017). Nevertheless, IS often triggers maladaptive autophagy.

Excessive or persistent activation of autophagy is detrimental to

neurons by way of activation of cell death mechanisms

(Ajoolabady et al., 2021). Upregulation of IL-2 in the ischemic

brain tissues could promote autophagy gene expression in

neuronal cells after hypoxia/ischemia and contribute to

neuronal injury (Clarkson et al., 2014). Therefore, the double

role autophagy plays in the pathogenesis of IS remains to be

explored.

There is a complex crosstalk relationship between the

autophagy pathway/proteins and immunity. In recent years,

growing evidence has demonstrated that autophagy is

involved in many immune processes, such as autoantigen

presentation, cytokine production, and survival of

lymphocytes, suggesting an apparent and vital role in the

innate and adaptive immune responses (Yin et al., 2018). For

instance, the autophagy pathway can activate type I IFN

production in plasmacytoid dendritic cells by delivering viral

nucleic acids to endosomal Toll-like receptors (Lee et al., 2007).

Accumulating studies have shown that both autophagy and

immunity exert an important role in the process of cerebral

ischemic injury, and there is a close interplay between autophagy

and immunity. Although autophagy- or immunity-related IS has

been investigated, most of them only concentrate on one

molecule or pathway, and comprehensively systematic

research on autophagy in IS and how autophagy affects

immune characteristics are still not uncovered.

Taken together, in our study, we systematically portrayed the

roles of autophagy and the related immune characteristics in IS.

We first found that the autophagy gene classifier can well

distinguish healthy and IS samples. Immune characteristics,

including infiltrating immunocytes, activity of immune

reactions, and HLA gene expression, were then observed to be

a significant correlation with autophagy. Next, we clustered IS

samples using autophagy genes and identified two different

autophagy-mediated regulation patterns. Furthermore, the two

patterns were found to possess diverse clinical and immune

characteristics. Functional enrichment and WGCNA analysis

were performed to investigate the biological functions and the

key module of autophagy-related expression patterns,

respectively. These results indicated that autophagy regulation

patterns have significant implications on the immune

characteristics of IS.

Materials and methods

Data acquisition

Three gene expression datasets used in the present study,

including GSE22255 (20 IS vs. 20 healthy samples), GSE58294

(69 IS vs. 23 healthy samples), and GSE16561 (39 IS vs.

24 healthy samples), were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/). Details of the selected datasets are presented in

Supplementary Table S1. The GSE22255 (Krug et al., 2012)

profile was used to identify dysregulated autophagy genes and

analyze the related immune characteristics, while the GSE58294
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(Stamova et al., 2014) and GSE16561 (Barr et al., 2010) datasets

were applied for the validation of results. Data processing was

performed using R (version 4.1.3). During data processing,

probes were annotated as gene symbols using a platform

annotation file. Gene probes were excluded, which had

multiple matching gene symbols or were without matching

gene symbols. As for duplicate gene symbols, the median

value was selected as the expression value. The 222 autophagy

genes investigated in this study were acquired from the Human

Autophagy Database (HADb, http://www.autophagy.lu/).

Alteration analysis of autophagy genes
between IS and healthy samples

The differentially expressed autophagy genes between IS and

healthy samples were analyzed using the “Empirical Bayes

method” in the R package “limma”. Genes with p < 0.05 and |

foldchange (FC)| > 1 were considered significant dysregulated

autophagy genes. Pearson correlation coefficient (PCC) was used

to evaluate the expression relationship of the dysregulated

autophagy genes in all samples and IS samples. The

protein–protein interaction (PPI) network of dysregulated

autophagy genes was constructed through STRING v11.0

(Szklarczyk et al., 2019) and then visualized with Cytoscape

software. Univariate logistic regression was applied to identify

IS-related autophagy genes with the cutoff criteria of p < 0.05.

Then, the LASSO (least absolute shrinkage and selection

operator) regression was performed for feature selection and

dimension reduction. Furthermore, the autophagy classifier of IS

was developed using multivariate logistical regression. Finally,

the distinguishing performance of the signature was assessed

through the receiver operating characteristic (ROC) curve

analysis.

