
Identification and validation of
the molecular subtype and
prognostic signature for clear
cell renal cell carcinoma based
on neutrophil extracellular traps

Jing Quan and Banggao Huang*

Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Hangzhou, China

Background: Renal cell carcinoma (RCC) is one of the most common cancers,

with an annual incidence of nearly 400,000 cases worldwide. Increasing

evidence has also demonstrated the vital role of neutrophil extracellular

traps (NETs) in cancer progression and metastatic dissemination.

Methods: Consensus cluster analysis was performed to determine the number

of ccRCC subtypes. The Kruskal–Wallis test or Student t-test was performed to

evaluate the difference of infiltrating immune cell and gene expression in

different groups. The Kaplan–Meier (KM) method was used to draw the

survival curve. LASSO cox regression analysis was conducted to construct a

NET-related prognostic signature. We also constructed a

lncRNA–miRNA–mRNA regulatory axis by several miRNA and lncRNA target

databases.

Results: A total of 23 differentially expressed NET-related genes were

obtained in ccRCC. Three clusters of ccRCC cases with significant

difference in prognosis, immune infiltration, and chemotherapy and

targeted therapy were identified. LASSO Cox regression analysis identified

a NET-related prognostic signature including six genes (G0S2, DYSF, MMP9,

SLC22A4, SELP, and KCNJ15), and this signature had a good performance in

predicting the overall survival of ccRCC patients. The expression of

prognostic signature genes was significantly correlated with the pTMN

stage, immune infiltration, tumor mutational burdens, microsatellite

instability, and drug sensitivity of ccRCC patients. MMP9 was identified as

the hub gene. We also identified the lncRNA UBA6-AS1/miR-149-5p/

MMP9 regulatory axis for the progression of ccRCC.

Conclusion: Collectively, the current study identified three molecular

clusters and a prognostic signature for ccRCC based on neutrophil

extracellular traps. Integrative transcriptome analyses plus clinical sample

validation may facilitate the biomarker discovery and clinical transformation.
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1 Introduction

Renal cell carcinoma (RCC) is one of the most common

cancers, with an annual incidence of nearly 400,000 cases

worldwide (Gray and Harris, 2019; Chowdhury et al., 2020).

In the past several years, there was a notable increase in the

incidence of RCC (Chowdhury et al., 2020). Despite several risk

factors being identified for the development of RCC, including

the alteration of VHL and HIF genes, the specific mechanisms

have not been fully elucidated (Deleuze et al., 2020). Significant

advances had been made in the therapy and management of RCC

over the past two decades, which largely improved the prognosis

(Motzer et al., 2007). Recent studies have also suggested that

molecular subtype analysis and discrimination of different

characteristics of RCC patients could achieve precise

treatment (Su et al., 2015; Riazalhosseini and Lathrop, 2016;

Ricketts et al., 2018). However, the 5-year survival for patients

with advanced ccRCC remained very poor (Zeng et al., 2019). No

ideal prognostic biomarker or signature has been identified for

the prognosis of RCC clinically.

Neutrophil extracellular traps (NETs) were composed of

depolymerized chromatin and intracellular granule proteins

released by activated neutrophils (Rada, 2019). The formation

of NETs was accompanied by the death of neutrophils, called

NETosis, which was distinct from apoptosis and necrosis (Yipp

and Kubes, 2013; Vorobjeva and Chernyak, 2020). NETs were

also involved in many diseases, including rheumatoid arthritis,

thrombosis, cardiovascular diseases, and cancer (Bonaventura

et al., 2020; Masucci et al., 2020). Increasing evidence has also

demonstrated the vital role of NETs in cancer progression and

metastatic dissemination (Huang et al., 2020; Masucci et al.,

2020). Moreover, NETosis and systemic lymphocyte

perturbations played a vital role in the tumor progression of

localized RCC with tumor thrombus (Shang et al., 2021).

However, the specific role of NETs in the development and

prognosis of RCC has not been fully clarified. In our study,

bioinformatics analysis was performed to explore the expression

patterns, prognostic values, and potential regulatory axes of

NET-related genes in RCC.

