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Cytokinesis is required to physically cleave a cell into two daughters at the end

of mitosis. Decades of research have led to a comprehensive understanding of

the core cytokinesis machinery and how it is regulated in animal cells, however

this knowledge was generated using single cells cultured in vitro, or in early

embryos before tissues develop. This raises the question of how cytokinesis is

regulated in diverse animal cell types and developmental contexts. Recent

studies of distinct cell types in the same organism or in similar cell types from

different organisms have revealed striking differences in how cytokinesis is

regulated, which includes different threshold requirements for the structural

components and the mechanisms that regulate them. In this review, we

highlight these differences with an emphasis on pathways that are

independent of the mitotic spindle, and operate through signals associated

with the cortex, kinetochores, or chromatin.
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Introduction

Overview of cytokinesis in animal cells

Cytokinesis must occur with high fidelity to prevent pathologies, and multiple

pathways create a robust system to accommodate perturbations. While the relative

role of these pathways likely varies with cell fate, ploidy and size, we lack knowledge

of how they function in most cell types and tissues. Since several reviews describe the core

cytokinesis machinery in depth, we will emphasize differences in cytokinesis among

animal cell types (e.g., Green et al., 2012; Basant and Glotzer, 2018; Leite et al., 2019;

Pintard and Bowerman, 2019; Pollard and O’Shaughnessy, 2019; Nguyen and Robinson,

2020; Sugioka, 2022).

Cytokinesis occurs by the ingression of an actomyosin ring that constricts to pinch in

the membrane (Figure 1A). The anaphase spindle provides cues for RhoA-dependent ring

assembly in the equatorial plane (Figure 1B and Figure 2A; Rappaport, 1986; Bement et al.,

2005). RhoA-GDP is inactive, while RhoA-GTP binds to effectors including formins and

Rho-kinase (ROCK) to generate linear actomyosin filaments (Figure 1B; Piekny et al.,

2005; Green et al., 2012). The GTPase activating protein (GAP) MP-GAP (CeRGA-3/4)
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FIGURE 1
The molecular regulation of ring assembly and constriction. (A) The cartoon schematic shows a cell undergoing mitosis. Chromosome
condensation and nuclear envelope breakdown occur during prophase. Inmetaphase, centrosomes (black circles) form a bipolar spindle (black) that
aligns the sister chromatids (blue). During anaphase, the central spindle forms, consisting of anti-parallel bundled microtubules (red). A contractile
ring (green) assembles between the segregating chromosomes and in a plane that bisects the central spindle. During telophase, the ring
constricts to divide the cytosol, and the nuclear membrane reassembles. After the ring ingresses, a midbody forms that controls abscission to
separate the two daughter cells. (B) Multiple proteins regulate cytokinesis as indicated by the arrows (solid lines are established interactions, while
dashed lines are hypothetical). These pathways culminate in the assembly and constriction of an actomyosin ring (cartoon cell, ring in green). To the
right, another cell shows the location of polar, branched F-actin (red branches) and linear F-actin (red lines) during cytokinesis. Font colors indicate
whether studies were performed inC. elegans (blue), human cells and/orD.melanogaster (orange), or all three (black). (C)Cartoon schematics show
cells undergoing symmetric division (top left), where two daughter cells of equal sizes are generated, and an asymmetric division (bottom left)
forming daughter cells of different sizes. In either type of division, the ring can ingress symmetrically (top right) or asymmetrically (bottom right)
where there is more ‘pull’, from one side of the ring.
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globally inactivates RhoA by stimulating GTP hydrolysis, while

the guanine nucleotide exchange factor (GEF) Ect2 (CeECT-2,

DmPbl) activates RhoA by exchanging GDP for GTP (Figure 1B;

Tatsumoto et al., 1999; Yuce et al., 2005; Zanin et al., 2013).

Ect2 activity is spatiotemporally controlled by centralspindlin

(Cyk4/MgcRacGAP, CeCYK-4, DmRacGAP50C and MKLP1/

KIF23, CeZEN-4, DmPav), which bundles microtubules to

form the central spindle during anaphase (Mishima et al.,

2002; Yuce et al., 2005; Hara et al., 2006; Niiya et al., 2006).

Cyk4-binding recruits Ect2 to the central spindle (Figure 1B;

Yuce et al., 2005; Petronczki et al., 2007; Wolfe et al., 2009).

Cyk4 also requires Plk1 phosphorylation for Ect2-binding, and

the loss or inhibition of Plk1 or Cyk4, and/or blocking

Cyk4 phosphorylation prevents ring assembly and

phenocopies Ect2 depletion (Somers and Saint, 2003; Zhao

and Fang, 2005; Burkard et al., 2007; Miller and Bement,

2009; Wolfe et al., 2009; Gomez-Cavazos et al., 2020). Plk1-

phosphorylation could reduce the affinity of centralspindlin for

FIGURE 2
An overview of the mechanisms regulating cytokinesis. (A) A cartoon cell shows the spindle components relative to the overlying cortex in late
anaphase/early telophase. (B) A similarly staged cell shows the relative locations of the chromatin, kinetochores, and cortex. (C) All of the key
components from (A) and (B) are shown together in a one cell, which work together to ensure successful cytokinesis (Ran-free importins in dark
orange, Ran-GTP in yellow, scale below). (D) Cartoons show how in small cells or in cells with high ploidy, Ran-GTP could restrict cortical
importins, which only reach sufficient levels to recruit anillin to the equatorial cortex during anaphase as a dominant mechanism to control ring
positioning. (E)Cartoons show how in large cells or in cells with low ploidy, Ran-GTPmay not reach the cortex and importins would be able to recruit
anillin uniformly to the cortex in metaphase and anaphase. These cells would require other mechanisms to control ring positioning. The legend
indicates the relevant components for all cells (A–E).

Frontiers in Cell and Developmental Biology frontiersin.org03

Ozugergin and Piekny 10.3389/fcell.2022.1007614

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1007614


microtubules, causing its release to the overlying membrane

where it activates Ect2 and is regulated by Aurora B kinase

(Petronczki et al., 2007; Wolfe et al., 2009; Frenette et al., 2012;

Lekomtsev et al., 2012; Adriaans et al., 2019). RhoA-GTP also

recruits anillin (CeANI-1), which crosslinks F-actin and myosin

with phospholipids for ring positioning, and forms complexes

with septins to facilitate ingression (Figure 1B; Piekny and

Maddox, 2010; Carim et al., 2020). Anillin also feeds back to

facilitate RhoA-GTP effector binding (Budnar et al., 2019). As

linear filaments are generated in the equatorial plane, their

alignment is facilitated by cortical flow and/or crosslinkers in

theC. elegans zygote (Reymann et al., 2016; Khaliullin et al., 2018;

Leite et al., 2020). Constriction then occurs by the myosin-

dependent binding and/or sliding of actin filaments (e.g., Ma

et al., 2012; Osorio et al., 2019). In addition, a hypothesis paper

proposed that anillin-septin membrane microdomains are shed

from the ring to relieve tension and mediate ring closure (Carim

et al., 2020).

Despite our extensive knowledge of cytokinesis, studies

suggest that the core structural components and their

regulators do not play the same role in all cells. For example,

differences in the organization, levels and threshold requirements

of F-actin (e.g., Davies et al., 2018), myosin (e.g., Ozugergin et al.,

2022), and formin (e.g., Davies et al., 2018; Higashi et al., 2019)

would cause different cortical properties that affect ring closure

kinetics (Leite et al., 2019).

Differences in cytokinesis among
animal cell types

Cytokinesis is influenced by intrinsic and extrinsic factors

that affect filament alignment for constriction and include

polarity, cell–substrate adhesion and adherens junctions

(Higashi et al., 2016; Pinheiro et al., 2017; Dix et al., 2018;

Chaigne et al., 2021; Gupta et al., 2021; Ozugergin et al., 2022;

Paim and FitzHarris, 2022). Along with causing different rates of

ingression, these factors can also cause ingression to be more

asymmetric (Figure 1C). Here, we will describe differences in the

core structural components and upstream regulators of the ring.

Differences in structural ring components

Differences in the ring components can affect ring

kinetics. Distinct actin and myosin isoforms can have

different biochemical properties, while actin can form

branched or unbranched filaments with different rates of

assembly or disassembly. For example, distinct actin and

myosin isoforms are differentially enriched in the

equatorial plane compared to the polar cortex (Maupin

et al., 1994; Dugina et al., 2009; Po’uha and Kavallaris,

2015; Chen et al., 2017; Yamamoto et al., 2019; Shagieva

et al., 2020; Taneja et al., 2020; Chen et al., 2021). Different

actins assemble into distinct linear or branched filaments via

different formins or Arp2/3 (Figure 1B), while myosin

isoforms have different crosslinking or motor activities

(Bao et al., 2005; Chen et al., 2017; Taneja et al., 2020;

Wang et al., 2020; Chen et al., 2021). In C. elegans, aligned

actin filaments in the equatorial plane facilitate the assembly

of new filaments (Li and Munro, 2021). The requirement for

myosin’s function as a motor or crosslinker also differs

between cell types in mice and C. elegans (Ma et al., 2012;

Osorio et al., 2019). As mentioned earlier, levels could also

affect ring kinetics. Partial depletion of ARX-2 (CeArp2) or

CYK-1 (Ceformin) can alter ring dynamics by changing the

levels of equatorial F-actin (Chan et al., 2019). Germline-fated

cells in C. elegans embryos have less linear F-actin and myosin

and slower ring assembly compared to somatic cells, and they

operate closer to threshold requirements (Davies et al., 2018;

Ozugergin et al., 2022). A prior study proposed that larger

cells have more contractile units in the ring than smaller cells

to coordinate ingression (Carvalho et al., 2009). However, ring

closure has distinct phases that may or may not correlate with

size (Davies et al., 2018; Ozugergin et al., 2022). The amount of

actomyosin could cause different tension or flow rates that

influence ring closure, which could be crucial during

development. In C. elegans, signalling between P2 and EMS

cells regulates their fate, and their relative positions are

controlled by coordinating division at the two-cell stage

(Rose and Gonczy, 2014; Davies et al., 2018).

Differences in ring closure symmetry

Asymmetric ring ingression is more extreme in cells with

apicobasal polarity or that contact other cells (Figure 1C).

Symmetry breaking is modeled to occur through the positive

feedback of membrane curvature-dependent filament

alignment (Dorn et al., 2016). The mechanisms that control

filament alignment could be influenced intrinsically or

extrinsically as described earlier (Maddox et al., 2007;

Singh and Pohl, 2014; Reymann et al., 2016; Spira et al.,

2017; Khaliullin et al., 2018). Asymmetric alignment could

cause higher contractility and/or different tension in part of

the ring. However, the molecular regulation of asymmetric

closure is not clear. CYK-1, ANI-1 and septins control

asymmetric ingression in the C. elegans zygote (Maddox

et al., 2007; Chan et al., 2019). However, in the vulval

precursor cells, tissue geometry and adhesion play a

stronger role (Maddox et al., 2007; Bourdages et al., 2014).

PARD6B is required for apicobasal polarity and asymmetric

ingression in the early mouse embryo, and the localization of

anillin and myosin is mutually exclusive with apically-

enriched PARD6B (Paim and FitzHarris, 2022). This

mechanism differs from Drosophila epithelial cells where
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ingression is influenced by extrinsic forces transmitted

through adhesion junctions (Herszterg et al., 2014; Osswald

and Morais-de-Sa, 2019; Buckley and St Johnston, 2022).

Differences in ring regulators

Differences in the upstream regulators can also affect ring

kinetics. Ect2 and Pbl localize to microtubules and the equatorial

cortex in HeLa cells, Drosophila embryos and S2 cells

(Prokopenko et al., 1999; Yuce et al., 2005; Verma and

Maresca, 2019), but ECT-2 is cortical in the C. elegans zygote

(Gomez-Cavazos et al., 2020). Both Cyk4 and Ect2 require

membrane localization to generate active RhoA for cytokinesis

(Su et al., 2011; Frenette et al., 2012; Lekomtsev et al., 2012;

Basant et al., 2015). Thus, the requirement for cortical

centralspindlin and/or Ect2 could be higher in cells where the

central spindle is far from the cortex. There is also a debate

(Basant and Glotzer, 2017; Zhuravlev et al., 2017) about whether

Cyk4 activates RhoA, or functions as a GAP for Rac. Point

mutations that disrupt GAP activity cause cytokinesis

phenotypes, and Rac depletion suppresses phenotypes caused

by the loss of CYK-4 or ECT-2 in C. elegans embryos (Canman

et al., 2008; Zhuravlev et al., 2017). CYK-4 was proposed to

downregulate Arp2/3-mediated branched F-actin and decrease

cortical stiffness in the equatorial plane (Figure 1B; Canman

et al., 2008; Bastos et al., 2012; Zhuravlev et al., 2017). However,

an alternative interpretation is that Rac globally regulates cortical

stiffness and its depletion makes it easier for weakly formed rings

to ingress (Loria et al., 2012; Basant and Glotzer, 2017). In HeLa

cells, Cyk4 regulates RhoA, but it could also regulate Rac1 to

control effectors for adhesion (Yuce et al., 2005; Bastos et al.,

2012). Further research is needed to clarify the role of Cyk4 in

cytokinesis in additional cell types.

Anillin also varies between cells. Anillin is cytosolic in

interphase C. elegans and Drosophila embryonic cells, but is

nuclear in cultured Drosophila and human cells (Piekny and

Maddox, 2010). Anillin depletion causes cytokinesis failure in

C. elegans neuroblasts, Xenopus embryos, Drosophila S2 and

HeLa cells, but not in the C. elegans zygote, despite a ~97%

reduction in anillin levels (Maddox et al., 2005; Straight et al.,

2005; Hickson and O’Farrell, 2008; Piekny and Glotzer, 2008;

Piekny and Maddox, 2010; Fotopoulos et al., 2013; Reyes et al.,

2014). Dalmatians with an early nonsense mutation in anillin

were born, albeit with developmental defects, suggesting that

anillin is not required for cytokinesis in most cells

(Holopainen et al., 2017). However, alternative splicing,

initiation codons or translation could still produce

functional protein depending on the cell type. Anillin also

plays multiple roles in cytokinesis, including ring positioning,

ingression and midbody formation, which could require

different threshold levels (Hickson and O’Farrell, 2008;

Piekny and Glotzer, 2008). In the C. elegans zygote, ANI-1

controls ingression through negative feedback by recruiting

GCK-1 and its cofactor CCM-3 to inactivate RhoA through

RGA-3/4 for RhoA inactivation (Figure 1B; Rehain-Bell et al.,

2017; Bell et al., 2020), while anillin controls RhoA-GTP

signaling by facilitating its interaction with effectors in

mammalian cells (Budnar et al., 2019). Anillin’s

crosslinking function can also slide actin filaments and

generate force in vitro without myosin (Kucera et al.,

2021). The variable threshold requirements for anillin

could reflect its different interactions and functions.

Spindle-independent regulation of
cytokinesis in animal cells

Spindle-independent pathways also regulate cytokinesis, and

their requirement likely varies with cell fate, ploidy or size

(Figure 2B). These pathways would contribute to the

cytokinetic diversity of cells with different developmental

paths, providing a robust system that precludes cytokinesis

failure (Figure 2C).

Cortical mechanisms

Aligned actomyosin filaments generate force for ring

constriction. The ring forms within a continuous, cortical

network that spans the cell, and actin-binding proteins that

control cortical connectivity such as plastin and spectrin can

influence this meshwork and stabilize the ring (Turlier et al.,

2014; Ding et al., 2017; Leite et al., 2019; Sobral et al., 2021).

Excess cytoplasmic pressure may arise in the polar cortex as

the ring constricts, which is released by blebs that form from

localized changes in the cortex (Sedzinski et al., 2011). For

example, RhoA is typically inactive at the polar cortex, and

blebs occur more frequently after MP-GAP depletion

(Sedzinski et al., 2011; Zanin et al., 2013). Blebbing can

vary among cell types, reflecting differences in their

cortical properties; e.g., HeLa cells display more

prominent blebbing than C. elegans embryos (Zanin et al.,

2013).

Cortical pathways facilitate ring positioning in

asymmetrically dividing cells (Figure 1C). Drosophila

neuroblasts have apicobasal polarity and divide

asymmetrically to produce daughter cells with different

sizes and fates. The ring assembles closer to the basal pole

where myosin enrichment is controlled by Pins and Dlg

(Cabernard et al., 2010; Connell et al., 2011). In the C.

elegans zygote, actomyosin contractility is enriched at the

anterior cortex via feedback mechanisms that establish

anterior-posterior polarity through the localization of

distinct PAR (partitioning defective) complexes (Lang and

Munro, 2017; Delattre and Goehring, 2021). The contractile
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ring aligns with the anterior-posterior boundary, but it is

unclear how PAR proteins control ring position (Schenk et al.,

2010; Pittman and Skop, 2012). One model is that anterior

actomyosin competes for ANI-1, restricting its levels in the

ring (Jordan et al., 2016).

Chromatin sensing via kinetochores

Kinetochores regulate cytokinesis by promoting the

removal of F-actin from the polar cortex (Figure 2B).

Kinetochores are crucial for chromosome segregation by

stably attaching chromosomes to the mitotic spindle

(Musacchio and Desai, 2017; Lara-Gonzalez et al., 2021;

Navarro and Cheeseman, 2021). Ezrin-Radixin-Moesin

(ERM) proteins crosslink F-actin to the membrane to

regulate cortical properties (Carreno et al., 2008; Kunda

et al., 2008). As chromosomes segregate, kinetochore-

associated PP1 phosphatase and Sds22 inactivate moesin,

causing a decrease in polar F-actin in Drosophila S2 and

HeLa cells (Figure 1B; Roubinet et al., 2011; Kunda et al.,

2012; Rodrigues et al., 2015). While PP1/Sds22 and moesin are

not required for cytokinesis, their depletion causes cell shape

changes and membrane protrusions, respectively (Carreno

et al., 2008; Rodrigues et al., 2015). The chloride channel

CLIC4 also controls polar cortical stability through ezrin-

binding, but it is not clear if CLIC4 is part of the kinetochore

pathway (Peterman et al., 2020; Uretmen Kagiali et al., 2020).

Polar relaxation occurs through other mechanisms when

kinetochores are far from the cortex. In C. elegans zygotes,

astral microtubules regulate the polar cortex through AIR-1

(Aurora A kinase) and TPXL-1 (HsTPX2), which inhibits the

polar accumulation of ANI-1 and F-actin (Figure 1B; Mangal

et al., 2018). More recent work in C. elegans revealed that

astral microtubules control the dynein-dependent removal of

myosin from the polar cortex (Chapa et al., 2020). Other

studies showed that in C. elegans and cultured human cells,

ANI-1/anillin binds to astral microtubules in cortical regions

where RhoA-GTP is low, and astral microtubules cause a

decrease in formin activity and γ-actin at the polar cortex

(Tse et al., 2011; van Oostende Triplet et al., 2014; Chen et al.,

2021). It is not clear if these mechanisms are related, and

studies are needed to reveal how their requirement varies with

cell type.

Chromatin sensing via Ran signaling

Other chromatin sensing pathways regulate cytokinesis.

Lagging chromosomes delay cytokinesis, likely to prevent

aneuploidy (Steigemann et al., 2009; Kotadia et al., 2012;

Montembault et al., 2017). In Drosophila neuroblasts, trailing

chromatids correlate with broad myosin accumulation, cell

elongation and delayed completion of cytokinesis (Kotadia

et al., 2012). This phenotype is associated with delayed

nuclear envelope assembly, leaving Pbl at the midzone where

it could cause persistent RhoA activation (Montembault et al.,

2017). While the chromatin-associated signal is not known, a

likely candidate is Ran GTPase.

Active Ran forms an inverse gradient with importins to

control ring positioning (Figure 2C; Kiyomitsu and

Cheeseman, 2013; Beaudet et al., 2017; Beaudet et al.,

2020). Importin-α and -β bind to nuclear localization

signals (NLSs) in proteins and Ran-GTP dissociates this

complex (Xu and Massague, 2004; Lange et al., 2007;

Clarke and Zhang, 2008; Ozugergin and Piekny, 2021).

Ran-GTP is generated by histone-tethered RCC1

(RanGEF), while cytosolic RanGAP negatively regulates

Ran, causing active Ran to be highest around chromatin

and lowest near the cortex (Figure 1B; Kalab et al., 2002;

Kalab et al., 2006). In anaphase, the segregating

chromosomes could lead to the equatorial enrichment of

importins where they control the localization and function of

anillin (Hinkle et al., 2002; Kiyomitsu and Cheeseman, 2013;

Beaudet et al., 2017). In meiosis, active Ran functions as a

ruler to control formation of an F-actin cap for polar body

extrusion in mouse oocytes (Deng et al., 2007). Although the

cortical targets of Ran signaling in meiosis are not known,

they regulate branched F-actin (Yi et al., 2011; Dehapiot

et al., 2013; Burdyniuk et al., 2018). Importins also regulate

cellularization of the syncytial Drosophila embryo, where

ingressing membranes partition nuclei into individual cells

(Lecuit, 2004). Silverman-Gavrila et al. (2008) showed that

importin-α overexpression causes a decrease in anillin and

Peanut (DmSeptin) localization and prevents cellularization,

because importins compete with Peanut for anillin-binding.

Importin-β overexpression also decreases anillin’s cortical

localization in HeLa cells, supporting the ruler model where

different levels of importins promote or inhibit function.

This model is supported by the molecular regulation of

anillin; the RhoA-GTP binding domain autoinhibits a

neighbouring domain with overlapping NLS and

phospholipid-binding sites, and RhoA-GTP relieves this

autoinhibition, permitting importin-binding to stabilize

anillin for recruitment to the overlying phospholipids

(Beaudet et al., 2017; Beaudet et al., 2020). We propose

that importins are sufficiently enriched only between the

segregating chromosomes in cells where Ran-GTP reaches

the cortex (e.g., higher ploidy; Figure 2D), while in cells

where cortical importins are uniform, other mechanisms

would control ring positioning (e.g., lower ploidy;

Figure 2E).

The Ran pathway could control cortical targets other than

anillin (Ozugergin et al., 2022). In C. elegans embryos, importin-

β (IMB-1) facilitates the equatorial enrichment of ANI-1 in a

somatic cell, while importin-α (IMA-3) and/or -β control ring
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assembly in a germline-fated cell through unknown targets. Also,

importins could bind as homo- or heterodimers which could

differently impact protein function (Ozugergin and Piekny,

2021). An exciting hypothesis is that the Ran pathway has

multiple targets that respond to different importin levels to

confer the cortical properties controlling cytokinesis in diverse

cell types.

Discussion

After a century of research, our understanding of

cytokinesis is extensive. However, there is considerable

diversity in how the core machinery is expressed and

regulated, and in the number of mechanisms that control

cytokinesis. The differences we reviewed here are just the tip

of the iceberg, reflecting the need to break away from the ‘one-

size-fits-all’ approach. Novel research exploring differences

among diverse cell types is crucial to reveal how cytokinesis

can be ‘personalized’, and to gain an appreciation of its

diversity.
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