Correlation analysis between autophagy
genes and immune characteristics

Single-sample gene-set enrichment analysis (ssGSEA)

defines an enrichment score to represent the degree of

absolute enrichment of a gene set in each sample within a

given data set (Barbie et al., 2009). In this study, we evaluated

the infiltrating immunocytes and the activity of immune

reactions through ssGSEA analysis. According to a previous

study (Shen et al., 2019), we first obtained the gene sets used

to assess the enrichment degree of the infiltrating immunocytes.

The gene sets related to immune reactions were then downloaded

from the ImmPort database (http://www.immport.org)

(Bhattacharya et al., 2014). The enrichment scores of the

infiltrating immunocytes and immune reaction activity and

the expression of the HLA genes were compared by the

Wilcoxon test between IS patients and healthy controls. The

correlation of autophagy genes with immunocyte fractions,

immune reaction activity, and HLA gene expression was

calculated using PCC analysis.

Analysis of autophagy gene expression
patterns

Unsupervised clustering analysis was performed to identify

different autophagy gene expression patterns based on the

expression of 222 autophagy genes. The cluster numbers and

robustness were estimated using a consensus clustering

algorithm (Chai et al., 2019; Zhang et al., 2020). The

robustness of classification was guaranteed using the R

package “ConsensusClusterPlus” with the aforementioned

steps for 1000 iterations. PCA was further conducted to verify

the expression status of 222 autophagy genes in distinct

expression patterns. The differences in infiltrating

immunocytes, immune reactions, and HLA gene expression

between distinct expression patterns were compared by a t-

test. A chi-squared test was conducted to compare the clinical

characteristics of two expression patterns.

Identification of autophagy phenotype-
related genes and gene modules

To obtain autophagy phenotype-related genes, differentially

expressed genes between two expression patterns were analyzed

by the empirical Bayesian approach of the R package “limma”.

The criterion of significant differentially expressed genes was set

as the p-value < 0.05. Weighted gene co-expression network

analysis (WGCNA) by the “WGCNA” package in R (Langfelder

and Horvath, 2008) was used to identify the autophagy

phenotype-related gene modules through the following major

steps. A cluster of all samples was performed to check if any

obvious outliers existed. A co-expression network was then

constructed based on the matrix of pairwise Pearson

correlation coefficients using the WGCNA method. The

dynamic tree cut algorithm with min was applied to cluster

genes into different functional modules with different colors.

Module membership (MM) and gene significance (GS) were

calculated to correlate modules with the phenotype. Finally, after

extracting the important module gene information, it was used

for further analysis.

Analysis of biological functions for distinct
autophagy expression patterns

To portray the biological functions of two expression

patterns, the KEGG pathway enrichment analysis was

conducted. The gene sets for “c2.cp.kegg.v7.5.1.symbols” were
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acquired from the Molecular Signatures Database (MSigDB)

(Liberzon et al., 2011). The GSVA (gene-set variation

analysis) algorithm was performed to transform the

expression matrix of the gene sets to the pathway activation

score matrix. The Wilcoxon test was applied to compare the

pathway activation score matrix of two expression patterns, and

the cut-off criterion was set as p-value < 0.05. Meanwhile, GO-BP

enrichment analysis of autophagy phenotype-related genes was

employed using the R package “clusterProfiler” (Yu et al., 2012).

GO-BP with a p-value < 0.05 was considered to be a significantly

enriched functional annotation.

Validation of dysregulated autophagy
genes using GEO datasets

As mentioned previously, we obtained two additional datasets

(GSE58294 and GSE16561) from GEO to validate the dysregulated

autophagy genes. The “Empirical Bayes method” in the R package

“limma”was performed again to identify the differentially expressed

autophagy genes in GSE58294 and GSE16561, respectively, with p <
0.05 and |FC| > 1 as the threshold. Ultimately, the intersection genes

among GSE22255, GSE58294, and GSE16561 were regarded as

high-confidence differentially expressed autophagy genes.

Results

The landscape of autophagy genes
between IS and healthy samples

In the study, 222 autophagy genes were acquired fromHADb

to explore autophagy alteration status in IS. The differential

analysis identified 20 dysregulated autophagy genes associated

with IS, namely, ARNT, ATG12, ATG16L1, ATG16L2, BAK1,

CASP3, CDKN1A, CXCR4, EGFR, EIF2S1, EIF4G1, ERO1L, FOS,

GRID1, LAMP1, MAP1LC3B, NAMPT, PPP1R15A, SAR1A, and

TP53 (Figure 1A). Meanwhile, the transcriptome expression

status of the significantly dysregulated autophagy genes

between IS and healthy samples is represented in Figures

FIGURE 1
Expression landscape of autophagy genes in IS. (A) Volcano plots of differentially expressed autophagy genes. Purple circles represented
upregulated genes, and green circles represented downregulated genes. (B,C) Box plot and heatmap plot showed the expression status of
20 dysregulated autophagy genes between IS and healthy samples. (D)Correlation analysis among 20 significantly dysregulated autophagy genes in
all samples and IS samples. (E) Interactions among multiple proteins encoded by dysregulated autophagy genes.

Frontiers in Cell and Developmental Biology frontiersin.org04

Li et al. 10.3389/fcell.2022.1026578

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1026578


1B,C. To reveal the relationships among the dysregulated

autophagy genes, we performed correlation analysis and found

that PPP1R15A andNAMPT were the most correlated autophagy

genes (Figure 1D). In addition, the protein–protein network was

constructed to portray the dysregulated autophagy gene

interactions (Figure 1E), and we noticed that CASP3, TP53,

and MAP1LC3B might exert more important roles in the

network. Enrichment analysis revealed that the biological

features of 20 dysregulated autophagy genes were related to

cellular response to the external stimulus, cellular response to

the extracellular stimulus, and cellular response to the abiotic

stimulus (Supplementary Table S2).

Construction of the autophagy-related
classifier to distinguish IS and healthy
samples

A series of bioinformatic algorithms were conducted on the

20 dysregulated autophagy genes to identify the IS-associated

crucial features. We first employed univariate logistic regression

analysis to find out the relationships between the dysregulated

autophagy genes and IS (Figure 2A) and found that 14 autophagy

genes (EGFR, LAMP1, TP53,MAP1LC3B, PPP1R15A, ATG16L2,

EIF2S1, FOS, BAK1, CDKN1A, ATG12, ARNT, GRID1, and

CASP3) were significantly correlated with IS (p < 0.05). Then,

LASSO regression was used for feature selection and dimension

reduction on the 14 dysregulated autophagy genes and 7 essential

autophagy genes (ATG12, ATG16L2, EGFR, FOS, LAMP1,

MAP1LC3B, and TP53) for IS were screened (Figures 2B,C).

The seven vital autophagy genes were further passed onto a

multivariate logistic regression analysis for classifier construction

(Figure 2D). Finally, we obtained risk scores for each of the

samples, and the results demonstrated that the autophagy-related

classifier consisted of seven crucial features that can well

distinguish healthy and IS samples (Figure 2E), where IS had

a much higher autophagy risk score than healthy samples (p <
0.0001). The ROC curve was plotted, and it indicated that the

autophagy-related classifier model has excellent discrimination

ability (Figure 2F). Meanwhile, we validated the performance of

FIGURE 2
Construction of the autophagy-related classifier. (A) Relationships between 20 dysregulated autophagy genes and IS using univariate logistic
regression analysis. (B) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of dysregulated autophagy genes (p < 0.05).
(C) 10-fold cross-validation for tuning parameter selection in the LASSO regression. The partial likelihood deviance is plotted against log (λ), where λ
is the tuning parameter. Partial likelihood deviance values are shown, with error bars representing SE. The dotted vertical lines are drawn at the
optimal values by minimum criteria and 1-SE criteria. (D)Multivariate logistic regression developed a classifier consisting of seven autophagy genes.
(E) Risk distribution between IS and healthy subjects, where IS has a much higher risk score than healthy samples. (F) ROC curve evaluated the
discrimination ability of the classifier model.
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the autophagy-related classifier using the GSE58294 dataset and

obtained a similar result, which suggested that the classifier

model possessed an outstanding robustness (Supplementary

Figure S1).

The correlation between autophagy and
immune characteristics of IS

To explore the relationship between autophagy and immune

characteristics in IS, a correlation analysis was performed for

autophagy genes with infiltrating immunocytes, immune

reactions, and HLA gene expression referred to in a previous

study (Zhang et al., 2021). ssGSEA was employed to calculate

the enrichment abundance of each immunocyte between IS and

healthy samples (Supplementary Figure S2). Some of the

immunocyte fractions changed in the IS samples, such as

memory B cells, natural killer cells, and mast cells. We further

investigated the correlation of the infiltrating immunocytes with

autophagy genes and found that dysregulated autophagy genes

were closely related to multiple immunocytes (Figure 3A). The

most positively correlated immunocyte-autophagy gene pair was

eosinophil–NAMPT, and a higher expression of NAMPT and a

higher score of eosinophil were found in IS (Figure 3B), while the

most negatively correlated pair was activated CD4 T cell-ARNT,

and a lower expression of ARNT and a higher level of activated

CD4 T-cell population could be found in IS (Figure 3C). Likewise,

the activity of immune reactions and the expression levels of HLA

genes were analyzed in IS. Several significant changes in the

immune reaction activity were observed between IS and healthy

samples (Supplementary Figure S3), such as chemokines, cytokines,

and TGF-β family members increased, while TNF family member

receptors decreased in IS. The correlations between immune

reactions and autophagy genes were then calculated and are

presented in Figure 4A. PPP1R15A–chemokines was the most

positively correlated pair, and CASP3-cytokines was the most

negatively correlated pair (Figures 4B,C). The results illustrated

that PPP1R15A and CASP3 might play an important role in the

immune reactions of chemokines and cytokines, respectively. For

the expression status of HLA, although no significant difference was

found between the IS and healthy samples (Supplementary Figure

S4), the correlation with dysregulated autophagy genes remained

(Figure 4D). The most positively correlated autophagy-HLA pair

was NAMPT–HLAF (Figure 4E), while the most negatively

correlated autophagy–HLA pair was ATG16L2–HLADOB

(Figure 4F).

FIGURE 3
Correlation between immunocyte cells and dysregulated autophagy genes. (A) Dot plot showed the correlations between each immunocyte
cell type and each dysregulated autophagy gene. (B) Most positively correlated immunocyte–autophagy gene pair. (C) Most negatively correlated
immunocyte–autophagy gene pair.
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Different expression patterns of
autophagy genes in IS

To further identify the regulation status of autophagy in IS,

unsupervised consensus clustering analysis was applied for the IS

samples based on the expression of 222 autophagy genes (Figures

5A–C). As a result, we obtained two distinct subtypes of IS,

including 12 samples in subtype-1 and 8 samples in subtype-2.

The detailed information on the patients and subtypes of IS is

shown in Supplementary Table S3. A PCA of the two subtypes

revealed that there was a dramatic difference in transcriptome

expression between the two patterns (Figure 5D). Then, the

clinical characteristics between the two subtypes were

compared (Figure 5E). Gender (p = 0.001) and overdrinking

(p = 0.028) were found to be different between the two subtypes.

Next, we compared the expression of autophagy genes in the two

subtypes and found 84 subtype-specific autophagy genes

significantly changed between the two subtypes, unsupervised

clustering of which demonstrated distinct expression patterns in

the two subtypes (Figure 5F).

Immune characteristics in the two distinct
autophagy expression patterns

To figure out the immune characteristics of the two

subtypes, infiltrating immunocytes, immune reactions, and

the expression of HLA were compared. As expected,

different immune characteristics were observed between the

two distinct autophagy expression patterns. For instance,

higher levels of activated CD8 T cells, γδ-T cells, and

myeloid derived suppressor cells were enriched in subtype-1,

while higher levels of activated CD4 T cells, type-2 T helper

cells, immature B cells, natural killer T cells, and eosinophils

were enriched in subtype-2 (Figure 6A). As for immune

reactions, subtype-2 had more active immune reactions than

subtype-1 overall (Figure 6B). Chemokines, cytokines,

interferons, and interleukins were active in subtype-2.

Meanwhile, similar trends were determined in the expression

of HLA (Figure 6C). More infiltrating immunocytes, more

active immune reactions, and higher HLA gene expression

suggested that subtype-2 possessed immune enrichment.

FIGURE 4
Correlation between immune reactions or HLA genes and dysregulated autophagy genes. (A) Dot plot showed the correlations between each
immune reaction and each dysregulated autophagy gene. (B)Most positively correlated immune reaction–autophagy gene pair. (C)Most negatively
correlated immune reaction–autophagy gene pair. (D)Dot plot showed the correlations between each HLA gene and each dysregulated autophagy
gene. (E) Most positively correlated autophagy–HLA gene pair. (F) Most negatively correlated autophagy–HLA gene pair.
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Identification of biological functions of
distinct autophagy expression patterns

To investigate the difference in biological functions between the

two subtypes, GSVA analysis was applied to evaluate the enrichment

score of the KEGG pathway (Figures 7A,B). We found that several

important pathways were enriched in subtype-2, such as the

cytokine–cytokine receptor interaction, TGF-β signaling pathway,

and JAK-STAT signaling pathway. To further characterize the

regulatory roles of distinct autophagy expression patterns, we

first determined 5481 autophagy phenotype-related genes, which

were differentially expressed between the two subtypes. GO-BP

enrichment analysis of autophagy phenotype-related genes was

then performed, and the result revealed that 30.6% (137/447)

GO-BPs were remarkably related to immunity, such as

lymphocyte differentiation, mononuclear cell differentiation, and

T-cell activation or differentiation (Figure 7C; Supplementary Table

S4). Next, we constructed a comprehensive gene landscape related to

each autophagy expression pattern and identified gene–gene

modules correlated with distinct autophagy regulations using the

WGCNA analysis (Figures 7D,E, Supplementary Figure S5). A total

of 18 gene modules were acquired, and the related genes were

matched with different autophagy expression patterns (Figure 7F),

such as autophagy subtype-2 being closely associated with genes in

the brown module (Figure 7G). These results might have crucial

implications for the gene expression regulation networkmediated by

autophagy.

Validation of differentially expressed
autophagy genes

Finally, differentially expressed analysis was performed on

another two profiles (GSE58294 and GSE16561) for the

validation of 20 dysregulated autophagy genes. As a result,

125 and 94 dysregulated autophagy genes were obtained in

GSE58294 and GSE16561 datasets, respectively. A total of five

autophagy genes, including FOS, MAP1LC3B, ERO1L, ARNT,

and PPP1R15A, were found to be the intersection genes of the

three lists of dysregulated autophagy genes (Supplementary

Figure S6).

Discussion

Autophagy is a core molecular pathway in eukaryotic cells for

the preservation of cellular and organismal homeostasis. Under

stressful conditions such as hypoxia, starvation, infection, and

nutrient deficiencies, autophagy can be activated to provide

nutrients and energy for the cells (Mo et al., 2020).

Autophagy is a fundamental pathway for immunity, working

in four ways, including the direct elimination of microorganisms,

the regulation of inflammation, the regulation of innate

immunity, and the regulation of adaptive immunity (Levine

et al., 2011). It is reported that autophagy plays an important

role in the clearance of protein aggregates caused by ischemia-

FIGURE 5
Identification of different autophagy gene expression patterns by unsupervised consensus clustering. (A) Consensus clustering cumulative
distribution function (CDF) for k = 2–7. (B) Relative change in area under the CDF curve for k = 2–7. (C) Heatmap of the matrix of co-occurrence
proportions for IS samples. (D) PCA analysis for the transcriptome profiles of the two distinct autophagy subtypes. (E) Comparison of clinical
characteristics between the two subtypes. (F) Expression status of subtype-specific autophagy genes in the two subtypes.
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induced neuronal endoplasmic reticulum stress (Liu et al., 2010).

On the other hand, the immune system, as a critical part of the

body, has been found to participate in the pathogenesis of IS.

Considering that autophagy is closely related to immunity, it is

believed that autophagy must have a momentous impact on the

immune characteristics of IS. Therefore, we aim to excavate the

changes in immunity in IS from a new perspective of autophagy

to explore how it affects the immune characteristics of IS.

FIGURE 6
Different immune characteristics of two distinct autophagy subtypes. (A) Abundance differences of each immune immunocyte in two
autophagy expression subtypes. (B) Activity differences of each immune reaction in two autophagy expression subtypes. (C) Expression differences
of each HLA gene in two autophagy expression subtypes.
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To address this point, we systematically identified the

autophagy expression patterns related to the immune

characteristics of IS. To further clarify the impact of autophagy

on immune characteristics, including infiltrating immunocytes,

immune reaction activity, and HLA gene expression, a series of

bioinformatic algorithms were conducted, and the following

important discoveries were obtained. First, 20 dysregulated

autophagy genes were identified in IS, and the expression

FIGURE 7
Underlying biological function characteristics of distinct autophagy expression subtypes. (A) Box plot showed the differences of the KEGG
pathway enrichment score between subtype-1 and subtype-2 (p < 0.05). (B) Expression status of seven KEGG pathways in subtype-1 and subtype-2.
(C) Top 20 of GO-BP enrichment analysis of autophagy phenotype-related genes. (D) Sample clustering was performed according to the expression
data on all samples. The top 25% of variation genes were used for the analysis by WGCNA. (E) Gene dendrogram obtained by average linkage
hierarchical clustering. The color row underneath the dendrogram shows the module assignment determined by the Dynamic Tree Cut, in which
18 modules were identified. (F) Heatmap showed the correlation between module eigengenes and the two autophagy expression patterns.
(G) Scatterplot of gene significance (GS) for subtype-2 versus the module membership (MM) in the brown module. GS and MM exhibit a very
significant correlation, implying that hub genes of the brown module also tend to be highly correlated with subtype-2.
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correlation and interaction among these genes implied a closely