2 Materials and methods

2.1 Data source and preprocessing

Based on previous studies, a total of 69 NET-related genes

(Supplementary Table S1) were obtained (Şenbabaoğlu et al.,

2016; Papayannopoulos, 2018; Zhang et al., 2022). The gene

expression profile of ccRCC (n = 524) was downloaded from

TCGA (https://portal.gdc.cancer.gov/) database on 18 March

2022. The mRNA expression data were then normalized into

the transcripts per million (TPM) value before further analysis.

The differentially expressed NET-related genes were screened

using the “limma” package with “p < 0.01 and Log2 |(Fold

Change)| >2” as the threshold. The genetic mutation data on

ccRCC including single-nucleotide variants (SNVs) and copy

number variation (CNV) were isolated from TCGA via the

UCSC Xena server (https://xena.ucsc.edu/). The ccRCC

dataset from the International Cancer Genome Consortium

(ICGC) was used as the validation set.

2.2 Genetic mutation and functional
enrichment analysis

The SNV landscape was drawn using the “maftools” package.

The location of CNV alteration on chromosomes was identified

using the “RCircos” package. Using the “ clusterProfiler ”

package, we then performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

with “p < 0.05” as the threshold.

2.3 Consensus cluster analysis

The consensus clustering analysis could provide quantitative

and visual stability evidence for estimating the number of cancer

subtypes (Wilkerson and Hayes, 2010; Li et al., 2020). The

optimum subtype of TCGA ccRCC was determined with the

“ConsensusClusterPlus” package (Wilkerson and Hayes, 2010).

The Kaplan–Meier (KM) method was used to draw the survival

curve of ccRCC in each cluster. “CIBERSORT” algorithms were

used to calculate the level of infiltrating immune cells of the

ccRCC case (Chen et al., 2018). Using the “ggplot 2” package, we

performed the Kruskal–Wallis test to evaluate the difference of

infiltrating immune cells between each cluster. The

chemotherapeutic response for each cluster was evaluated

using the “pRRophetic” package.

2.4 Identification of prognostic
biomarkers and prognostic signature
construction

The KM method was used to draw the overall survival (OS)

curve, progression free survival (PFS) curve, and disease-specific

survival (DSS) curve. Based on the results of OS, PFS, and DSS,

we used the “glmnet” package to perform the least absolute

Frontiers in Cell and Developmental Biology frontiersin.org02

Quan and Huang 10.3389/fcell.2022.1021690

https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1021690


shrinkage and selection operator (LASSO) regression analysis

with 10-fold cross-validation, which could identify candidate

genes and construct a prognostic signature. The risk score of

cRCC cases = Σi(Coefi·Expi) (Coef is the coefficient, and Exp is

the gene expression). The KM method was also used to draw the

3-year/5-year OS curve of ccRCC in the high-/low-risk

group. We also drew the ROC curve with the “survivalROC”

R package for analyzing the performance of this prognostic

signature in ccRCC.

2.5 Prognostic signature gene analysis

The ESTIMATE algorithm was used to evaluate the tumor

mutational burden (TMB) and Microsatellite Instability (MSI)

scores of ccRCC (Liu et al., 2020). Spearman’s correlation

analysis was conducted to calculate the correlation

coefficient between prognostic signature genes and the

abundance of immune cells from TIMER (https://cistrome.

shinyapps.io/timer/) (Li et al., 2017). The IC50 values of

481 small molecules in 1,001 cell lines and there

corresponding gene expression were isolated from the

Genomics of Therapeutics Response Portal (CTRP). Pearson

correlation analysis was conducted to calculate the correlation

coefficient between gene expression and drug IC50

concentration. The Kruskal–Wallis test or Student t-test was

performed to analyze the difference of gene expression in

different groups of ccRCC. We then identified the hub gene

using STRING (https://string-db.org/). TTo explore the

miRNA targets of the hub gene, three miRNA target

prediction databases, miRDB (http://mirdb.org/), TargetScan

(https://www.targetscan.org/) and miRWalk (http://mirwalk.

umm.uni-heidelberg.de/)] were used. We also detected

lncRNA targets interacting with miRNA using LncBase

FIGURE 1
Expression landscape of neutrophil extracellular trap-related genes in ccRCC. (A) Volcano plot about the differentially expressed genes in
ccRCC. (B–C) Venn diagram about the number of differentially expressed neutrophil extracellular trap-related genes in ccRCC. ***p < 0.001; ccRCC,
clear cell renal cell carcinoma.
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(http://carolina.imis.athena-innovation.gr/) and StarBase

(http://starbase.sysu.edu.cn/).

3 Results

3.1 Expression and mutation landscape of
neutrophil extracellular trap-related
genes in ccRCC

Compared with normal kidney tissues, a total of 1,427 genes

were upregulated and 1,300 genes were downregulated in ccRCC

(Figure 1A, p < 0.01). Among these genes, 23 were differentially

expressed NET-related genes (Figure 1B). To be more specific, the

expression of NET-related genes SELPLG, LILRB2, ITGB2, CSF3R,

ITGAM, TLR2, CREB5, TLR7, DYSF, TLR8, MMP9, CYBB,

PTAFR, SIGLEC14, FPR1, and SLC22A4 was upregulated, while

the expression of DNASE1, MTOR, CYP4F3, F3, SELP, KCNJ15,

andG0S2was downregulated in ccRCC (Figure 1C, p < 0.001). The

SNV landscape of 23 differentially expressed NET-related genes in

ccRCC is shown in Figures 2A,B, which reveals that the most

frequently mutated gene was mTOR, followed by TLR8. Missense

mutation and C>G ranked themain variant classification and SNV

class, respectively (Figure 2A). Among the 23 differentially

expressed NET-related genes, most of them had copy number

deletion, and SELPLG and SELP had copy number amplification

(Figure 2C). The location of these NET-related genes on

chromosomes is shown in Figure 2D.

3.2 Functional enrichment analysis

GO and KEGG pathway analyses were performed using

23 differentially expressed NET-related genes. As a result, these

genes were mainly involved in myeloid leukocyte activation,

immune response, positive regulation of interleukin-6

production, neutrophil-mediated immunity, pattern recognition

receptor activity, and immune receptor activity in GO analysis

FIGURE 2
Landscape of genetic mutation of NET-related genes in ccRCC. (A–B) SNV frequency and classification of NET-related genes in LUAD. (C–D)
CNV alteration of NET-related genes in ccRCC and their location on chromosomes. NETs, neutrophil extracellular traps; ccRCC, clear cell renal cell
carcinoma.
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(Supplementary Figure S1A). Moreover, KEGG pathway analysis

revealed that these genes were mainly associated with the

neutrophil extracellular trap formation, leukocyte

transendothelial migration, PI3K-Akt signaling pathway, and

Toll-like receptor signaling pathway (Supplementary Figure S1B).

3.3 Consensus clustering identified three
clusters of ccRCC

Consensus clustering analysis was conducted to cluster ccRCC

patients based on 23 differentially expressed NET-related genes.

According to CDF values and the delta area, we determined three

clusters of TCGA-ccRCC patients (Figures 3A–D). Among these

three clusters of ccRCC patients, cluster 2 had the best OS rate, while

cluster 3 had the worst OS rate (Figure 3E, p = 0.019). As

immunotherapy was considered as one of the most promising

therapeutic strategies for ccRCC patients in the advanced stage

(Zhou et al., 2020; Bi et al., 2021), we then evaluated the difference of

three clusters in immune infiltration. Interestingly, significant

difference was obtained in the level of naïve B cells, memory

B cells, plasma B cells, CD4+ memory-activated T cells,

regulatory T cells(Tregs), gamma delta T cells, resting NK cells,

activated NK cells, M0 macrophages , M1 macrophages,

M2 macrophages , resting myeloid dendritic cells, activated

myeloid dendritic cells, activated mast cells, and neutrophils

among these three clusters (Figure 4A). The percentage of each

immune cell in ccRCC is shown in Figure 4B. Moreover, the data

also suggested a higher expression of immune checkpoints in cluster

1 than that in cluster 2/3 (Figure 5A, all p < 0.001).We also analyzed

the IC50 value of common chemotherapeutic drugs and targeted

therapeutics in three clusters. As expected, cluster 3 had a higher

IC50 value of gemcitabine (Figure 5B, p = 1.1e-25), cisplatin

(Figure 5C, p = 1.95–9), axitinib (Figure 5D, p = 9.7e-31),

sorafenib (Figure 5E, p = 6.4e-28), and sunitinib (Figure 5F, p =

5.5e-52) than cluster 1/2.

FIGURE 3
Subtype analysis in ccRCC based on NET-related genes. (A–B) CDF and delta area under the CDF curve in consensus clustering analysis. (C–D)
Three subtypes of TCGA ccRCC cases were identified according to the consensus clustering matrix. (E) Overall survival curve of each cluster of
ccRCC patients. ccRCC, clear cell renal cell carcinoma. CDF, cumulative distribution function.
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3.4 The prognostic significance of
neutrophil extracellular trap-related
genes in ccRCC

The result of OS analysis revealed that ccRCC patients with

high levels of G0S2 and MMP9 and low levels of CREB5, SELP,

TLR7, CYBB, TLR8,MTOR, DYSF, SLC22A4, and KCNJ15 had a

poor OS rate (Figure 6A and Table 1). Moreover, high levels of

MMP9, G0S2, and F3 and low levels of TLR7, SELP, MTOR,

DYSF, SLC22A4, and KCNJ15 were associated with a poor PFS

rate in ccRCC (Figure 6B and Table 2). As for DSS analysis, the

result suggested a poor clinical outcome in ccRCC patients with

high levels of MMP9, G0S2, F3 and low levels of TLR7, TLR8,

CREB5, CYBB, SELP, MTOR, DYSF, SLC22A4, and KCNJ15

(Figure 6C and Table 3). Due to the significant role of TLR7,

DYSF,MMP9, SLC22A4,MTOR, SELP,KCNJ15, andG0S2 in OS,

PFS, and DSS analyses (Figures 6A–C), we suggested TLR7,

DYSF, MMP9, SLC22A4, MTOR, SELP, KCNJ15, and G0S2 as

potential prognostic biomarkers for ccRCC.

3.5 Development of a prognostic
signature for ccRCC based on neutrophil
extracellular trap-related genes

Based on the eight aforementioned potential prognostic

biomarkers, we performed LASSO Cox regression analysis. As

a result, six NET-related genes including G0S2, DYSF, MMP9,

FIGURE 4
Difference of immune cell infiltration in three subtypes of ccRCC. (A) Abundance of different immune cells in three clusters of ccRCC. (B)
Distribution of different immune cells in each ccRCC case. *p < 0.05; **p < 0.01; ***p < 0.001; ccRCC, clear cell renal cell carcinoma.
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SLC22A4, SELP, and KCNJ15 remained in this prognostic

signature. The coefficient and partial likelihood deviance of

prognostic signature is shown in Figures 7A,B. The riskscore

of each ccRCC case was calculated using the following formula:

Riskscore = (−0.0454)*DYSF + (0.0576)*MMP9 + (−0.0536)

*SLC22A4 + (−0.1269)*SELP + (-0.1586)*KCNJ15 + (0.0513)

*G0S2. Figure 7C showed the riskscore and survival status of

RCC patients, and gene expression of the prognostic signature.

Based on the riskscore, ccRCC cases were divided into two

groups, and patients in the high-risk group had a poor OS

rate compared with those in the low-risk group (Figure 7D,

p = 1.26e-11). Moreover, the AUC of 1-year, 3-year, and 5-year

ROC curves were 0.691, 0.692, and 0.699, respectively

(Figure 7E), suggesting that this prognostic signature had a

good performance in predicting the prognosis of ccRCC. The

ICGC dataset was used as the validation set, and similar results

were obtained (Supplementary Figures 2A–C). Further immune

infiltration analysis demonstrated a significant negative

correlation between the riskscore and the immune infiltration

level of B cells, CD4+ T cells, CD8+ T cells, neutrophils, and

macrophages (Supplementary Figures 3A–F).

3.6 Prognostic signature gene analysis

We also analyzed the correlation between prognostic

signature genes and immune cell infiltration. As a result,

significant positive correlation was obtained between the

expression of DYSF (Supplementary Figure 4A) and SELY

(Supplementary Figure 4D) and the level of CD4+ T cells,

CD8+ T cells, neutrophils, macrophages, and dendritic cells

(all p < 0.05). As MMP9 expression increased, the level of

B cells, CD4+ T cells, neutrophils, macrophages, and dendritic

cells increased (Supplementary Figure 4B). Moreover, the

expression levels of SLC22A4 (Supplementary Figure 4C),

KCNJ15 (Supplementary Figure 4E), and G0S2

(Supplementary Figure 4F) were also significantly correlated

with the level of certain immune cells. As TMB and MSI were

referred as predictive markers for tumor immunotherapy efficacy

in cancer (Lin et al., 2021), we also analyzed the correlation

between the expression of the prognostic signature gene and the

TMB/MSI score. As a result, the TMB score increased as the

expression ofMMP and SLC22A4 increased (Figure 8A, p < 0.05).

However, the MSI score was significantly positively correlated

FIGURE 5
Difference of immune checkpoints and the IC50 score in three subtypes of ccRCC. (A) Expression of immune checkpoints in three subtypes of
ccRCC. (B–F) The IC50 score of common drugs of each cluster of ccRCC patients. *p < 0.05; **p < 0.01; ***p < 0.001; ccRCC, clear cell renal cell
carcinoma.
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FIGURE 6
Prognostic value of NET-related genes in ccRCC. The Kaplan–Meier curve revealed the result of overall survival (A), progression-free survival
(B), and disease-specific survival (C) of NET-related genes in ccRCC. NETs, neutrophil extracellular traps; ccRCC, clear cell renal cell carcinoma.

Frontiers in Cell and Developmental Biology frontiersin.org08

Quan and Huang 10.3389/fcell.2022.1021690

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1021690


with the MMP expression, while it was significantly negatively

correlated with the SLC22A4 expression (Figure 8B, p < 0.05). In

order to clarify the role of prognostic signature genes in the

development of ccRCC, we then analyzed the correlation

between the expression of these genes and clinical characters.

As ccRCC progressed, MMP9 expression increased, while the

expression of DYSF, SELP, and KCNJ15 decreased (Figure 9A).

Compared with patients with lymphatic node metastasis, ccRCC

patients without lymphatic node metastasis had a higher

SLC22A4 expression (Figure 9B). Moreover, ccRCC patients

with distant metastasis had a higher MMP9 expression and a

lower expression of DYSF, SLC22A4, SELP, and KCNJ15

(Figure 9C, all p < 0.05). Interestingly, a significant difference

was obtained in the expression of G0S2, DYSF,MMP9, SLC22A4,

SELP, and KCNJ15 between ccRCC patients with high-grade and

low-grade tumors (Figure 9D, all p < 0.05). A critical process to

develop drug scanning biomarker is to analyze the correlation

between gene expression and existing therapy targets. In our

study, high expression of SLC22A4, G0S2, and DYSF, and low

expression ofMMP9 and SELP were significantly associated with

drug resistance of CTRP (Figure 9E). We then constructed a PPI

network, and MMP9 was identified as the hub gene for further

analysis among prognostic signature genes (Figure 9F).

3.7 lncRNA–miRNA–mRNA regulatory axis

The lncRNA–miRNA–mRNA regulatory axis played a vital

role in the progression of cancer (Wang et al., 2020; Chen et al.,

2021; Zhan et al., 2021). We then explored the MMP9-related

lncRNA–miRNA–mRNA regulatory axis. Combined with the

miRNA targets predicted by TargetScan, miRDB, and miRWalk,

miR-6734-3p and miR-149-5p were considered the potential

targets of MMP9 (Figure 10A). Further analysis revealed that

miR-149-5p was downregulated in ccRCC (Figure 10B, p <
0.001), and high miR-149-5p expression was significantly

correlated with a poor OS rate (Figure 10C, p < 0.001). Thus,

we suggested miR-149-5p as the miRNA target of MMP9.

Combined with the lncRNA targets predicted by lncBase and

starBase, lncRNA KCNQ1OT1 and UBA6-AS1 were considered

as the potential targets of miR-149-5p (Figure 10D). Expression

analysis revealed that the expression of lncRNAKCNQ1OT1 and

UBA6-AS1 was upregulated in ccRCC (Figure 10E, all p < 0.001).

However, prognosis analysis suggested that only UBA6-AS1 was

significantly correlated with the OS rate in ccRCC (Figure 10F,

p = 0.006). Thus, we suggested UBA6-AS1 as the lncRNA target

of miR-149-5p. In conclusion, we identified the lncRNA UBA6-

AS1/miR-149-5p/MMP9 regulatory axis for the progression of

ccRCC. In our further study, we will focus on the validation of the

lncRNA UBA6-AS1/miR-149-5p/MMP9 regulatory axis by in

vivo and in vitro studies.

TABLE 1 NET-related genes with significant prognosis in overall
survival analysis.

Gene p-value HR Low 95% CI High 95% CI

CREB5 0.044 0.735 0.545 0.991

TLR7 0.024 0.709 0.526 0.956

DYSF <0.001 0.482 0.352 0.662

TLR8 0.013 0.682 0.505 0.921

MMP9 0.020 1.430 1.059 1.932

CYBB 0.016 0.690 0.511 0.932

SLC22A4 <0.001 0.427 0.312 0.585

MTOR 0.002 0.621 0.456 0.844

SELP 0.026 0.711 0.526 0.960

KCNJ15 <0.001 0.384 0.278 0.530

G0S2 0.002 1.620 1.196 2.194

TABLE 2 NET-related genes with significant prognosis in progression-
free survival analysis.

Gene p-value HR Low 95% CI High 95% CI

TLR7 0.049 0.730 0.533 0.999

DYSF 0.001 0.580 0.420 0.800

MMP9 0.001 1.695 1.232 2.332

SLC22A4 <0.001 0.493 0.357 0.681

MTOR 0.001 0.589 0.427 0.814

F3 0.018 1.461 1.066 2.001

SELP 0.015 0.676 0.493 0.927

KCNJ15 <0.001 0.407 0.292 0.568

G0S2 0.011 1.505 1.098 2.064

TABLE 3 NET-related genes with significant prognosis in disease-
specific survival analysis.

Gene p-value HR Low 95% CI High 95% CI

CREB5 0.022 0.637 0.434 0.936

TLR7 0.032 0.658 0.450 0.964

DYSF <0.001 0.347 0.225 0.533

TLR8 0.025 0.645 0.440 0.945

MMP9 0.009 1.677 1.138 2.472

CYBB 0.016 0.625 0.425 0.918

SLC22A4 <0.001 0.313 0.205 0.480

MTOR 0.003 0.553 0.372 0.823

F3 0.023 1.558 1.064 2.283

SELP 0.009 0.599 0.406 0.882

KCNJ15 <0.001 0.251 0.159 0.394

G0S2 0.010 1.665 1.132 2.450
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4 Discussion

ccRCC was one of the most common subtypes of urologic

neoplasms (D’Avella et al., 2020). Although significant

progresses had been made in the therapy of ccRCC, the

prognosis of advanced and metastatic patients is still poor

(Zeng et al., 2021). No ideal prognostic biomarker or

signature has been identified for the prognosis of RCC

clinically. Molecular subtype classification of cancer could

achieve precise treatment (Kamoun et al., 2020; Zhu et al.,

2020). NETs were involved in tumor cell awaking, tumor

relapse, and tumor growth and spread (Demkow, 2021).

Although several studies had reported the significant role of

certain NET-related genes in RCC (Ha et al., 2019), the specific

role of NETs in the development and prognosis of RCC has not

been fully clarified. Thus, our study was performed.

We first performed consensus clustering analysis based on

23 differentially expressed NET-related genes (SELPLG,

LILRB2, ITGB2, CSF3R, ITGAM, TLR2, CREB5, TLR7,

DYSF, TLR8, MMP9, CYBB, PTAFR, SIGLEC14, FPR1,

SLC22A4, DNASE1, MTOR, CYP4F3, F3, SELP, KCNJ15,

and G0S2) in ccRCC. As a result, a total of three clusters of

ccRCC were identified. Moreover, cluster 2 had the best OS

rate, and cluster 3 had the worst OS rate among these three

clusters of ccRCC patients. Further study suggested a lower

abundance of immune cells and higher IC50 values of

FIGURE 7
Prognostic signature in ccRCC based on NET-related genes in TCGA dataset. (A–B) The coefficient and partial likelihood deviance of the
prognostic signature. (C) Riskscore distribution, patients’ survival status, and gene expression profile of the prognostic signature. (D) ccRCC patients
in the high-risk group had a poor OS rate compared to that in the low-risk group. (E) AUCs of 1-year, 3-year, and 5-year ROC curves were 0.691,
0.692, and 0.699, respectively. NETs, neutrophil extracellular traps; ccRCC, clear cell renal cell carcinoma.
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FIGURE 8
TMB/MSI analysis of prognostic signature genes in ccRCC. The correlation between prognostic signature gene expression and TMB (A) /MSI (B)
score in ccRCC. ccRCC, clear cell renal cell carcinoma; TMB, tumor mutational burden; MSI, microsatellite instability (MSI).
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gemcitabine, cisplatin, axitinib, sorafenib, and sunitinib in

cluster 3 than that in cluster 1/2 in RCC. These pieces of

evidence suggested that ccRCC patients in cluster 3 may be

more resistant to common chemotherapy, targeted therapy,

and immunotherapy. Also, this may be one of the reasons why

ccRCC patients in cluster 3 had the worst OS. Based on the

result of consensus clustering analysis, we could choose

different methods to treat the patients, thus achieving

precise treatment. The previous study had highlighted the

vital role of consensus clustering and subtype identification in

treatment strategies selection (Li et al., 2019).

We then constructed a prognostic signature including six

NET-related genes (G0S2, DYSF, MMP9, SLC22A4, SELP, and

KCNJ15) for ccRCC. The AUCs of 1-year, 3-year, and 5-year

ROC curves were 0.691, 0.692, and 0.699, respectively, suggesting

that this prognostic signature had a good performance in

predicting the prognosis of ccRCC. Accumulating studies had

suggested the important role of NETs in the prognosis of cancers.

FIGURE 9
Prognostic signature gene analysis. Correlation between the pT stage (A), pN stage (B), pM stage (C), tumor grade (D), and the expression of
prognostic signature genes in ccRCC. (E) Correlation between drug sensitivity and the expression of prognostic signature genes in ccRCC. (F)
Protein–protein interaction network identified MMP9 as the hub gene among prognostic signature genes. *p < 0.05; **p < 0.01; ***p < 0.001;
ccRCC, clear cell renal cell carcinoma.
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Naifei et al. constructed a NET-related signature that could

predict the prognosis and immunotherapy response in head

and neck squamous cell carcinoma (Chen et al., 2022).

Another study also developed an innovative prognostic

symbol based on the NET-related lncRNA signature for the

prognosis in lung cancer (Fang et al., 2021). Another pan-

cancer analysis suggested the NET score as a hazardous factor

in most cancer types, and a higher score was correlated with more

adverse outcomes (Zhang et al., 2022).

We identified the lncRNA UBA6-AS1/miR-149-5p/

MMP9 regulatory axis for the progression of ccRCC. The lncRNA

UBA6-AS1 could suppress the biological process by inhibiting the

decay of UBA6 in ovarian cancer. Moreover, miR-149-5p was

involved in cellular migration, proliferation, and apoptosis in RCC

(Jin et al., 2016). Another study suggested that miR-149-5p was a

prognostic biomarker of ccRCC (Xie et al., 2018). Tianbo et al.

suggested MMP9 as a novel biomarker and immunotherapy target

for ccRCC, and MMP9 exerted a vital function in tumor immunity

(Xu et al., 2021). These pieces of evidence suggested that the lncRNA

UBA6-AS1/miR-149-5p/MMP9 may be involved in the progression

of ccRCC. In our further study, we will focus on the validation of the

lncRNA UBA6-AS1/miR-149-5p/MMP9 regulatory axis by in vivo

and in vitro studies.

There were some limitations to our study. First, it would be

better to verify three subtypes of ccRCC using another dataset.

Moreover, the lncRNA UBA6-AS1/miR-149-5p/

MMP9 regulatory axis should be verified using in vivo and

in vitro studies. Whether genetic characteristics could affect

the prognosis of patients with renal cell carcinoma need to be

further clarified.

5 Conclusion

Collectively, the current study identified three molecular

clusters and a prognostic signature for ccRCC based on

neutrophil extracellular traps. Integrative transcriptome

analyses plus clinical sample validation may facilitate

biomarker discovery and clinical transformation.
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