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Background: Anti-programmed cell death 1/programmed cell death

ligand 1 (PD1/PDL1) therapy is an important part of comprehensive

cancer therapy. However, many patients suffer from non-response to

therapy. Tumor neoantigen burden (TNB) and cancer stemness play

essential roles in the responsiveness to therapy. Therefore, the

identification of drug candidates for anti-PD1/PDL1 therapy remains an

unmet need.

Methods: Three anti-PD1/PDL1 therapy cohorts were obtained from GEO

database and published literatures. Cancer immune characteristics were

analyzed using CIBERSORTX, GSVA, and ESTIMATE. WGCNA was employed

to identify the gene modules correlated with cancer TNB and stemness. A

machine-learning method was used to construct the immunotherapy

resistance score (TSIRS). Pharmacogenomic analysis was conducted to

explore the potential alternative drugs for anti-PD1/PDL1 therapy

resistant patients. CCK-8 assay, EdU assay and wound healing assay were

used to validate the effect of the predicted drug on cancer cells.

Results: The therapy response and non-response cancer groups have

different microenvironment features. TSIRS was developed based on

tumor neoantigen and stemness. TSIRS can effectively predict the

outcomes of patients with anti-PD1/PDL1 therapy in training, validation

and meta cohorts. Meanwhile, TSIRS can reflect the characteristics of

tumor microenvironment during anti-PD1/PDL1 therapy. PF-4708671 is

identified as a potential alternative drug for patients with resistance to anti-

PD1/PDL1 therapy. It possesses significant inhibitive effect on the

proliferation and migration of BGC-823 cells.
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Conclusion: TSIRS is an effective tool in the identification of candidate patients

whowill be benefit from anti-PD1/PDL1 therapy. Small molecule drug PF-4708671

has the potential to be used in anti-PD1/PDL1 therapy resistant patients.
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tumor neoantigen burden, stemness, immunotherapy, drug resistance, prognostic
model

Introduction

In recent years, the clinical application of immunotherapies,

especially immune checkpoint inhibitors, has brought

revolutionary advancements in the comprehensive cancer

therapy (Yang, 2015; Riley et al., 2019; He and Xu, 2020).

Programmed cell death 1/programmed cell death ligand 1

(PD1/PDL1) axis plays an important role in tumor

progression and immune surveillance evasion (Chamoto et al.,

2017; Iwai et al., 2017). CD8 T cells are the major conductor of

cancer cell-eliminating (Chen and Mellman, 2013). In the

immune microenvironment, the interaction of PD1 and its

ligand PDL1 inhibits the activation of CD8 T cells and

promotes cancer to evade from the immune mediate tumor

elimination. Anti-PD1/PDL1 treatment is the therapeutic

strategy that targets cancer immune evasion (Marin-Acevedo

et al., 2018). Anti-PD1/PDL1 drugs such as nivolumab,

pembrolizumab and atezolizumab were proved by Food and

Drug Administration (FDA) in the treatment of solid tumor and

brought long-term clinical benefits to patients (Robert et al.,

2015; Hodi et al., 2018; Schmid et al., 2018; Larkin et al., 2019).

However, the high non-response rate to PD1/PDL1 blockade

remains a problem in the clinical practice (Poznanski et al.,

2021). Meanwhile, a non-negligible proportion of patients will

develop drug resistance and suffer from the side effect of anti-

PD1/PDL1 therapy (Horn et al., 2017; Anagnostou et al., 2019).

These disadvantages of PD1/PDL1 blockade limited its clinical

application. Thus, there is an urgent need to identify the

candidates who will benefit from anti-PD1/PDL1 therapy.

The tumor immune microenvironment plays a pivotal role in

anti-PD1/PDL1 therapy (Lei et al., 2020). The heterogeneity of

tumor immune microenvironment is the major mechanism of

resistance to anti-PD1/PDL1 therapy (Lei et al., 2020). According

to the microenvironment characteristics and the potential

immunotherapy responsiveness, Chen DS et al. divided the

cancer immune microenvironment into three subtypes:

“immune inflamed”, “immune excluded”, and “immune

desert” (Chen and Mellman, 2017). Similarly, Duan Q et al.

classified tumors into hot tumors and cold tumors based on the

immune infiltration status to predict the clinical efficiency of

immunotherapy (Duan et al., 2020). Therefore, revealing the

characteristics of tumor microenvironment is important for the

rational use of anti-PD1/PDL1 agents.

