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Organ transplantation is the main treatment for end-stage organ failure, which

has rescued tens of thousands of lives. Immune rejection is the main factor

affecting the survival of transplanted organs. How to suppress immune rejection

is an important goal of transplantation research. A graft first triggers innate

immune responses, leading to graft inflammation, tissue injury and cell death,

followed by adaptive immune activation. At present, the importance of innate

immunity in graft rejection is poorly understood. Autophagy, an evolutionarily

conserved intracellular degradation system, is proven to be involved in

regulating innate immune response following graft transplants. Moreover,

there is evidence indicating that autophagy can regulate graft dysfunction.

Although the specific mechanism by which autophagy affects graft rejection

remains unclear, autophagy is involved in innate immune signal transduction,

inflammatory response, and various forms of cell death after organ

transplantation. This review summarizes how autophagy regulates these

processes and proposes potential targets for alleviating immune rejection.
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1 Introduction

As the main treatment for end-stage organ failure, organ

transplantation is an effective way to rescue patients in a clinical

emergency. Besides organ shortages, immune rejection, immune

tolerance, and early graft failure are the most concerning

problems (Stolp et al., 2019). The immune system’s

discrimination between self and non-self is a necessary

protection mechanism (Abou-Daya and Oberbarnscheidt,

2021). It is widely acknowledged that the essence of

transplantation rejection is the immune response of the

recipient’s immune system to a donor graft. Since T cells and

B cells are considered the main effector cells of transplantation,

the role of adaptive immunity in transplantation rejection has

always been a hotspot (Wood et al., 2012; Romano et al., 2017;

Schmitz et al., 2020; Asano et al., 2021; Otsuka et al., 2021).

However, a donor graft first causes inflammation and tissue

damage through activation of innate immunity, which further

trigger adaptive immune responses. It is innate immune receptor,

which first recognizes allogeneic non-self and trigger innate

immune responses, that is responsible for the initiation of

adaptive immunity (Abou-Daya and Oberbarnscheidt, 2021;

Wang B. et al., 2021). After the organ transplantation, a series

of factors that target transplanted organs can result in innate

immune responses, such as surgical mechanical injury, ischemia

reperfusion injury (IRI), inflammation, oxidative stress and death

of donor cells in transplanted organs. The role of innate immune

in transplantation rejection and survival of graft is receiving more

attention in recent years (Ochando et al., 2019; Shepherd et al.,

2021).

The immune functions of an organism have been strictly

regulated to maintain homeostasis. When a body receives danger

signals, it will timely initiate immune responses to remove the

threat. Meanwhile, the body also needs to turn off the immune

response in time to avoid damage. Autophagy is an evolutionarily

conserved degradation system that degrades intracellular toxic

substances or organelles to provide materials for physiological

metabolism and maintain homeostasis. As research continues, a

number of studies suggest that various physiological signals are

closely linked to autophagy, such as inflammation, oxidative

stress, organelle damage, cell death and immune signal

transduction (Filomeni et al., 2015; Deretic, 2021). Moreover,

autophagy also takes part in the immune response when a body is

subjected to adverse stimuli (Jiang et al., 2019). On the one hand,

autophagy can affect adaptive immunity by participating in

antigen presentation and regulating adaptive immune cells’

activation, proliferation, and differentiation of adaptive

immune cells (Puleston and Simon, 2014). On the other hand,

autophagy is also involved in regulating innate immune

signalling pathways through the degradation of inflammatory

protein, oxidative stress intermediate molecules and the

interaction with pattern recognition receptors (PRRs) (Germic

et al., 2019). Since graft rejection is obviously influenced by

innate immunity, which is partly regulated by autophagy, it is

necessary to explore the role of autophagy in organ

transplantation. Several studies have suggested that autophagy

plays a decisive role in graft survival. The enhanced autophagy

prolongs skin allograft survival in human myeloid dendritic cells

(Lin et al., 2013). mTOR-mediated autophagy facilitates mouse

cardiac allograft survival by enhancing the immunosuppressive

function of myeloid-derived suppressor cells (Li J. et al., 2021).

Increased expression of autophagy-related proteins (Beclin-1 and

LC3) is essential for reducing the incidence of necrosis and

rejection after liver transplantation (Degli Esposti et al., 2011).

Here, we discuss the multifunctional roles of autophagy in graft

rejection from the perspective of innate immunity. And we also

offer a strategy for inhibiting the immune rejection response

following graft transplantation.

2 Crosstalk between autophagy and
pattern recognition receptor in organ
transplantation

2.1 TLRs link inflammation with autophagy
during graft transplants

In the past decades, considerable evidence indicates that the

activation of the innate immune depends on PRRs, which can

recognize all kinds of endogenous and exogenous danger signals

(mainly including pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns

(DAMPs)). Most PRRs of vertebrates are classified into five

types which are Toll-like receptors (TLRs), nucleotide

oligomerization domain-like receptors (NLRs), C-type lectin

receptors (CLRs), retinoic acid-inducible gene-I like receptors

(RLRs), and absent in melanoma-2 like receptors (ALRs). These

receptors recognize and bind their respective ligands and then

initiate downstream signalling pathways. The transplant surgery

inevitably leads to tissue damage, oxidative imbalance or

bacterial translocation, which acts as PAMP and DAMP to

trigger the recruitment and activation of inflammatory cells

(Ochando et al., 2019). In this process, the PRRs activation is

closely linked to autophagy, which always shares similar

signalling pathways. Many experimental and clinical research

findings revealed that TLRs are instrumental in the inflammatory

response and immune rejection (Braza et al., 2016). Under the

influence of surgical incisions and intestinal stress, clinical liver

and intestinal transplantation surgery cannot avoid the

translocation of commensal bacteria, which will cause an

innate immune response by activating TLRs (Alegre et al.,

2008). In addition, the transplantation-associated IRI can also

induce upregulation of DAMPs, such as high-mobility group box

chromosomal protein 1 (HMGB1) and heat shock protein (HSP)

fibrinogen, hyaluronan and biglycan (Wu et al., 2010; Patel et al.,

2012). These substances can be recognized and bound by TLRs,
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and then activate TLRs-MyD88/TRIF signalling pathways to

cause pro-inflammatory responses, which contribute to

chronic graft dysfunction (Wang et al., 2010). Activation of

TLRs contributes to the development of graft rejection which

is attributed to the production of various pro-inflammatory

cytokines (including IL-1β, IL-6, and TNF-α) and

nitroxidation intermediates (including iNOS, NO, O2)

(Kaczorowski et al., 2007). Meanwhile, autophagy is also

considered an immune effector that can be activated by TLRs

signalling (Zhang K. et al., 2021). Both TLRs-MyD88 and TLRs-

TRIF signalling pathways are involved in regulating autophagy

activity. The activation of TLRs signalling can enhance the

interaction between Beclin-1 and MyD88/TRIF and then

promotes the dissociation of coiled-coil moesin-like BCL2-

Interacting Protein (Beclin-1) and B cell lymphoma 2 (Bcl-2),

leading to autophagy activation (Shi and Kehrl, 2008). Moreover,

the activation of TNF receptor associated factor 6 (TRAF6)

induces the K63-linked polyubiquitination of Beclin-1, which

enhances phosphatidylinositol 3 kinase catalytic domain

(PI3KC) activity and promotes autophagy initiation (Lee et al.,

2018). Yang et al. suggested that enhancing autophagy could

alleviate renal IRI via TLR4/MyD88/ERK/mTOR signalling after

renal transplantation (Yang et al., 2020). A similar result also

showed that the inhibited autophagy contributed to aggravating

hepatic IRI via Mitogen-Activated Protein Kinase/mammalian

target of rapamycin (MAPK/mTOR) signalling (Xu et al., 2018).

However, Xu et al. reported an opposite result that overactivated

autophagy aggravates the cerebral IRI via MAPK/ERK/mTOR

(Xu D. et al., 2021). It should be noted that the results on the

effects of different autophagy stages activities on cerebral IRI

were lacking in this study. But we cannot deny that autophagy is a

double-edged sword in maintaining homeostasis, and the specific

mechanism of these differences needs to be further studied.

2.2 Other PRRs mediated autophagy in
graft IRI

NLR is an important cytoplasmic pattern recognition

receptor recognizing PAMPs and DAMPs similar to TLRs. As

a member of the NLRC (NOD-like receptor containing a CARD

domain) family, Nucleotide-binding oligomerization domain-

containing protein 1 (NOD1) has been proved to directly

interact with and recruit autophagy related protein 16 like

protein 1 (ATG16L1) to the plasma membrane to activate

autophagy (Travassos et al., 2010). Xi et al. observed the

expression of NOD1 and autophagy levels increased after

Hepatic IRI. Inhibition of NOD1 could down-regulate

ATG5 and Beclin-1 levels (Xi et al., 2019). It seemed that

NOD1 might regulate autophagy by PI3K/AKT/

mTORC1 signalling, but there is still lacked a specific

interaction mechanism between NLRs and the autophagy

system. RLRs are a new class of PRRs which mainly recognize

viral RNA. Ordinarily, the activation of RLR is important for

establishing innate antiviral immunity via interferon and pro-

inflammatory cytokines induced by its downstream signal

transduction. Retinoic acid-inducible gene I (RIG-I) is one of

the most important members of the RLR family and can

recognize short triphosphorylated dsRNA. The heterodimer

complex of ATG5 and ATG12 can directly interact with RIG-

I, melanoma differentiation-associated gene 5 (MDA5) and IPS-

1, inhibiting their dissociation and negatively controlling RLR

signal transduction (Jounai et al., 2007). Several studies have

indicated the direct interaction between autophagy receptors and

RLR family members (Lee et al., 2018; Xian et al., 2020; Hou et al.,

2021). Activation of RIG-I can induce K63-linked

polyubiquitination of Beclin-1 and affect sequestosome 1

(SQSTM1) accumulation, leading to autophagic degradation.

Despite the fact that very few studies show the links between

organ transplantation, RLR and autophagy, we believe they have

important roles in common viral infections in transplant

recipients, which deserve more attention. Although some

progress has been made to indicate a crucial role for these

PRRs in affecting graft IRI, regulating immune response, and

recognizing all kinds of danger signals in organ transplantation,

further study is needed to explore their distinct roles and specific

mechanisms that regulate graft dysfunction (Figure 1).

3 Autophagy regulates inflammation
response and oxidative stress in organ
transplantation

In organ transplant surgery, mechanical injury, hypoxia,

ischemia, and reperfusion injury have inevitably happened.

The combined effects of these factors trigger the recipient’s

innate immune recognition, then cause inflammation, injury

and death in the cells of the graft tissue, which are involved

in the innate immune effect mechanisms of transplantation

rejection. Autophagy generally exerts a protective effect to

regulate inflammatory response and stress injury to maintain

cellular homeostasis when cells are under stress. Therefore, it is

worth discussing the mechanisms by which autophagy regulates

inflammation and oxidative stress after organ transplantation.

3.1 Graft inflammation and autophagy

The inflammasome is an important component of the innate

immune system and is essential for inflammation initiation after

recognizing various PAMPs or DAMPs. Saitoh et al. first

discovered the loss of autophagy-related protein ATG16L1/

ATG7 or inhibition of autophagy could activate

inflammasome and increase IL-1β production (Saitoh et al.,

2008). Over the past few years, many studies have proven

autophagy can affect inflammation response by regulating
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inflammasome activity (Zhou et al., 2011; Liu, 2019; Mehto et al.,

2019). The special mechanisms mainly relate to removing

inflammasome activators (including damaged organelles, ROS)

or degrading the inflammasome directly (Biasizzo and Kopitar-

Jerala, 2020). Moreover, autophagy also has a direct impact on

the transcription, processing and secretion of inflammatory

factors. For example, autophagy can target and degrade pro-

IL-1β, decreasing the secretion of mature IL-1β (Harris et al.,

2011). By using autophagy activator rapamycin or autophagy

inhibitor 3MA, Wang et al. indicated that autophagy could

alleviate hepatic IRI injury via decreasing NOD-like receptor

thermal protein domain associated protein 3 (NLRP3), IL-1β and
IL-18 production (Wang et al., 2021b). Another study showed

that hepatic IRI could increase PTEN-induced kinase 1 (PINK1)

and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) levels,

which are necessary for mitophagy initiation. Furthermore,

overexpression of PINK1 inhibited NLRP3 inflammasome

activation and decreased IL-1β production during hepatic IRI

in vivo (Xu et al., 2020b). Moreover, activating LKB1-AMPK-

ULK1 signalling promoted myocardial autophagy, inhibiting

inflammatory cytokine release and prolonging cardiac allograft

survival (Chen et al., 2020). Similarly, ATG5-deficient mice are

subjected to kidney IRI, which displays more severe sterile

inflammation (Liu et al., 2012). Interestingly, another research

group showed that ATG5 also participated in antibody-mediated

rejection during kidney grafts, which suggested that Atg5-

mediated autophagy could affect graft survival through

multiple pathways (Cheng et al., 2021). Recently, a study

suggested rapamycin, an autophagy activator, enhanced

autophagy and alleviated corneal allograft rejection (Wei et al.,

2022). Mechanistically, the enhanced autophagic turnover by

rapamycin inhibited NLRP3 inflammasome, cleaved Casp-

1(p10), and IL-1β through NLRP3 degradation. Additionally,

the high-level NLRP3 would up-regulate V-ATPase D2 subunit,

which gradually promoted the formation of autophagolysosomes

to increase autophagy flux to limit the IR-induced inflammation

in a Notch1-Hes1-independent manner (Wang et al., 2021c).

These studies suggested autophagy helped to reduce

inflammation after organ transplantation. However, autophagy

plays a dual role in the regulation of inflammation. Interstitial

fibrosis is a leading cause of chronic graft dysfunction. After renal

transplantation, the enhanced ATG16L-dependent autophagic

flux leads to renal interstitial fibrosis and chronic renal graft

dysfunction through triggering endothelial-mesenchymal

transition (EndMT) by NF-κB, IL-1β, IL-6 and TNF-α (Gui

et al., 2021a; Gui et al., 2021b). Moreover, ATG5 also promotes

IL-6 secretion in dendritic cells, which drives chronic heart

allograft rejection after IRI (Solhjou et al., 2017). The role of

autophagy in regulating inflammation-related graft rejection

varies widely among tissues and organs and immune stages.

More work still needs to explore the potential mechanisms by

which autophagy and inflammation regulate graft rejection. Also,

it is unclear whether these different results are due to the effects

on apoptosis, which also can be influenced by autophagy. IFN-γ
is a key regulator of the homeostasis of kidney transplant

rejection and is closely linked to autophagy and inflammatory

FIGURE 1
Schematic diagram of the interplay between autophagy and PRRs (including their downstream signallingmolecules) in organ transplantation. All
kinds of PAMPs/DAMPs can be recognized by PRRs, activating their downstream signalling pathway following organ transplantation. (1) PAMPs/
DAMPs directly bind to TLRs and activate the MyD88-TRAF6 and TRIF pathways. Activation of TRAF6 induces the K63-linked polyubiquitination of
Beclin-1, promoting autophagy degradation by enhancing PI3KC activity. In addition, the interaction between Beclin-1 and MyD88/TRIF
induces the dissociation of Beclin-1 and Bcl-2, leading to autophagy initiation. (2) Activation of NOD1 by reperfusion contributes to autophagic
degradation via the interaction with ATG16L1 and ATG5. (3) On one hand, the expression of RIG-I decreases SQSTM1 and boosts autophagic
degradation. On the other hand, activation of RIG-I triggers autophagy via the MAVS-TRAF6-Beclin-1 signalling axis.
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factors production (Hidalgo and Halloran, 2002). IFN-γ has been
shown to have contradictory effects on the survival of the graft

(Brandacher et al., 2007). Most studies on the effect of IFN-γ on
graft rejection have focused on its effect on T cell activity. A

recent study showed the interaction between autophagy and IFN-

γ affected the prognosis of renal transplantation. However, the

specific mechanism of the effect of autophagy-IFN signalling on

organ transplantation rejection remains to be studied. With the

spread of COVID-19 in recent years, the importance of

autophagy in influencing lung inflammation and injury is

widely concerned. A team has discovered that enhancing

autophagy could decrease IRI-induced lung injury via the

PI3K/Akt signalling pathway (Li J. et al., 2015). The

increasing autophagy contributes to decreasing concentrations

of IL-1β and TNF-α and the ratio of dead cells. In addition, the

mucosal injury and bacterial translocation triggered by intestinal

transplantation could induce a life-threatening systemic

inflammatory response (Wang et al., 2020). Intestinal IRI

increased levels of NLRP3, TNF-α, IL-6 and p62, as well as a

decreased ratio of LC3-II/I. Adding autophagy activator

rapamycin alleviated intestine damage and accumulation of

inflammasome (Wang et al., 2019).

3.2 The interaction between graft
oxidative stress and autophagy

During transplantation, a specific organ is subjected to

blood supply arrest followed by a sudden hyperoxygenation at

the reperfusion time. This process induces severe oxidative

stress, which is one of the great causes of graft damage and

death (Carcy et al., 2021). Moreover, cell death and tissue

injury also contribute to activating the innate immune and

leading to the production of the pro-inflammatory cytokine,

reactive oxygen species (ROS) and nitric oxides (NO), whose

effects are to trigger severe cellular stress followed by

inflammatory cascades, and ultimately lead to failed organ

transplants. To avoid further oxidative stress, the body can

activate a series of defence responses to maintain physiological

homeostasis, including autophagy. The inter-relational

mechanism between autophagy and oxidative stress has

recently been a hotspot. ROS can directly induce oxidative

stress by regulating the activity of multiple upstream

autophagy pathways, including AMP-activated Kinase

(AMPK), mTOR, MAPK, and PI3K (Liu et al., 2015;

Portal-Nunez et al., 2016; Zhang K. et al., 2021). In

addition, ROS also can modify autophagy-related proteins

to regulate autophagy activity (Lv et al., 2018; Zhang K. et al.,

2021). There is plenty of evidence that transplantation-

induced ROS can activate autophagy (Van Erp et al., 2017).

Autophagy, in turn, regulates oxidative stress by removing

damaged organelles and excess oxidizing intermediates

(Larabi et al., 2020). Losses of autophagy-related proteins

contribute to the accumulation of cellular ROS (Asano

et al., 2017; Saxena et al., 2018). During transplant surgery,

both hypoxia and hyperoxia can induce autophagy. The

interaction between hypoxia-inducible factor-1α (HIF-1α)
signalling and autophagy-related genes such as ATG2A,

ATG14, and Beclin-1 contributes to hypoxia-induced

autophagy in renal IRI (Bizargity and Schroppel, 2014; Fu

et al., 2020; Li Q. et al., 2021). More importantly, hyperoxia- or

oxidizing intermediates-induced protective autophagy (which

means the autophagy that contributes to removing stimulus

and maintaining homeostasis) improves graft longevity.

Regulation of oxidative stress by autophagy during graft IR

is best studied. Ischemia leads to ATP generation dysfunction

and intracellular acidosis. These disorders break the osmotic

equilibrium, which causes leukocyte infiltration of the graft

after reperfusion (Cucchiari et al., 2016). Moreover, the

reperfusion creates a hyperoxygenation environment and

produces large amounts of ROS in just a few moments. As

the most important energy supply structure, mitochondria

mainly contribute to ROS production. Many researchers

believe that ROS promote autophagy activation, and the

activated autophagy contributes to clearing ROS. Removal

of ROS by autophagy helps to avoid mitochondrial damage

risk. Forkhead box O3 (FOXO3) signalling, Nuclear factor

erythroid 2-related factor 2 (Nrf2) signalling and HIF-1α
signalling are involved in this process (Li L. et al., 2015).

While along with the development of autophagy research, the

dynamics and roles of autophagy in different graft IR remain

elusive. Studies have shown that the autophagy level is up-

regulated in cardiac and renal IR but decreased in hepatic IR

(Van Erp et al., 2017). Further studies showed that autophagy

could ameliorate hepatic IRI but aggravate cardiac (Cursio

et al., 2015; Decuypere et al., 2015; Ma et al., 2015; Wang et al.,

2018; Xu T. et al., 2021). Comparing these different studies, we

speculate that the distinct results might be attributed to cell

types, injury levels, stress intensity and duration (Liu et al.,

2013; Guo et al., 2015). It seems that moderate graft IR stress

will trigger protective autophagy, which contributes to

clearing ROS for maintenance of homeostasis. Under

excessive graft IR stress, in turn, autophagy not only fails

to promote ROS degradation but also aggravates graft injury,

which may be attributed to excessive autophagosome

formation or dysfunction of the autophagy/lysosomal

degradation.

3.3 Autophagy affects the signals shared
by graft inflammation and oxidative stress

Actually, a body’s inflammation response and oxidative stress

always happen simultaneously following organ transplantation.

The activation of inflammation response and oxidative stress

shares some signalling nods, such as nuclear factor kappa-B (NF-
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κB), MAPK, HIF-1α, and NLRP3 (McGarry et al., 2018).

Excessive accumulation of ROS can lead to mitochondrial

dysfunction. The release of mitochondrial damage-associated

molecular patterns (mtDAMPs) can activate cell surface

receptors or intracellular receptors to initiate innate immune

responses and subsequently promotes inflammatory gene

expression (McGarry et al., 2018). Moreover, mitochondrial

ROS is involved in assembling the inflammasomes, which

boosts the activation of NLRP3-dependent IL-1β and IL-18

maturation (Zhou et al., 2011). Hypoxia-induced

overproduction of ROS can affect HIF-1α signalling activity,

which is involved in the production of inflammatory cytokines

(Patten et al., 2010; Muz et al., 2012). Similarly, several studies

indicated ROS could activate NLRP3 via NF-κB and MAPK

signalling (An et al., 2019; Papaconstantinou, 2019). Therefore, it

is necessary to survey the combined effect of inflammation and

oxidative stress, which are important immune responses in

transplantation rejection (Table 1). More importantly, as a key

regulator in this process, autophagy deserves to be further

studied. Most of the recent research just showed the effect of

autophagy on inflammation gene expressions and oxidative

stress levels. The potentially specific mechanism needs to be

further explored.

4 Cell death and autophagy in organ
transplantation

The transplant surgery inevitably leads to graft tissue damage

and cell death which are closely linked to the activation of innate

immune responses. Meanwhile, cell death is also one of the

regulatory effects of innate immune responses. Severe cell death

of graft tissue will undoubtedly shorten the longevity of the graft

and eventually result in failed organ transplants. In the past

decades, some studies focused on prolonging graft survival

through cell death regulation (Ochando et al., 2019). Under

severe stress, autophagy, a highly conserved eukaryotic cellular

recycling process, is committed to ensuring cell survival by

degrading damaged organelles and toxic metabolites (Qi and

Chen, 2019). Growing studies indicate that autophagy is not only

ameans of keeping cells alive. Also, it is involved in regulating cell

death and influences organism immunity (Noguchi et al., 2020).

Hence, the potential inter-relational mechanism between

autophagy and cell death in organ transplantation is a key

component of the innate immune system to the rejection of

the transplantation (Figure 2).

TABLE 1 Regulation of inflammation response and oxidative stress in organ transplantation by autophagy.

Autophagy-related gene/
signalling

Target Function References

ATG16L1/ATG7 NLRP3, IL-1β Suppresses inflammasome formation and IL-1β production Saitoh et al. (2008)

PINK1, PARKIN NLRP3, IL-1β Suppresses NLRP3 activation and decreased IL-1β production
during hepatic IRI

Xu et al. (2020b)

ATG5 IL-1β, TNF-α during kidney IRI Liu et al. (2012)

mTOR NLRP3, TNF-α,
IL-6

Suppresses NLRP3 activation and decreases TNF-α and IL-6
production during intestinal IRI

Wang et al. (2019)

ATG2A, ATG14, Beclin-1 HIF-1α-BNIP3 Promotes autophagy and decreases ROS, and ameliorates
renal IRI

(Bizargity and Schroppel, (2014); Fu et al.
(2020); Li et al. (2021b))

MEK/ERK/mTOR ROS Promotes autophagy, decreases ROS and ameliorates hepatic IRI Wang et al. (2018)

Beclin-1 ROS Promotes autophagy, decreases ROS and ameliorates renal IRI Xu et al. (2021b)

FIGURE 2
Interrelations between autophagy and cell death in organ
transplantation. Schematic shows the key signallingmolecules and
signalling pathways. (1) NF-κB, MAPK, FOXO3, mTOR and Beclin-
1-Bcl2 are involved in autophagy-regulated apoptosis. (2)
RIPK1, RIPK3. mTOR and AMPK are involved in autophagy-
regulated necroptosis. (3) ATG5/7, NCOA4, and CIRBP-ELAVL1-
Beclin-1 axis are involved in autophagy-regulated ferroptosis. (4)
NLRP3, mTOR and STING are involved in autophagy-regulated
pyroptosis.
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4.1 The signalling pathway between
apoptosis and autophagy during graft
transplants

Autophagy and apoptosis both play crucial roles in

maintaining homeostasis and are strictly regulated during

the cell cycle. Since they share similar activating pathways,

they may interact with each other. For example, the kinase

inhibitory protein p27 (p27Kip1) contributed to decreased pRb

expression and increased Bax expression, which are

associated with the induction of apoptosis (Fujieda et al.,

1999; Naruse et al., 2000). Moreover, p27Kip1 can also lead to

autophagy during metabolic stress, which seems to protect

cells from apoptosis (McKay and White, 2021). There is

accumulating evidence indicating that autophagy and

apoptosis can interact with each other, either

synergistically or antagonistically. Beclin-1 is a key protein

that regulates autophagy and apoptosis. VPS34-VPS15-

Beclin-1 complex contributes to the extension of

autophagic vesicles and the formation of autophagosomes.

However, apoptosis-inhibiting molecule Bcl-2 can bind to

BH3 of Beclin-1 and form a complex, inhibiting Beclin-1-

dependent autophagy (Pattingre et al., 2005). In addition,

caspase can mediate the cleavage of Beclin-1, which loses its

ability to induce autophagy. And the C-terminal fragment of

Beclin-1 will be transferred to mitochondria and amplify

mitochondrion-mediated apoptosis (Djavaheri-Mergny

et al., 2010). Moreover, mTOR, death-associated protein

kinase and Tp53 are all involved in the connection

between autophagy and apoptosis (Feng et al., 2018; Yan

et al., 2019). During graft transplants, autophagy is rapidly

activated after renal ischemia and boosts tubular apoptosis

(Jiang et al., 2010). Another study suggested that prolonged

autophagy activation might aggravate renal damage by

activating the cell death pathway after ischemic kidney

injury (Decuypere et al., 2015; Duann et al., 2016). In rat

and mouse liver transplant models of hepatic IRI, altered

levels of autophagy could regulate hepatocyte apoptosis and

protect the liver from warm hepatic IRI under specific

circumstances. In addition, Chen et al. found that a strong

correlation was observed between the severity of rejection

and autophagy levels in CD8+ T cells after liver

transplantation. The enhanced autophagy aggravates acute

graft rejection by suppressing apoptosis of CD8+ T cells

(Chen et al., 2019). Furthermore, NF-κB signalling, MAPK

signalling, FOXO3 signalling and mTOR signalling have been

involved in this process, but the specific mechanisms are

unclear (Hu et al., 2021). Activation of autophagy protects

heart from myocardial ischemia damage and inhibits

apoptosis. In contrast, the role of autophagy in myocardial

IRI and coronary atherosclerosis remains controversial

(Dong et al., 2019). Few studies have discussed the specific

regulatory mechanisms involved.

4.2 The outcome of the interaction
between necrosis and autophagy affects
graft survival

Necroptosis is a kind of cell death which is caused by tissue

injury or cell inflammation. Although the morphological

characteristics of necroptosis and apoptosis are distinct, these

two processes are closely related (Park et al., 2021). The

interaction between autophagy and necroptosis is more

complex. Since autophagy can protect cells by limiting tumour

necrosis and inflammatory response, some researchers originally

thought activation of autophagy helped inhibit all necroptosis

and promote cell survival via blocking apoptosis. However, there

was evidence that necroptosis could promote autophagy

initiation and inhibit the degradation of autophagosomes (Wu

W. et al., 2021). In the process of necroptosis, two receptor-

interacting protein kinases (RIPK1 (Receptor-interacting protein

kinase 1, RIPK1) and RIPK3) are the most important signalling

molecules contributing to forming a “necrosome”. Liu et al.

reported that the expression of RIPK1 boosted neuron

autophagy after traumatic brain injury via activation of the

NF-κB signalling pathway (Liu J. et al., 2020). Moreover,

RIPK1 can promote tuberous sclerosis complex 2 (TSC2)

phosphorylation at Ser1387 by AMPK, which will inhibit

mTORC1 activity and cause autophagy (Najafov et al., 2021).

Recent research confirms that there is an LC3 interacting region

domain in the protein sequences of RIPK1 and RIPK3 (Huang

et al., 2021). The interaction between LC and RIPK1/3 suggests

autophagy-related LC3 accumulation can regulate necroptosis.

During human pulmonary IRI, the cold ischemia can increase the

Expression of RIPK3 via phosphorylation of STAT3 and then

cause necroptosis. Treating with a RIPK inhibitor (necrostatin-1)

inhibits necrotic cell death (Kim et al., 2018). Similarly,

necrostatin-1 can ameliorate primary graft dysfunction by

inhibiting RIPK function and necroptosis after rat pulmonary

transplantation (Kanou et al., 2018). So we hypothesized that

RIPK is a crucial signal molecule that connects autophagy and

necroptosis in organ transplants. Further exploring this

signalling in the autophagy-necroptosis axis may help prolong

graft survival.

4.3 Other types of cell death

Some other forms of cell death are still involved in organ

transplantation. In a model of coronary artery ligation–induced

myocardial IRI, ferroptosis contributes to inflammatory

responses and leukocyte trafficking (Li W. et al., 2019).

Similar results have also been found in pulmonary IRI (Xu

et al., 2020a). The in-depth study shows that autophagy

interacts with other cell death forms, such as ferroptosis and

pyroptosis. Autophagy boosts ferroptosis via the degradation of

ferritin. Autophagy-related genes ATG5, ATG7, and nuclear
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receptor coactivator 4 (NCOA4, which is a selective cargo

receptor for ferritinophagy) play key roles in this process

(Hou et al., 2016). Mitochondrial ROS is crucial for lipid

peroxidation and ferroptosis initiation. Meanwhile, autophagy

can regulate ROS in a variety of ways. A recent report indicated

that oncogene-induced PI3K-AKT-mTOR signalling activation

could inhibit ferroptosis via SREBP1/SCD1-mediated lipogenesis

(Yi et al., 2020). Since mTOR is one of the most important

kinases that regulate autophagy, it may be a key molecule that

connects autophagy and ferroptosis. In the process of renal IR,

Sui et al. reported that cold-inducible RNA-binding protein

(CIRBP) promoted erastin-induced ferroptosis via directly

interacting with ELAV-like RNA binding protein 1 (ELAVL1),

which is considered a critical regulator in the activation of

ferroptosis (Sui et al., 2021). Meanwhile, ELAVL1 can also

bind to the AU-rich element of Beclin-1, which is one of the

most important autophagy regulators (Zhang et al., 2018).

Inhibiting autophagy or ELAVL1 can decrease CIRBP-

mediated ferroptosis activation (Sui et al., 2021). Therefore,

ELAVL1 may be a key molecule that connects ferroptosis and

autophagy following organ transplantation. And other studies

suggested that pyroptosis might affect primary graft dysfunction.

Lin et al. indicated that inhibiting pyroptosis relieves pulmonary

IRI (Fei et al., 2020). Recently, some studies have shown the

interaction between autophagy and pyroptosis in transplant-

associated IRI. As a herbal extract, baicalein is useful in

treating IRI. Mechanically, baicalein-mediated autophagy

inhibits pyroptosis and endoplasmic reticulum stress, which

further alleviates in IRI model (Wu et al., 2020). Another

study also reported that autophagy and pyroptosis took part

in cerebral IRI together, but the specific mechanism remains

unclear (Liu et al., 2021). Since NLRP3, mTOR, and STING

concurrently participate in autophagy and pyroptosis, we

speculate they may play important roles in regulating graft

cell death (Li M. Y. et al., 2019; Liu J. J. et al., 2020; Wu C.

et al., 2021; Zhang R. et al., 2021).

5 Conclusions and prospects

The success/failure of organ transplantation largely

depends on the effective control of graft rejection response.

Although many researchers believe that the adaptive immune

system is the core factor affecting transplantation rejection,

the role of innate immunity in this process is increasingly

concerned. The cell receptors can recognize surgical

mechanical injury and graft ischemia-reperfusion injury,

thus causing inflammation, oxidative stress, cell death and

triggering adaptive immunity. Autophagy affects the release of

immune mediators by eliminating intracellular toxic

substances and then regulates inflammation, oxidative

stress, cell death and innate immune signalling pathway. As

one of the most commonly used autophagy inducers,

rapamycin is widely believed to be effective in alleviating

immune rejection after organ transplantation (Tonshoff,

2020). However, since autophagy is a “double-edged

sword”, the benefits it brings and its potential threats are

two sides of the same coin. A study also shows that

chloroquine, as an autophagy inhibitor, prolongs murine

skin and heart allograft survival by up-regulating CTLA-4

expression (Cui et al., 2020). Unfortunately, this study did not

consider the changes of autophagic flux during the whole

process. The dynamics and roles of autophagy in different

graft transplants remain controversial and elusive. We

hypothesized that different cell types, injury levels, stress

intensity and duration might ultimately affect the function

of autophagy. It seems that low-level transplant stress will

trigger protective autophagy, which contributes to

maintaining homeostasis. Under severe transplant stress

(such as prolonged ischemia or severe reperfusion injury),

however, autophagy always leads to aggravated inflammatory

response, oxidative damage, and cell death. In view of the fact

that most studies still focus on the observation of autophagy

activity during organ transplantation, the specific

mechanisms responsible for the interaction between

autophagy and innate immunity are still not well

understood. In addition, organ transplantation is a complex

process that will trigger all kinds of stress, such as mechanical

injury, mucosal injury ischemia, hypoxia, hyperoxia and

bacterial translocation. However, most studies focus on just

one of these factors but ignore the combined effect of these

stimuli on autophagy. Therefore, choosing an appropriate

experimental model is crucial for us to properly understand

the role of autophagy in graft transplants. This review

summarizes how autophagy regulates these processes

following organ transplantation. Firstly, some important

autophagy-related proteins can directly interact with PRRs

or the signalling molecule downstream of PRRs, including

ATG16L1-NOD1, ATG5/12-RIG-I, TRAF6-Beclin-1, et al. As

a result, autophagy is involved in regulating innate immune

signal transduction in organ transplantation. Secondly,

autophagy regulates inflammation response and oxidative

stress by directly degrading pro-inflammatory cytokines

and oxidizing intermediates or targeting NLRP3, type II

interferon and PI3K signalling during multiple graft

transplants. In addition, autophagy contributes to various

cell death forms to influence primary graft dysfunction.

Therefore, exploring these key programs and signalling

molecules will help us reveal how autophagy regulates graft

rejection from the perspective of innate immunity.
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