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Gastric cancer (GC) is one of the most common malignancies with a poor

prognosis. Immunotherapy has attracted much attention as a treatment for a

wide range of cancers, including GC. However, not all patients respond to

immunotherapy. New models are urgently needed to accurately predict the

prognosis and the efficacy of immunotherapy in patients with GC. Long

noncoding RNAs (lncRNAs) play crucial roles in the occurrence and

progression of cancers. Recent studies have identified a variety of

prognosis-related lncRNA signatures in multiple cancers. However, these

studies have some limitations. In the present study, we developed an

integrative analysis to screen risk prediction models using various feature

selection methods, such as univariate and multivariate Cox regression, least

absolute shrinkage and selection operator (LASSO), stepwise selection

techniques, subset selection, and a combination of the aforementioned

methods. We constructed a 9-lncRNA signature for predicting the prognosis

of GC patients in The Cancer Genome Atlas (TCGA) cohort using a machine

learning algorithm. After obtaining a risk model from the training cohort, we

further validated the model for predicting the prognosis in the test cohort, the

entire dataset and two external GEO datasets. Then we explored the roles of the

risk model in predicting immune cell infiltration, immunotherapeutic responses

and genomic mutations. The results revealed that this risk model held promise

for predicting the prognostic outcomes and immunotherapeutic responses of

GC patients. Our findings provide ideas for integrating multiple screening

methods for risk modeling through machine learning algorithms.

OPEN ACCESS

EDITED BY

Lu Xie,
Shanghai Institute for Biomedical and
Pharmaceutical Technologies, China

REVIEWED BY

Jianfeng Huang,
The First Affiliated Hospital of Nanchang
University, China
Bo Jia,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Liang Shang,
docshang@163.com
Ronghua Zhang,
zhangrh91@126.com

SPECIALTY SECTION

This article was submitted to
Epigenomics and Epigenetics,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 12 August 2022
ACCEPTED 26 October 2022
PUBLISHED 11 November 2022

CITATION

Zhao L, TengQ, Liu Y, ChenH, ChongW,
Du F, Xiao K, Sang Y, Ma C, Cui J, Shang L
and Zhang R (2022), Machine learning-
based identification of a novel
prognosis-related long noncoding RNA
signature for gastric cancer.
Front. Cell Dev. Biol. 10:1017767.
doi: 10.3389/fcell.2022.1017767

COPYRIGHT

© 2022 Zhao, Teng, Liu, Chen, Chong,
Du, Xiao, Sang, Ma, Cui, Shang and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 11 November 2022
DOI 10.3389/fcell.2022.1017767

https://www.frontiersin.org/articles/10.3389/fcell.2022.1017767/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1017767/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1017767/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1017767/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1017767/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.1017767&domain=pdf&date_stamp=2022-11-11
mailto:docshang@163.com
mailto:zhangrh91@126.com
https://doi.org/10.3389/fcell.2022.1017767
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.1017767


KEYWORDS

gastric cancer, long noncoding RNA, prognostic signature, immunotherapy, machine
learning algorithm

Introduction

Gastric cancer (GC) is the third leading cause of cancer-

related deaths worldwide and has a poor prognosis (Siegel et al.,

2022). Due to changes in dietary composition, work pressure,

Helicobacter pylori infection and other factors, the incidence of

GC is increasing and, and it is increasingly being detected in

younger individuals (Chandra et al., 2021). Systemic

chemotherapy, surgery, immunotherapy, and targeted

therapy have proven efficacy against GC (Joshi and

Badgwell, 2021). With the advancement of technology, some

progress has been achieved in the diagnosis and treatment

strategies for GC, but there was no significant improvement

in overall survival, particularly for patients with advanced GC.

Recent advances in immunotherapy have attracted considerable

attention to its use as a viable therapeutic option for several

cancers. Numerous studies have shown that immunotherapy

might significantly prolong both overall survival (OS) and

progression-free survival (PFS) in patients with GC (Ajani

et al., 2022). However, not all GC patients are sensitive to

immunotherapy (Kole et al., 2022). Therefore, novel prognostic

and diagnostic markers or models are urgently needed to

accurately predict the efficacy of immunotherapy in patients

with GC.

Emerging evidence has indicated that the specific tumor

microenvironment (TME) in GC tissues plays vital roles in

the occurrence and development of GC (Kono et al., 2020).

The TME is a complicated system, comprising a variety of

cellular components, including immune cells, fibroblasts,

nerve cells, and vascular endothelial cells. Cross-talk between

cancer cells and stromal cells in the TME ultimately shapes an

environment that promotes tumor growth and metastasis.

(Hinshaw and Shevde, 2019; Oya et al., 2020). GC cells recruit

tumor-associated macrophages (TAMs), myeloid derived

suppressor cells (MDSCs) and regulatory T cells (Tregs) by

secreting cytokines and chemokines to inhibit the T

lymphocyte immune response and promote the generation of

an immunosuppressive state in GC (Jiang et al., 2019; Derks et al.,

2020). Tregs have been shown to promote tumor escape from

cytotoxic immune responses, leading to the inactivation of tumor

immune effector cells. The accumulation of MDSCs in GC is

associated with immune checkpoint inhibitor resistance, and by

reducing the accumulation of MDSCs, the infiltration of CD8+

T cells in GCmight be increased, and further enhancing anti-PD-

1 antitumor efficacy (Zhou et al., 2022). Cells in the TME activate

and stimulate other cell types, creating an immunosuppressive

status that promotes tumor cells to escape from immune

surveillance and become resistant to tumor therapy (Oya

et al., 2020). Thus, further investigations of cellular

interactions in the TME are essential for the development of

novel cancer therapies.

Long noncoding RNAs (lncRNAs) are a group of noncoding

transcripts longer than 200 nucleotides, that play crucial roles in the

occurrence and progression of cancers (Bhan et al., 2017). LncRNAs

have been proven to be related to cancer development and immunity,

and they have attracted increasing attention as biomarkers for early

diagnosis and treatment, and for assessing drug resistance in GC

patients (Yuan et al., 2020). LncRNAs can regulate the expression of

genes related to the immune response and change the state of

immune cells in the TME, thus affecting the aggressiveness,

progression and prognosis of cancers. Therefore, further study of

the relationship between prognosis-related lncRNAs and cancer

immunity may help improve patient prognosis and identify novel

therapeutic targets. By analyzing public databases, recent studies have

identified many prognosis-related lncRNA signatures for cancers,

including GC (Liu et al., 2020; Ma et al., 2021; Huang et al., 2022a).

However, due to the particularity of The Cancer Genome Atlas

(TCGA) and other databases, these studies did not standardize the

clinical data obtained from the databases. For example, some tumor

node metastasis (TNM) staging in some papers was performed using

very old versions of the standards, and patients with distant

metastases were not excluded from the analysis. Therefore, clinical

datamust be preprocessed andmultiplemethods should be integrated

to obtain an accurate and effective prognostic model.

In this study, we performed a machine learning-based

integrative analysis using public TCGA datasets and randomly

divided all GC patients into training and test cohorts in a 1:

1 ratio after the normalization and standardization of the clinical

data. We manipulated the signature using various feature selection

methods, such as univariate and multivariate Cox regression, least

absolute shrinkage and selection operator (LASSO), stepwise

selection techniques, subset selection, and a combination of

above methods. We generated a 9-lncRNA signature for

predicting the prognosis of patients with GC using a machine

learning algorithm and explored the roles of the risk model in

predicting immune cell infiltration, immunotherapeutic responses

and genomic mutations. Our results indicated that this risk model

might be promising for predicting the prognostic outcomes and

immunotherapeutic responses of GC patients.

Materials and methods

Data collection and preprocessing from
public databases

Using datasets from TCGA and the Gene Expression Omnibus

(GEO), the differentially expressed genes (DEGs) between cancer
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tissues and adjacent normal tissues were identified. After careful

filtering, only the TCGA dataset containing both mRNA and

lncRNA expression data was considered. The RNA-sequencing

data obtained from GC patients were retrieved from TCGA

database (https://gdc.cancer.gov/). The corresponding clinical

information was downloaded from the Genomic Data Commons

(GDC) portal (https://portal.gdc.cancer.gov/) under the cohort

named “TCGA Stomach Cancer (STAD)”. The Fragments Per

Kilobase of transcript per Million mapped reads (FPKM) values

from TCGA were log2 normalized. After the collection of TCGA

clinical data from the GDC, 354 patients from TCGA database were

first randomly divided into training and test cohorts at a ratio of 1:

1 and patients with complete information on survival time and

survival statuswere selected for further analysis. TheTNMstaging of

the patients was standardized according to the eighth edition, while

patients whose TNM staging was performed using the fourth edition

were excluded since the staging criteria did not correspond with

those in the eighth edition. Patients with distant metastases (M1),

uncertain TNM staging (Tx/Nx), uncertain histologic grade (Gx)

and a survival time of 0 were also excluded from the analysis. The

stromal score, immune score and ESTIMATE score of each patient

were calculated (Yoshihara et al., 2013). Since the data were

downloaded from a publicly available database, the requirement

for ethical approval was waived for this study.

Establishment and validation of the risk
model

The potential prognostic genes were screened using the LASSO

algorithm (Dai et al., 2021), univariate and multivariate Cox

regression analyses, stepwise selection techniques, subset selection

techniques, and Kaplan-Meier analysis based on OS and a definition

of significance of p values < 0.05. By automatically tuning the

candidate prognosis-related signatures, we first designed a strategy,

named TCGA Biomarkers, that used univariate Cox regression,

LASSO, and multivariate Cox regression models to identify

candidate prognostic signatures, and then conducted DeepSelector

analysis, which took the common or union of the above various

independent feature selection methods by controlling the signature

size less thanmax size, e.g.,100, or greater than two (we also set default

priority in sequential order when conflicting choices occurred). Then,

we used the candidate signatures as input for the SubsetSelector

(subset selection via BESS) (Ozhan et al., 2021) and StepwiseSelector

(stepwise selection via stepAIC) (Jungk et al., 2019) engines and

finally harmonized both filtered biomarkers from SubsetSelector and

StepwiseSelector using a common or union strategy and finally

obtained candidate biomarkers for training multivariate Cox

regression analyses. During harmony processing, when conflicting

conditions occurred, we also considered sequential selections of

various methods, such as stepAIC as the first step, and BESS, and

DeepSelector or singular selector afterward. We also designed a

method named SumRank, which was used to calculate the voting

frequency according to all other calculated methods (counting the

frequency selected as amarker for each lncRNA, the selected number/

total method number), and we then used the top 10% of the lncRNAs

as the signature (Nematzadeh et al., 2019). The RobustRankAggreg

package in R software was also used to identify the lncRNA signatures

(Zhou et al., 2021). The potential prognostic lncRNAs identified using

TCGA Biomarkers strategy pipeline were entered into the

multivariate Cox regression analyses to identify a lncRNA

signature in the training cohort. Univariate Cox regression

analysis, multivariate Cox regression analysis, Kaplan-Meier

survival curve, area under the curve (AUC) values obtained from

the receiver operating characteristic (ROC) curves, Akaike’s

information criterion (AIC) and concordance index (C-index)

were used to filter the best risk model. The risk score of each

patient was calculated using the formula: risk score �
e(̂∑n

i�1(coef f icient(gene i)*expression(gene i))). In this formula,

“n”, “i”, and “coefficient” represent the number of selected lncRNAs,

lncRNA numbers, and the multivariate Cox regression coefficients,

respectively, and “expression” indicates the log2(FPKM+1) lncRNA

expression level. Based on the optimal ROC curve, patients in the

training cohort were divided into high- and low-risk groups. Decision

curve analysis (DCA), calibration curves, time-dependent ROC curve

analyses and Kaplan-Meier analysis were performed to evaluate the

prognostic value of the lncRNA signature in the training cohort using

the R packages “rmda”, “rms”, “survival”, “survivalROC”, and

“survmier”. The expression levels of the nine lncRNAs in the risk

model were visualized in a heatmap. The same formula and strategies

were repeated in the test cohort and the merged cohort to assess the

reliability of the lncRNA signature in predicting the prognosis.

Clinical significance of the risk model

The relationship between the risk scores and

clinicopathological characteristics of patients with GC in the

three cohorts was determined using the chi-square test. Kaplan-

Meier analysis was performed to determine the correlation

between the risk model and prognosis of GC patients. Time-

dependent ROC curves were constructed to test the accuracy of

the risk model in both cohorts using the R packages “timeROC”

and “survivalROC”. Univariate and multivariate analyses were

performed to determine whether the risk score was associated

with the prognosis of patients.

Functional enrichment analysis

The DEGs identified between the high- and low-risk groups in

the merged cohort were analyzed using the “limma” R package.

DEGs with a fold change (FC) > 1.2 and a Benjamini–Hochberg

adjusted p value < 0.05 were considered. Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set

Enrichment Analysis (GSEA) and WikiPathways analyses were
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performed to investigate the functions and pathways of the DEGs.

The GO and KEGG analyses were performed by using the

“clusterProfiler” R package. The hallmark gene sets of GSEA

were obtained from the Molecular Signatures Database (MSigDB

v7.5.1, https://www.gsea-msigdb.org/gsea/msigdb/). A

WikiPathways (https://www.wikipathways.org) analysis was

performed as previously described to assess metabolism and

signaling pathways (Martens et al., 2021).

Evaluation of immune cell infiltration

We explored the relationship between the risk score, immune cell

infiltration and immunotherapy efficacy by performing a quanTIseq

(http://icbi.at/quantiseq) analysis, a method used to quantify the

fractions of ten immune cell types from bulk RNA-sequencing data

(Finotello et al., 2019). The difference in the levels of infiltrating

immune cells between the high-risk and low-risk groups was

visualized using the R packages “pheatmap”, “corrplot”, “ggpubr”,

“ggplot2”, and “data.table”. The Tumor Immune Dysfunction and

Exclusion (TIDE) algorithmwas used as previously reported to further

investigate the relationship between the risk score and T-cell

dysfunction, (Jiang et al., 2018). We also explored the correlations

between the risk score and the PD-L1 expression [log2 (TPM +1)].

Tumor mutation burden

Tumor mutation burden (TMB) is a new biomarker currently

under investigation. The TMB data obtained fromGC patients were

downloaded from the TCGA database (https://tcga-data.nci.nih.

gov/tcga/). Using the “ggpubr”, “reshape2”, and “ggplot2”

packages in R software, the relationship between the risk score

and TMBwas analyzed and visualized. The TMB statuses of patients

in the high-risk group and low-risk group were obtained using the

“maftools” package. Kaplan-Meier analysis was performed to

analyze the differences in the survival of GC patients presenting

with different TMB statuses and risk scores.

Collection of clinical tissues and cell
samples and quantitative real-time
polymerase chain reaction

Sixteen pairs ofGC tissues and corresponding adjacent nontumor

tissues were collected from Shandong Provincial Hospital, which was

approved by the Ethics Committee of the hospital. Cells from two

human gastric cancer cell lines (MKN-45 and AGS) and one human

gastric epithelial cell line (GES-1) were also collected. Total RNA was

extracted from tissues or cells using TRIzol (Takara, Japan) according

to the manufacturer’s protocol. Complementary DNA (cDNA)

sequences were synthesized using a reverse transcription kit

(Yugong Biolabs, Cat:EG15133S). All primers used for qRT-PCR

designed and synthesized by GENEWIZ (Suzhou, China). The qRT-

PCR was performed using Taq SYBR Green qPCR Premix (Yugong

Biolabs, Cat:EG20117M) according to the manufacturer’s

instructions. GAPDH was used as an internal control.

Statistical analysis

The statistical analysis was conducted using R (version 4.1.0)

software. The chi-square test and t test were applied to analyze the

correlation between risk levels and clinicopathological

characteristics, respectively. The Wilcoxon rank-sum test and

Kruskal-Wallis test were used to evaluate the correlations of the

risk score with clinical factors and other evaluated factors. Survival

analyses were performed using the Kaplan-Meier method and the

log-rank test using the package “survminer” in R. Results with a p

value of <0.05 were considered statistically significant.

Results

Identification of a prognosis-related
lncRNA signature for gastric cancer
patients

The workflow for this study is shown in Figure 1. The TCGA

dataset containing both mRNA and lncRNA expression data was

considered, and the resulting 354 GC patients were first

randomly divided into training and test cohorts at a ratio of

1:1. After preprocessing from TCGA database, 250 patients with

GC (123 in the training cohort and 127 in the test cohort) with

complete information on survival time, survival status, and TNM

stage were selected for the survival analysis (Supplementary

Table S1). The training cohort was used to establish the risk

model. We performed a comprehensive analysis named TCGA

Biomarkers to identify prognosis-related lncRNA signatures

(Figure 2). Univariate Cox regression analyses, multivariate

Cox regression analyses, Kaplan-Meier survival curve, AUC

values of the ROC curves, and AIC values were applied to

assess the quality of various lncRNA combination models and

further optimize the lncRNA risk model. Finally, we found that

the risk model selected using the SumRank method was the best,

which comprised MIR1.1HG, LOH12CR2, LINC02975,

LOC100506405, ERCC8.AS1, LINC02763, LINC02985,

LINC00520, and LINC00567 (Supplementary Figure S1A).