Cancer stemness can reflect the potential of cancer in self-

renewal and dedifferentiation (Gasch et al., 2017). This characteristic

was originally derived from the normal stem cells that possess the

ability to develop into all cell types (Takahashi and Yamanaka,

2006). As cancer progress, cancer cells will gradually change their

differentiated phenotype and obtain progenitor-like and stem-cell-

like characteristics (Friedmann-Morvinski and Verma, 2014; Ge

et al., 2017). These dedifferentiation related features of cancer play

essential roles in the cancer distant metastasis and are potential

therapeutic targets for immunotherapy (Chen et al., 2021; Unver,

2021). In 2018, Malta et al. developed mRNAsi, a robust cancer

stemness calculating tool based on the PCBC dataset, which

provides an opportunity to evaluate the stemness of solid tumors

(Malta et al., 2018).

Tumor neoantigen burden (TNB) is also an effective

indicator in predicting the responsiveness of patients during

anti-PD1/PDL1 therapy (Wang J. Q. et al., 2021). TNB is

defined as the number of neoantigens per MB in the genome

region (Wang et al., 2019). Since not all antigens caused by

somatic mutations can be processed, presented, and recognized

by T cells, TNB is considered as a better biomarker than tumor

mutation burden (TMB) for predicting the efficiency of anti-

PD1/PDL1 therapy (Coulie et al., 2014). Patient-specific

neoantigens that generated by tumor-specific mutations are a

major factor affecting the efficiency of clinical immunotherapy

(Schumacher and Schreiber, 2015). For example, high TNB

predicts a better prognosis for non-small cell lung cancer in

anti-PD1/PDL1 therapy (Rizvi et al., 2015). Meanwhile, TNB also

performs well in predicting responsiveness of other

immunotherapy strategies, including anti-CTLA4 therapy and

adoptive T cell therapy (Van Allen et al., 2015; Lauss et al., 2017).

TMB reflects cancer mutation frequency, while TNB specifically

reflect the mutations resulting in the production of neo-antigens

which can be presented to T cells (Jardim et al., 2021). Thus, TNB

is an effective hallmark in predicting cancer immune

microenvironment status and the potential for

immunotherapy response (McGranahan et al., 2016).

The rapid development of big data provides us the opportunity

to apply themachine-learningmethods to promote clinical precision

therapy. In order to facilitate individualized anti-PD1/PDL1 therapy,

our study aims to predict cancer immune characteristics and patient

prognosis during anti-PD1/PDL1 therapy by integrating cancer

stemness and TNB features. In this study, we first obtained the

multi-omics data and clinic information from several anti-PD1/

PDL1 therapy cohorts. Next, we integrated the characteristics of

cancer stemness and cancer TNB, and conductedWGCNA analysis

to identify the module correlated with these characteristics.
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Subsequently, the tumor neoantigen and stemness based

immunotherapy resistance score (TSIRS) was constructed using

machine learning methods to predict the prognosis of patients with

anti-PD1/PDL1 therapy. The TSIRS was validated in multiple

validation cohorts. We then analyzed the therapy response

related microenvironment heterogeneity and the correlation

between immune features and TSIRS. Finally, we explored the

clinical application potential of PF-4708671.

Methods

Data acquisition

In the training cohort, multi-omics data (including TNB and

TMB) and clinic information (including prognosis, immune

subtypes, and IC subtypes) of metastatic urothelial cancer

immunotherapy cohort-IMvigor210 were obtained based on

the R package “IMvigor210CoreBiologies” (Mariathasan et al.,

2018). IMvigor210 cohort was derived from the study by Sanjeev

Mariathasan et al. (Mariathasan et al., 2018). Samples were

divided into different IC subtypes and immune subtypes. IC

subtypes were divided according to the PD-L1 expression on

immune cells assessed by SP142 immunohistochemistry assay.

IC0: <1%, IC1:≥1% and <5%, IC2+≥5%. Immune subtypes were

divided based on the tumor microenvironment status. Inflamed

and IC2+ subtypes have the best immunotherapy responsiveness,

while desert and IC0 subtypes have the worst immunotherapy

responsiveness in their respective classifications. As for the two

validation cohorts, transcriptome data and clinic information of

GSE91061 cohort (melanoma immunotherapy cohort) were

acquired from GEO. The clinical information and

transcriptome data of David A. Braun cohort (clear cell renal

cell carcinoma immunotherapy cohort) were obtained from the

work of David A. