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Introduction

Infertility is a challenging problem for people who desire to have children.

Approximately 10–15% of reproductive-age couples are affected by infertility

(Wasilewski et al., 2020; Saha et al., 2021). The causes of infertility are various, with

approximately 30% for male factors, 30% for female factors, 30% for both partners, and

8–28% for unexplained reasons (Saha et al., 2021) (https://www.singlecare.com/blog/

news/infertility-statistics/). In females, the most common causes of infertility are ovarian

dysfunction (25–35%), tubal-related problems (20–25%), uterine pathology (15–30%),

and unexplained reasons (20–30%) (Takasaki et al., 2018; Szamatowicz and Szamatowicz,

2020). In males, low sperm quality (35%) is the main cause of infertility (Odisho et al.,

2014; Carson and Kallen, 2021). These causes of infertility can be attributed to other

common health issues (Carson and Kallen, 2021). For example, metabolic disorders, such

as obesity and diabetes, induce low oocyte quality, abnormal epigenetic modifications in

oocytes and sperm, and impaired embryo development (Ou et al., 2019; Snider andWood,

2019; Kusuyama et al., 2020). PCOS (polycystic ovarian syndrome), a common endocrine

disease in reproductive-age women, leads to anovulation, low oocyte quality and

fertilization rate, and subfertility/infertility (Risal et al., 2019; Kumariya et al., 2021).

Exposure to phthalates, widely used in the manufacture of plastics, leads to premature

ovarian failure by disrupting the reproductive endocrine functions (Lambrot et al., 2009;

Lehraiki et al., 2009; Rajkumar et al., 2022). Pesticide residues are deleterious to ovarian

function and oocytes (Biggs et al., 2008; Liu et al., 2021). Lifestyle factors such as

smoking also contribute to infertility, (Esakky and Moley, 2016; Engel et al., 2021).
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However, the mechanisms of environmental factors underlying

infertility are not yet fully understood. This Research Topic is

focused on the intra- and extra-environmental factors affecting

reproduction.

Regulation of gametogenesis

In mammals, haploid germ cells are produced from the

diploid precursor cells through meiosis (Larose et al., 2019).

In females, meiosis is initiated in the fetal ovary, and the primary

oocytes are arrested at Meiotic Prophase I, enclosed in primordial

follicles, perinatally in mice. At puberty, a cohort of the

primordial follicles are recruited in the growth phase, and the

oocytes resume the meiotic cell cycle to go through the first

meiosis division and become mature oocytes. Accurate

chromosome segregation depends on many factors including

chromosomal and ooplasmic components. For example,

centromeres and telomeres are two crucial regions in

chromosomes and play a key role in regulating chromosome

segregation during oocyte meiosis (Meerdo et al., 2005; Kazemi

and Taketo, 2021). Jeon and Oh report that the deletion of TRF1,

a component of the telomeric protein complex, resulted in the

dysfunction of the spindle-assembly checkpoint (SAC) and an

increase in the aneuploidy rate in mouse oocytes. mRNA

accumulation during oocyte growth/follicular development is

crucial for oocyte competency and early embryo development

(Ruebel et al., 2021). At the end of the growth phase of oocytes,

when they are commonly referred to as germinal vesicles (GV),

the oocyte ceases transcription and the mRNA accumulated is

programmatically degraded during meiotic progression (Gindi

et al., 2022). The poly(A) tail length at the 3′ end is important for

mRNA stability in oocytes (Yang et al., 2020). The CCR4-NOT

complex regulates mRNA degradation through deadenylation

(shortening) of the poly(A) tail (Reyes and Ross, 2016).

Epigenetic modification is another important factor that

regulates mRNA stability in oocytes. For example, N6-

methyladenosine (m6A) modification plays a key role in

stabilizing the mRNA of oocytes and early embryos (Kasowitz

et al., 2018). Another modification, N4-acetylcytidine (ac4C), of

mRNA was found to regulate translation (Arango et al., 2018).

Xiang et al. report that ac4C is mediated by NAT10

(N-acetyltransferase 10), while the deletion of

NAT10 decreased the oocyte maturation rate in the mouse

subject.

In males, spermatogenesis occurs throughout the entire life

by maintaining the spermatogonial stem cells and this process is

precisely regulated (Neto et al., 2016). After the proliferation of

spermatogonia, they enter meiosis to become spermatocytes,

which further differentiate into round spermatids through

consecutive meiotic divisions. The round spermatids then

undergo transformation to become spermatozoa, which are

released into the seminiferous tubule lumen. Spermatozoa

undergo further maturation in the epididymis. This process is

regulated by hormones, pre-mRNA alternative splicing, non-

coding RNA, epigenetic modifications, micro-environment, etc.

(Neto et al., 2016). Non-obstructive azoospermia (NOA) is a

crucial reason for male infertility, but the causes of ~70% of NOA

are still termed idiopathic NOA (iNOA). Tang et al. find that

some males were diagnosed with iNOA in the clinic, but they had

been fertile. To investigate, they test the mRNA profiling in the

testicular tissues of these males and find the mRNA expression

was altered compared to obstructive azoospermia. Wu et al. find

that the deletion of SYMPK blocked spermatogenesis and led to

infertility in mice because the pre-mRNA alternative splicing was

disturbed. During post-testicular sperm maturation, there is a

dynamic change process of non-coding RNA (Sharma et al.,

2018) and a re-methylation process of the Pgk-2, ApoA1, andOct-

3/4 loci (Ariel et al., 1994). These indicate that non-coding RNA

and the re-methylation of genes are essential for sperm

maturation. In this topic, Chadourne et al. report that Topaz1

is important for spermatogenesis mediated by lncRNA. Chen

et al. find that the global methylation in sperm from the testis was

significantly different from sperm from the caput epididymis.

The microenvironment is also important for spermatogenesis.

For example, in the testis, hypoxia leads to abnormal

spermatogenesis and infertility (Jankovic Velickovic and

Stefanovic, 2014). Li et al. review the relationship between

hypoxia, induced by environmental and pathological factors,

and male infertility in humans and animals and discuss the

potential mechanisms.

Metabolic disorders have adverse
effects on reproduction and offspring
health

PCOS is a major cause of female infertility. For women with

PCOS, ovarian function is reduced, resulting in anovulation and

low oocyte competence. Studies in mice show that the global gene

expression in ovaries and granulosa cells is altered by PCOS,

including genes associated with oocyte meiosis (Palomba et al.,

2017; Snider andWood, 2019). Gao et al. demonstrate that PCOS

leads to an increase in the expression of USP25 in granulosa cells,

which regulates the proliferation and apoptosis by decreasing the

expression of PI3K, AKT, and BCL2, and increasing the

expression of Bax. Li et al. report that PCOS altered the

transcriptional profiling in oocytes and cumulus cells

compared with age-matched non-PCOS women.

Since the 1960s, researchers have been exploring the oocyte

metabolome to identify those with the greatest potential to

produce a successful pregnancy (Collado-Fernandez et al.,

2012). Harris et al. find that, during folliculogenesis, glucose is

utilized by intact follicles while pyruvate is the main metabolite

consumed by oocytes during folliculogenesis (Harris et al., 2007;

Harris et al., 2009; Collado-Fernandez et al., 2012). Amino acid is
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also crucial for follicular development, fertilization, and early

embryo development (Hong and Lee, 2007). Liu et al. analyze the

metabolome landscape during oocyte maturation and elucidate

the metabolic pathway of polyunsaturated fatty acids regulating

oocyte maturation (Li et al., 2020). The pivotal role of lipid

metabolism during oocyte maturation is reviewed by Liu et al.

PCOS may alter the metabolic profile in serum and follicular

fluid, contributing to an important etiology of low oocyte

competence. Liu et al. report that high levels of total

cholesterol (TC), triglycerides (TG), and low density

lipoprotein cholesterol (LDL-C) are associated with high

oocyte retrieval, but obesity is associated with lower oocyte

maturation rate, fertilization rate and good-quality embryo

rate, as well as a poor live birth outcome for women with

PCOS undergoing an unstimulated natural cycle. Huang et al.

analyze the follicular fluid of PCOS women using Raman spectra,

and find an association of these values with blastocyst rate and

clinical pregnancy rates. When Raman spectra is matched with

machine-learning algorithms, an accuracy of 90% and 74% in

evaluating oocyte competence and clinical pregnancy of PCOS

patients, respectively, can be achieved. Raman spectra are also

used to predict male reproductive capacity, as reviewed by Zhang

et al..

The WHO (World Health Organization) reported that

diabetes mellitus and obesity are two of the most frequent

metabolic diseases worldwide. (https://www.who.int/news-

room/fact-sheets/detail/diabetes; https://www.who.int/news-

room/fact-sheets/detail/obesity-and-overweight). Diabetes and

obesity cause many complications in health and adverse

effects on reproduction. For example, diabetes and obesity

lead to ovarian inflammation and low oocyte quality (Snider

and Wood, 2019). However, the mechanisms underlying ovarian

dysfunction due to diabetes or obesity are not completely

elucidated. Adamowski et a1. find that leptin signaling plays

an important role in the activation of NOD-like receptor protein

3 (NLRP3) inflammasome in the ovaries of obese mice. Ge et al.

report that the loss of PDK1 is a major cause of the abnormal

maturation of oocytes in diabetic mice. Furthermore, the

offspring of females with diabetes or obesity have a higher

risk of chronic diseases in adulthood, such as cardiovascular

diseases and metabolic disorders. Dong et al. report that the

offspring of mothers with type 2 diabetes and gestational diabetes

had a higher risk of malformations and death at birth.

Effects of extra-environmental
factors on reproduction

Environmental pollution is a great threat to public health,

including reproductive health (Malott and Luderer, 2021; Liu

et al., 2022). For example, heavy metals exposure has deleterious

effects on gametogenesis, resulting in impaired development in

early embryos, fetuses, and offspring (Rzymski et al., 2015;

Bhardwaj et al., 2021). Exposure to air pollution, for instance,

including particulate matter (PM), polychlorinated biphenyls

(PCBs), sulfur dioxide (SO2), and nitrogen dioxide (NO2),

leads to subfertility/infertility, low oocyte and sperm quality,

and imbalanced endocrine function (Kampa and Castanas, 2008;

Grippo et al., 2018). Nicotine, an important air pollutant from

smoking, induces abnormal folliculogenesis and autophagy of

ovarian cells at birth (Wang et al., 2018). Liu et al. report that the

damage to early folliculogenesis induced by nicotine could be

alleviated by high dosages of LH (luteinizing hormone) and FSH

(follicle-stimulating hormone). Synthetic chemical compounds

and some components of plants also have adverse effects on

reproduction. The deleterious effects of Bisphenol A (BPA) and

phthalates on germ cells and embryos are well known (Lehraiki

et al., 2009; Rajkumar et al., 2022). Niu et al. demonstrate that

hexestrol, a chemical compound used in livestock production

and aquaculture, disturbs oocyte maturation and embryo

development. Li et al. show that Aristolochic acid I reduces

oocyte maturation, embryo development, and mitochondrial

function of oocytes.

Assisted reproductive technologies (ARTs) are widely used in

humans, domestic animals, and animal models. ART has become

the most effective way to treat infertility/subfertility in humans,

and more than 5 million ART babies have been born since

1978 when the first ART child was born in Great Britain.

Thus, the safety of ARTs has to be considered. Clinical studies

indicate that ART increases the risk of low birth weight, preterm,

stillbirth, gestational diabetes, malformations in infants, and

chronic diseases (Chen and Heilbronn, 2017; Wijs et al.,

2021). The adverse effects of ART on offspring may start

during the manipulations to obtain germ cells and early

embryos. For example, exogenous hormones, used in ovarian

stimulation reduce oocyte quality and embryo developmental

potential (Marshall and Rivera, 2018). The culture medium

cannot completely mimic the in vivo environment and may

have adverse effects on germ cells and embryos. Oocyte

freezing damages cellular organelles and reduces embryo

developmental potential. Micromanipulations, such as ICSI,

may also have deleterious effects on embryo development

(Marshall and Rivera, 2018). Evidence from human and

animal models has proved that epigenetic modifications,

including DNA methylation, histone modifications, micro-

RNAs, RNA modifications, and chromosome structure, are

prone to be disturbed by ARTs during the maturation of

germ cells and early embryo development (Menezo and Elder,

2020) that could lead to aberrant fetal development (Liang et al.,

2013; Saenz-de-Juano et al., 2019). For example, Xu et al. report

that cryopreservation of sperm altered the miRNA profile, which

may play a role in the low blastocyst rate after fertilization

in mice.

It is a great challenge to minimize the adverse effects of ARTs

on germ cells, embryos, and offspring. Clinicians have used low-

dosage exogenous hormones and gonadotropin-releasing
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hormone (GnRH) antagonist-based ovarian stimulation protocol

to reduce their adverse effects (Wang et al., 2021). Chen et al.

report that a tip pipette, combined with a piezoelectric-assisted

manipulator, increases the survival rate of oocytes and embryos

after mRNAmicroinjection in mice. Chu et al. show that vitamin

C prevents the active DNA methylation of early mouse embryos

that takes place during in vitro culture. Hou et al. show that

minocycline hydrochloride alleviates the adverse effects of the

medium on early embryos by inhibiting Parp1 (Poly (ADP-

ribose) polymerase-1) in mice. Tang et al. present evidence that

glycine and melatonin could improve the embryo development

produced by vitrified oocytes of mice. Hao et al. report that

making a small hole in the zona pellucida of a morula stage

embryo improves the hatching rates in mice. More studies are

still required to reduce the deleterious effects of ARTs on germ

cells, embryos, and offspring.

Uterine endometrium and
implantation

Naturally, the incidence of successful pregnancies is no more

than 30% in each menstrual cycle. Approximately 75% of the lost

conceptions are caused by implantation failure (Zhang et al.,

2013). For successful implantation to take place, the blastocysts

have to acquire the implantation competency and the uterine

stroma needs to differentiate into epithelial-like secretory

decidual cells, known as decidualization, which is essential for

embryonic growth and invasion. Decidualization is also

important for the semi-allogenic embryo to escape from the

maternal immunological responses (Zhang et al., 2013). These

two events are hierarchically regulated by many factors,

including estrogen and progesterone (Zhang et al., 2013). Zhu

et al. report that monosodium urate enhances the transformation

of uterine stromal cells into decidual cells, and Zhu et al. find that

a higher expression of insulin-like growth factor 2 mRNA-

binding protein 3 (IGF2BP3) may induce spontaneous

abortion impairing decidualization. The crosstalk between

mother and fetus is also regulated by the chemokines, as

reviewed by Zhang et al.

Summary

In this Research Topic, a total of 31 papers were accepted

by reviewers and editors. Of these papers, seven contribute to

the understanding of gametogenesis; nine explore the effects

and the possible mechanisms of metabolic disorders including

PCOS, diabetes, obesity, and aging on germ cells and

offspring; four provide new knowledge on the adverse

effects of environmental pollution on germ cells and

embryos, and how to alleviate the deleterious effects; seven

investigate the adverse effects of ART on germ cells and

embryos and explore how to reduce them; and, finally, four

are focused on the maternal-fetal interface during

implantation. These papers greatly contribute to our

understanding of the mechanisms underlying the effect the

intra- and extra-environment have on reproduction and

encourage more studies on this topic in the future.
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