linked regulatory network involved in autophagy in IS. To test the

ability of autophagy genes to distinguish IS samples, we performed

the univariate logistic regression analysis, LASSO regression

analysis, and multivariate regression analysis and constructed a

classifier consisting of seven IS-related autophagy genes. The result

of the ROC curve confirmed that the autophagy-related classifier

has excellent discrimination ability. In clinical work, we usually

used the TOAST classification to determine the etiologic subtypes

of ischemic stroke that are based on the patient’s neurological

signs, results of brain imaging, and findings of ancillary diagnostic

tests. According to the TOAST classification, ischemic stroke is

divided into five groups: large artery atherosclerosis (LAA), small

vessel disease (SVD), cardio embolic disease (CE), other

determined etiology, and undetermined etiology. However,

information on clinical characteristics in etiologic stroke

subtypes is scant. Through reviewing the publication (Tan

et al., 2018), we found that the neurological deficit on

admission differed significantly between etiologic subtypes. The

most severe cases were CE patients, and the mildest cases were

SVD patients. Another finding is that in-hospital complications

such as respiratory infection, congestive heart failure, arrhythmia,

and fervescence were most common in patients with CE and rare

in patients with SAD. Of course, the autophagy genes might be

different among the five groups. Therefore, it may be essential to

investigate the relationship between the autophagy genes and IS

based on the TOAST classification. Second, to figure out the

immune characteristics of IS, the ssGSEA algorithm was used

to evaluate the abundance of immune cells and the activity of

immune reactions by establishing a matrix, and the expression of

HLA genes was also taken into consideration. Their correlations

with autophagy genes were then comprehensively analyzed. As a

result, we found that the expression of NAMPT was dramatically

positively correlated with mast cells, and ARNT was negatively

correlated with activated CD4 T cells. NAMPT (nicotinamide

phosphoribosyltransferase, also known as visfatin/pre-B-cell

colony-enhancing factor) is a multifunctional protein and plays

important roles in immunity, metabolism, inflammation, and

stress responses. Lu et al. (2009) reported that the plasma

NAMPT concentrations were increased in patients with IS. In a

transient cerebral ischemia of a rat model, a significant increase in

the thalamic mast cell number after 24 h from the ischemic insult

has been observed (Hu et al., 2004). Mast cells serving as the first

immune sentinel cells have been confirmed to exert critical roles in

the pathogenesis of IS. These studies showed both NAMPT and

mast cells presented a growing trend after cerebral ischemia, which

supported our result. Meanwhile, we also found that PPP1R15A

was positively correlated with chemokines, and CASP3 was

negatively correlated with cytokines; NAMPT was positively

correlated with HLAF, and ATG16L2 was negatively correlated

with HLADOB. Some of these correlations have not been

investigated in any other previous publications yet, which

suggests that they might open a new insight to explore the role

of autophagy in IS. Due to a close correlation that was found

between autophagy and immunity in IS, we speculated different

autophagy expression patterns might display diverse immune

characteristics. Next, cluster analysis of IS samples was

performed according to the autophagy expression profile, and

we obtained two distinct expression patterns. The findings proved

the opinion that the two subtypes emerged with differences in

terms of immunocyte composition, immune reactions, and HLA

gene expression. For example, higher fractions of γδ-T cells were

observed in subtype-1, and it has been reported that γδ-T cells

played a pro-inflammatory role in the pathophysiology of IS by

releasing cytokines such as IL-17a, IL-21, IL-22, and IFN-γ (Wang

et al., 2022). Additionally, significant changes in interferons and

their receptors were identified between the two subtypes.

Interferon-β (IFN-β), a broadly expressed cytokine, drives

innate immunity, acting in response to a pathogenic attack or

injury via the activation of both pro- and anti-inflammatory

cytokines (Wanve et al., 2019). A study reported that IFN-β
could reduce the infarct size in ischemic brains and lessen

neurological deficits in ischemic stroke animals (Kuo et al.,

2016), which indicated a protective role of IFN-β in IS. The

two autophagy subtypes harboring diverse immune features

hinted that autophagy might involve the immune process of IS,

and they further exerted a critical role in the development of IS

together. Furthermore, to uncover the biological features that cause

the differences between the two autophagy expression patterns, the

GSVA algorithm and GO-BP functional enrichment analysis were

performed based on the two subtype expression profiles and

autophagy phenotype-related genes, respectively. Interestingly,

we found that the most significantly enriched signaling pathway

is the cytokine–cytokine receptor interaction, and many of GO-

BPs were also associated with immune response. In addition, gene

modules related to autophagy-mediated expression patterns were

identified using the WGCNA analysis. Finally, the expressions of

the dysregulated autophagy genes were validated by two other

datasets. The expression level differences of FOS, MAP1LC3B,

ERO1L, ARNT, and PPP1R15A between the IS samples and

healthy samples were proved. These findings indicated that

autophagy indeed played a crucial role in the pathogenesis of

IS.We further found that FOS andMAP1LC3Bwere also members

of the autophagy-related classifier. Nevertheless, only 5 of the

20 dysregulated autophagy genes were differentially expressed in

the other two datasets. We guessed that sampling at different time

points in the course of ischemic stroke might have contributed to

the difference in results. Additionally, a limitation to our study is

that we only focused on the performance of the autophagy

classifier in the IS samples. We should check the accuracy of

the classifier in other datasets, which is unrelated to IS, especially

those related to autophagy. Another limitation is that the

GSE22255 dataset only contains 20 IS samples, which cannot

represent the whole population. The course of IS is also a dynamic

development process during which the expression status of

autophagy genes may change. Therefore, the autophagy
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classifier may only be applicable to some IS samples with the same

disease characteristics. Whether the autophagy classifier can be

applied to all the IS samples needs to be further validated by

expanding the sample size.

Our work systematically investigated the relationship

between autophagy and immune characteristics in IS for the

first time. In the study, some findings that were reported in other

diseases or fire-new and required attention was obtained, and the

findings might contribute to enlightening the development of

immunotherapy from the view of autophagy in IS. Furthermore,

the two distinct autophagy expression patterns we identified were

different from any other classification standards of IS, which

could help us improve the understanding of autophagy in IS and

how it affects immunity. Taken together, there might be a deep

connection between autophagy and immune characteristics, and

it is believed that these findings will promote researchers to

further explore the roles of autophagy in IS and gradually reveal

the harboring molecule mechanism of IS.

Conclusion

In conclusion, our work uncovered the potential mechanism

of the impact of autophagy on the immunity of IS. The

comprehensively systematic investigation of autophagy

expression patterns will provide a novel perspective for

understanding the pathogenesis of IS and open a new

direction for researchers to explore the molecular mechanism

in other diseases.
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