Establishment and validation of the risk
model

We explored the correlation between the risk score and clinical

characteristics of the patients in the training cohort

(Supplementary Table S2) dividing the patients into high- and
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low-risk groups according to the best ROC curve. DCA was

performed, and the results revealed that the risk model had a

higher efficacy (Figure 3A). The multivariate regression analysis

suggested that the risk score was useful as an independent

prognostic index (Figure 3B). The Kaplan‒Meier survival

curves showed that the survival outcomes of patients in the

high-risk group were significantly worse than those in the low-

risk group (p < 0.0001) (Figure 3C). The calibration curves were

subsequently plotted to determine the accuracy of the nomogram

for OS at 1, 3 and 5 years (Figure 3D).We performed a ROC curve

analysis of different years to further validate the accuracy of the

risk model in predicting the survival outcome of patients with GC

and found that the lncRNA signature potentially represented a

prognostic marker for patients with GC. The AUCs obtained from

the model at 1 and 5 years were 0.85 and 0.92, respectively,

indicating that the risk model had sufficient efficacy

(Figure 3E). In addition, more patients died in the high-risk

group than in the low-risk group (Figure 3F). The expression

levels of the nine lncRNAs in the model were visualized using a

heatmap (Figure 3G). The formula and strategies applied in the

training cohort were applied independently in the test cohort and

merged dataset to evaluate the robustness of the lncRNA signature

FIGURE 1
Flow chart of this study.
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FIGURE 2
The performances of different signatures selected usingmultiple feature selectionmethods (the numbers in parentheses represent the number
of lncRNAs in the signature). (A)Univariate analysis (the red dotted line represents p < 0.05). (B)Multivariate analysis (the red dotted line represents p <
0.05). (C) Kaplan-Meier survival curve (the red dotted line represents p < 0.05). (D) AUC values of the ROC curves (the red and blue dotted lines
represent 0.75 and 0.5, respectively). (E) Akaike’s information criterion (AIC). (F) C-index of the logistic regression model (the red and blue
dotted lines represent 0.75 and 0.5, respectively).
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FIGURE 3
Identification of the prognostic signature in the training cohort. (A) Decision curve analysis (DCA) was conducted to confirm the superiority of
the risk score. (B)Multivariable analysis was conducted to validate the independent prognosis value of the model in the training cohort. (C) Kaplan-
MeierKaplan-Meier curves of the signature for predicting the overall survival (OS) of GC patients. (D) The calibration curves were constructed to
determine the accuracy of the nomogram for OS at 1, 3 and 5 years. (E) Time-dependent ROC curve analysis of the risk model in different years.
(F,G) The distribution of the expression of the nine lncRNAs in the high- and low-risk groups.
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in predicting the prognosis. The characteristics of the patients in

the two cohorts are shown in Supplementary Tables S3, S4. The

risk score was also proven to be an independent risk factor in the

validation group and the merged group in multivariate regression

analysis (Figure 4A,B). Patients in the high-risk groups also

revealed significantly worse OS than those in the low-risk

groups in the test cohort (p = 0.0035) and merged dataset (p =

0.0011) (Figure 4C,E). Then, we used time-dependent ROC curves

FIGURE 4
Validation of the risk model in the test cohort and merged cohort. (A,B) Multivariable analysis was conducted to validate the independent
prognostic value of the model in the test and merged cohorts. (C,E) Kaplan-MeierKaplan-Meier curves of the lncRNA signature for predicting OS in
the test and merged cohorts. (D,F) Time-dependent ROC curve analysis of the risk model in the test and merged cohorts.
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to test the accuracy of the risk model in both cohorts and observed

that our risk model performed well in both groups (Figure 4D,F).

Based on these results, this risk model was effective at predicting

survival outcomes of patients with GC.

Correlations between the risk score and
clinicopathological characteristics

We also explored the relationship between the risk score and

clinicopathological characteristics of GC patients in the training,

test and merged cohorts (Table 1). In the training cohort, the

patients with high-risk scores were significantly associated with

more advanced histologic grade (p = 0.001), higher ESTIMATE

scores (p < 0.001), higher immune (p = 0.022) and stromal (p <
0.001) scores and a worse prognosis (p = 0.012) than those with

low-risk scores. In the test cohort, the patients with high-risk

scores were significantly associated with a more advanced TNM

stage (p = 0.035), higher ESTIMATE scores (p = 0.013) and

immune scores and a worse prognosis (p < 0.001) than those with

low-risk scores. As the number of patients increased, the patients

with high-risk scores in the merged cohort had a more advanced

histologic grade (p = 0.014) and TNM stage (p = 0.027), higher

ESTIMATE scores (p < 0.001), higher immune (p < 0.001) and

stromal (p = 0.001) scores and a worse prognosis (p = 0.009) than

those with low-risk scores. As previously reported, favorable OS

was observed for patients with high stromal scores and immune

scores using the stromal-immune score-based gene signature

(Wang et al., 2019). The histologic grade and TNM stage are

commonly used as clinical indicators of the prognosis of patients

with GC. These results indicated that the risk model was related

to the immune status of patients and might be used as a preferred

prognostic biomarker in all patients.

Clinical significance of the risk model

After confirming the relationship between the risk score and

prognosis, we explored the clinical importance of the risk model

in the merged cohort. The association of risk scores with

TABLE 1 Correlations between risk score and clinicopathologic characteristics of GC patients.

Characteristic Risk score (training cohort, n = 123) Risk score (test cohort, n = 127) Risk score (merge cohort, n = 250)

High
(%) n =
36

Low (%)
n =
87

p-value High
(%) n =
42

Low (%)
n =
85

p-value High
(%) n =
122

Low (%)
n =
128

p-value

Age

< 60 years 14 (39%) 30 (34%) 0.6 11 (26%) 26 (31%) 0.6 37 (30%) 44 (34%) 0.5

≥ 60 years 22 (61%) 57 (66%) 31 (74%) 59 (69%) 85 (70%) 84 (66%)

Gender

male 25 (69%) 59 (68%) 0.9 24 (57%) 51 (60%) 0.8 82 (67%) 77 (60%) 0.2

female 11 (31%) 28 (32%) 18 (43%) 34 (40%) 40 (33%) 51 (40%)

T stage

T 1–2 6 (17%) 26 (30%) 0.13 7 (17%) 23 (27%) 0.2 25 (20%) 37 (29%) 0.12

T 3–4 30 (83%) 61 (70%) 35 (83%) 62 (73%) 97 (80%) 91 (71%)

N stage

N0 14 (39%) 27 (31%) 0.4 6 (14%) 23 (27%) 0.11 29 (24%) 41 (32%) 0.15

N1-3 22 (61%) 60 (69%) 36 (86%) 62 (73%) 93 (76%) 87 (68%)

Tumor stage

IA-IIA 11 (31%) 25 (29%) 0.8 6 (14%) 27 (32%) 0.035 25 (20%) 44 (34%) 0.014

IIB-IV 25 (69%) 62 (71%) 36 (86%) 58 (68%) 97 (80%) 84 (66%)

Histologic grade

G1 0 (0%) 3 (3.4%) 0.001 1 (2.4%) 0 (0%) 0.2 2 (1.6%) 2 (1.6%) 0.027

G2 6 (17%) 41 (47%) 10 (24%) 28 (33%) 32 (26%) 53 (41%)

G3 30 (83%) 43 (49%) 31 (74%) 57 (67%) 88 (72%) 73 (57%)

Estimate score 2,065 (1,312,
2,886)

821 (−279,
2,041)

<0.001 1,583 (817,
2,756)

946 (−62,
1,964)

0.013 1,627 (817,
2,727)

754 (−176,
1,897)

<0.001

Immune score 1,481 (946, 1,985) 912 (365, 1,588) 0.022 1,520 (730,
1,815)

986 (407,
1,467)

0.010 1,455 (664,
1,867)

831 (267, 1,387) <0.001

Stromal score 757 (160, 1,008) −38 (−688, 341) <0.001 403 (−202, 842) 51 (−556, 519) 0.055 271 (-208, 866) −34 (−659, 518) 0.001

Status 9 (25%) 6 (6.9%) 0.012 14 (33%) 8 (9.4%) <0.001 31 (25%) 16 (12%) 0.009
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clinicopathological characteristics of patients with GC was

assessed by comparing the score distributions among different

age, gender, T stage, N stage, tumor stage, histologic grade, and

survival status groups (Supplementary Figure S1C–H). Patients

with GC presenting an advanced TNM stage (p = 0.0047) and

histologic grade (p = 0.0073) had significantly higher risk scores.

Additionally, the surviving patients had lower risk scores than the

dead patients (p = 0.0011). Therefore, the risk score calculated

using our risk model indeed served as a reliable prognostic

predictor in patients with GC.

Performance of the selection strategies

We randomly divided TCGA cohort at a 1:1 ratio with

1000 replicates to verify the performance of the 11 selection

strategiesWe compared the effectiveness of different methods for

predicting patient outcomes. Most of the risk models screened

using the univariate method were composed of more than

50 lncRNAs, which lacked accuracy. Therefore, this method

was not considered in the performance comparison. SumRank

was more effective at predicting the prognosis than the other

methods except the univariate method (Supplementary Figure

S2A,B). Then we also compared other metrics of model

performance, such as AIC, C-index and p value of the

multivariate Cox regression analysis of the risk models in the

training, test and merged cohorts. The SumRank method had the

most stable performance, consistently ranking at the top

(Supplementary Figure S2C–H).

Functional enrichment analysis in the
merged cohort

GO, KEGG, GSEA, and WikiPathways analyses were

performed using gene expression data from TCGA cohort

to better understand the molecular processes occurring in the

high-risk and low-risk groups. GO annotations and KEGG

enrichment analysis showed that the DEGs in the high-risk

group were mainly enriched in immune-related pathways such

as “immune receptor activity”, “cytokine binding”, “cytokine

receptor activity”, “chemokine signaling pathway”, “cytokine-

cytokine receptor interaction”, “primary immunodeficiency”,

“Th17-cell differentiation”, “B-cell receptor signaling

pathway” and “natural killer cell mediated cytotoxicity”,

and unlike those in the low-risk group (Figure 5A,B,

Supplementary Tables S5 ,S6). In addition, many cancer-

related processes were enriched, such as “integrin binding”,

“fibronectin binding”, “complement and coagulation

cascades”, “cell adhesion molecules” and “NF-kappa B

signaling pathway”. GSEA of tumor hallmarks in the

MSigDB database revealed that the high-risk group also

showed an enrichment in common signaling pathways,

including “epithelial-mesenchymal transition (EMT)”,

“hypoxia”, “KRAS signaling”, and “p53 pathway”, and

immune-related pathways, including “IL-2-

STAT5 signaling”, “inflammatory response”, “interferon

gamma response”, and “TNF-α signaling via NF-κB”
(Figure 5C and Supplementary Table S7). The

WikiPathways analysis showed the enrichment of metabolic

pathways, including “focal adhesion”, “PI3K-Akt-mTOR

signaling pathway”, “Ras signaling”, and “VEGFA-VEGFR2

signaling pathway” (Figure 5D and Supplementary Table S8).

The cnetplots show the relationship between tumor hallmarks

and metabolic pathways (Figure 6A,B). The difference in the

enrichment of nine cancer-related pathways between the low-

and high-risk groups was also assessed (Supplementary Figure

S3A–I). These results indicated that the high-risk group

exhibited significant enrichment of signaling pathways

associated with cancer development and tumor immunity.

This finding provides further understanding of the

functional roles and immunomodulatory mechanisms of the

lncRNA signature.

Correlations between the risk score,
immune cell infiltration, and
immunotherapy efficacy

According to the results described above, the risk model was

closely related to immune pathways. Then, we explored the

relationship between this model and immune cell infiltration

and immunotherapy efficacy based on the gene expression data

obtained from the merged cohort. The immune cell infiltration

status was calculated by performing a quanTIseq analysis

(Supplementary Table S9). Figure 7A shows the infiltration of

10 main immune cell types in different risk score groups.

Figure 7B shows the correlation among 10 immune cell types,

and the results indicated that the levels of immunosuppressive

M2-type macrophages had a positive correlation with the levels

of Tregs and a negative correlation with the levels of M1-type

macrophages. Then, we measured the levels of infiltration of

10 immune cell types in the high-risk group and the low-risk

group, and the results showed that the levels of M2-type

macrophage and Treg infiltration in the high-risk group were

much higher than those in the low-risk group (Figure 7C). The

correlation between the levels of these two immune cell types and

the risk score was measured, and the results revealed that the

levels of M2-type macrophages and Tregs correlated positively

with the risk score (Figure 7D,E). Based on these results, the

status of the tumor immune microenvironment was

immunosuppressive in the high-risk group unlike in the low-

risk group, which was closely related to the effect of tumor

immunotherapy. Furthermore, we measured the T-cell

dysfunction scores in the high-risk and low-risk groups using

the TIDE algorithm and found that the high-risk group exhibited
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FIGURE 5
Functional enrichment analysis of the risk model. (A,B) Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis. (C) Gene set enrichment analysis (GSEA) in the MSigDB database of tumor hallmarks. (D) WikiPathways analysis.
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FIGURE 6
The cnetplots show the relationship between tumor hallmarks and metabolic pathways (A,B).
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FIGURE 7
Correlation between the risk model and the immune status of the tumor microenvironment (TME). (A) Heatmap showing the distribution of
clinical features and immune cell infiltration. (B) Correlation between 10 tumor infiltrating immune cell types (red represents a negative correlation
between two immune cell types and blue represents a positive correlation between two immune cell types; the larger the shape of the point, the
stronger the correlation). (C) The distribution of 10 tumor infiltrating immune cell types in the high- and low-risk groups (**p < 0.01). Correlation
between the risk score and infiltrating levels ofM2-typemacrophages (D) and Tregs (E). (F) The T-cell dysfunction scores in the high-risk and low-risk
groups calculated using the TIDE algorithm. (G) The expression of PD-L1 in the high- and low-risk groups.
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higher levels of T-cell dysfunction (p = 0.00015, Figure 7F). In

addition, PD-L1 was expressed at much higher levels in the high-

risk group was than in the low-risk group (p = 0.000074,

Figure 7G), which indicated a potentially better anti-PD-1/

PD-L1 therapeutic response in the high-risk group.

Correlation between the risk model and
tumor mutation burden

We performed a tumor mutation analysis to assess the

difference in the TMB between the high- and low-risk groups

FIGURE 8
Correlation between the risk score and tumor mutation burden (TMB). Waterfall plot displaying the distribution of the top 20 mutated genes
with the highest mutation frequency in the high- (A) and low-risk (B) groups. (C) Comparisons of the mutation status of TTN, TP53, PEG3, and SACS.
(D) Kaplan-Meier curve analysis of the OS between the high-TMB group and the low-TMB group. (E) Kaplan-Meier curve analysis of OS of patients
with low- or high-risk scores in the high-TMB group and low-TMB group.

Frontiers in Cell and Developmental Biology frontiersin.org14

Zhao et al. 10.3389/fcell.2022.1017767

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1017767


using “maftools” in R (Supplementary Tables S10, S11. The waterfall

plot showed the distribution of the top 20 mutated genes with the

highest mutation frequency in the two groups (Figure 8A,B). TTN

and TP53 were the genes with the highest mutation frequency in the

two groups of patients, and the low-risk group exhibited a trend

toward a higher mutation frequency than the high-risk group, but

the difference was not significant (Figure 8C). Other commonly

mutated genes, such as PEG3 and SACS, were significantly more

frequently mutated in the low-risk group than in the high-risk

group.We subsequently analyzed the relationship between the TMB

and the prognosis of patients and found that patients with a lower

TMB had poorer survival outcomes (Figure 8D). Then, we explored

the relationship between the TMB combined with the risk score and

prognosis. Intriguingly, TMB-high patients with low-risk scores had

the best survival outcomes, and TMB-low patients with high-risk

scores had the worst survival outcomes (Figure 8E), indicating that

the TMB combined with the risk model might be applicable for

predicting the prognosis.

FIGURE 9
External validation of the risk model. Kaplan-Meier curves of the lncRNA signature for predicting the OS of patients in the GSE15459 (A) and
GSE62254 (C) datasets. Time-dependent ROC curves of the signature in the GSE15459 (B) and GSE62254 (D) datasets.
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FIGURE 10
Evaluation of the expression of nine lncRNAs in the risk model. (A–I) Comparison of the expression levels of the nine lncRNAs between tumor
tissues and normal tissues in TCGA datasets (Mann-Whitney U test). (J–R) The expression levels of the nine lncRNAs in 16 paired GC samples
detected using qRT-PCR (paired t test). (S) The expression levels of the nine lncRNAs in two human gastric cancer cell lines (MKN-45 and AGS) and
one human gastric epithelial cell (GES-1) (Mann-Whitney U test, ***: p < 0.001).
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External validation and evaluation of the
expression of nine lncRNAs

The formula used in the training cohort from TCGA

datasets was applied independently to patients in two GEO

datasets (GSE15459 and GSE62254) to further verify the

effectiveness of the model. As expected, patients in the high-

risk group had a worse prognosis than those in the low-risk

group in both GEO datasets (p < 0.0001) (Figure 9A,C). The

results from the time-dependent ROC curves showed that

the 5-year average AUC values were 0.68 and 0.62

(Figure 9B,D), respectively, indicating that the risk model

performed well in both datasets. Thus, the nine lncRNAs in

our risk model were associated with the survival outcomes of

patients with GC. Then, we evaluated the expression levels

of these lncRNAs in TCGA datasets, tissues and cell lines.

Six of nine lncRNAs (MIR1.1HG, LOH12CR2,

LOC100506405, ERCC8.AS1, LINC00520, and

LINC00567) were differentially expressed between tumor

tissues and normal tissues in TCGA datasets (Figures

10A–I). We also collected 16 paired GC samples and

validated the expression levels of these nine lncRNAs

using qRT-PCR (Figure 10J–R). All primers used in the

qRT-PCR assay are listed in Supplementary Table S12.

MIR1.1HG and LOH12CR2 were expressed at higher

levels in normal tissues than in cancer tissues, while the

expression levels of ERCC8.AS1 and LINC00520 in tumor

tissues were significantly higher than those in paired

adjacent normal tissues, which showed similar expression

trends to TCGA datasets. In addition, we tested the

expression levels in two human gastric cancer cell lines

(MKN-45 and AGS) and one human gastric epithelial cell

line (GES-1). Similar trends for the expression of

MIR1.1HG, LOH12CR2, and ERCC8.AS1 and

LINC00520 were observed (Figure 10S). Interestingly, we

also observed that LINC02975 was expressed at

significantly higher levels in cancer cell lines than in the

gastric epithelial cell line, while only a similar

expression trend was observed in TCGA dataset, but the

p value was not statistically significant. Based on these

results, MIR1.1HG, LOH12CR2, ERCC8.AS1, and

LINC00520 might exert vital functions in the

development of GC.

Discussion

GC is one of the most common malignant tumors of the

digestive system and has a poor prognosis, despite the

improvements in treatment strategies. Due to the heterogeneity

of GC, developing a prognostic assessment system to guide

individualized clinical treatment remains a challenge. Numerous

studies have shown that the interaction between tumor cells and

immune cells in the TME plays crucial roles in the occurrence and

development of GC, immune escape and chemotherapy resistance

(Rojas et al., 2020). As important immune regulators, lncRNAs

might serve as potential biomarkers and therapeutic targets. Several

previous studies have generated different lncRNA signatures to

predict survival and immune features in GC (Liang et al., 2021;

Ma et al., 2021; Xin et al., 2021; Nie et al., 2022; Wang et al., 2022),

but these studies still have some issues that should be discussed. For

example, the clinical data obtained from the databases should be

preprocessed and standardized since some studies utilize TNM

staging methods based on very old versions of the standards;

patients with distant metastases should be excluded from the

analysis since these data have a significant impact on the

prognostic prediction. These studies often generated the

signatures using various feature selection methods, but the

authors did not clearly detemine which one was more

advantageous (Li et al., 2020). In the present study, we developed

an integrative pipeline to construct a prognosis-related lncRNA

signature using a machine learning algorithm and verified the

performance of the 11 selection strategies for 1000 times

randomly. The advantage of integrative procedures is that they fit

a model with consensus prognostic performance based on multiple

feature selection methods using a machine learning algorithm,

which may further reduce the dimension of variables and

simplify the model to facilitate its translational (Liu Z. et al.,

2022). We developed a process for the first time to verify the

performance of the different selection strategies and compared

multiple metrics of model performance, such as AIC, C-index

and p value of multivariate a Cox regression analysis of the risk

models, whichwould provide a reference for the evaluation ofmodel

effectiveness. Additionally, some lncRNA models reported

previously lacked the necessary validation in independent

cohorts. Therefore, prognostic markers of GC must be

established by screening suitable methods for generating models

and standardizing clinical data.

In this study, clinical data were first standardized and screened,

and patients were divided into the independent training set and

validation set at a 1:1 ratio. Then, we eliminated the data obtained

from unsuitable patients for analysis. First, we used machine

learning to develop a risk score and integrated 11 feature

selection methods, including univariate and multivariate Cox

regression, LASSO, stepAIC, subset selection, the

RobustRankAggreg method, the SumRank method and a

combination of the above methods, using data obtained from the

training cohort. Then, we found that the risk model selected by the

SumRank method was the best according to the univariate Cox

regression analysis, multivariate Cox regression analysis, Kaplan-

Meier survival curve, AUC values of the ROC curves and AIC. Nine

prognosis-related lncRNAs (MIR1.1HG, LOH12CR2, LINC02975,

LOC100506405, ERCC8.AS1, LINC02763, LINC02985,

LINC00520, and LINC00567) were selected to establish the risk

model. Among these lncRNAs, LOH12CR2, ERCC8.AS1,

LINC02985, LINC00520, and LINC00567 have been previously
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demonstrated to exert crucial roles in the progression of various

tumors, including GC, while others were reported for the first time

(Luan et al., 2020; Lina, 2021; Rothzerg et al., 2021; Tseng et al., 2021;

Liu B. et al., 2022). To test the efficacy of the model, we divided

patients into a high-risk group and a low-risk group according to the

ROC curve. Then, we performed a survival analysis and found that

patients in the low-risk group had better survival outcomes than the

high-risk group of patients in the training cohort. DCA and ROC

curve analysis were conducted to validate the efficacy and accuracy

of the risk model. The results demonstrated that the risk model

could be used as a promising prognostic biomarker in GC patients.

The selection methods used in the training cohort were applied

independently to the test andmerged datasets and two external GEO

datasets to verify the stability of the risk model in the prognostic

prediction. The results showed that the risk model was effective at

predicting survival outcomes. We also explored the correlations

between the risk score and clinicopathological characteristics in the

three cohorts and found positive correlations between the risk score

and histologic grade, clinical stage, ESTIMATE score, immune score

and stromal score, indicating the essential roles of the components of

the lncRNA signature in GC progression. The performance of the

risk model improved as the number of patients in the cohort

increased. These results strongly suggested that our risk model

could be used as a stable predictor of prognosis in GC patients.

This result also suggested that our model building method was

particularly suitable for diseases with few databases.

Numerous studies have shown that immune checkpoints and

the immune cell infiltration status are important factors affecting the

prognosis and immunotherapy effectiveness of cancers, including

GC (Kono et al., 2020; Puliga et al., 2021; Huang et al., 2022b). We

performed functional enrichment analyses of the merged cohort to

better understand the immunomodulatory mechanisms of the

components of the lncRNA signature. Several established cancer-

related pathways and hallmarks, including the “NF-kappa B

signaling pathway”, “EMT”, “hypoxia”, “KRAS signaling”, and

“p53 pathway”, were enriched in the high-risk group, indicating

the internal regulatory mechanisms of the components of the

lncRNA signature in the progression and metastasis of GC. We

also observed that the terms correlated with many immune-related

pathways, such as “cytokine-cytokine receptor interaction”,

“primary immunodeficiency”, “Th17-cell differentiation”, “B-cell

receptor signaling pathway”, and “natural killer cell mediated

cytotoxicity”. In addition, several metabolic pathways, including

“focal adhesion”, “PI3K-Akt-mTOR signaling pathway”, “Ras

signaling”, and “VEGFA-VEGFR2 signaling pathway”, were also

enriched in the high-risk group. Many of these signaling pathways

have been reported to play an important role in regulating the

remodeling of the tumor immune microenvironment (Zhou et al.,

2019; Secker and Harvey, 2021). Then, we explored the relationship

between the risk model, immune cell infiltration and

immunotherapy efficacy. We found that the TME in the high-

risk group was immunosuppressive, with a large number of

infiltrating M2-type macrophages and Tregs. Additionally, TIDE

analysis showed a higher incidence of T-cell dysfunction and higher

expression of PD-L1 in the high-risk group. Many studies have

revealed that M2-type macrophages suppress the cell-mediated

immune response and induce an immunosuppressive TME by

recruiting Tregs. Therefore, these lncRNAs may affect tumor

growth, metastasis and the response to immunotherapy by

regulating the status of the tumor immune microenvironment.

Recent studies have demonstrated that the TMB is emerging as a

predictive biomarker for the response to immune checkpoint

blockade (Chan et al., 2019; Jardim et al., 2021). We assessed the

correlation between the risk score and TMB and found that many

commonmutated genes were significantly more frequently mutated

in the low-risk group than in the high-risk group. Additionally,

TMB-high patients with low-risk scores had the best survival

outcomes and TMB-low patients with high-risk scores had the

worst survival outcomes, indicating that using the TMB level

combined with the risk model might be a better approach for

predicting the prognosis than the use of either of these indicators

alone. Taken together, the data suggest that the lncRNAs identified

in our risk model may affect the infiltration and differentiation of

immune cells by participating in specific signaling pathways of GC,

thus affecting the TME status and the responses to immunotherapy.

We evaluated the expression levels of these nine lncRNAs in TCGA

datasets, clinical tissues and cell lines to further verify the

effectiveness of the model and identify the most valuable

lncRNAs. The trends in the expression of four lncRNAs

(MIR1.1HG, LOH12CR2, ERCC8.AS1, and LINC00520) in

TCGA datasets, clinical specimens and cell lines were highly

consistent, indicating that these four lncRNAs might exert a

more important role in the development of GC. Future

experiments should be performed to explore the biological

functions of these lncRNAs.

In this study, we used machine learning to develop an

integrative analysis for screening risk prediction models using

multiple feature selection methods. Although there are many

methods that can be used to generate risk models based on

lncRNA expression, few studies have standardized the clinical

data. Through this study, we proposed a new risk model

prediction scheme and preliminarily verified its effectiveness and

accuracy. After establishing the risk model using data from the

training cohort, we further validated the model for predicting the

prognosis in the test cohort, full dataset and two external GEO

datasets. The risk model was also proven to exert a crucial function

in predicting the immune cell infiltration and immunotherapeutic

responses of GC patients. Despite the positive findings, our study

still has several limitations. First, all data and specimens used in this

study were obtained retrospectively, and a prospective multicenter

cohort of GC patients undergoing immunotherapy is needed to

validate the prognostic and predictive utility of this model. Second,

we failed to obtain larger amounts of data regarding both mRNA

and lncRNA expression and patient clinical data in other databases.

Some clinical data and molecular traits were not adequate, which

might affect the associations between the risk model and clinical
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variables. In addition, some lncRNAswere reported for the first time

in this study, the roles of most lncRNAs in GC remain unknown,

and the molecular mechanisms of these lncRNAs require further

experimental verification in vivo and in vitro.

In summary, we generated a novel prognosis-related

lncRNA signature for predicting the prognosis of GC

patients. Our findings provide ideas for integrating multiple

screening methods for risk modeling through machine

learning.
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SUPPLEMENTARY FIGURE S1
(A) The forestmap shows the nine lncRNAs identified in the risk model.
(B–H) Clinical significance of the risk model in the merged cohort. (B)
Age. (C)Gender. (D) T stage. (E)N stage. (F) Tumor stage. (G)Histologic
grade. (H) Survival status.

SUPPLEMENTARY FIGURE S2
The performance of the 11 selection methods. (A) Number of tries
with a p value < 0.05 in relation to prognosis among
1000 randomized tries in the training, test and merged cohorts. (B)
Number of tries with p value < 0.05 in the training, test, and merged
groups simultaneously associated with prognosis among
1000 randomized tries. The distribution of AIC of the 11 selection
methods in the training (C), test (D) and merged (E) cohorts. The
distribution of C-index of the 11 selection methods in the training (F),
test (G) and merged (H) cohorts. The distribution of p values of
multivariate Cox regression of the 11 selectionmethods in the training
(I), test (J), and merged (K) cohorts.

SUPPLEMENTARY FIGURE S3
(A–I) The enrichment of nine cancer-related pathways between the low-
and high-risk groups in the merged cohort.
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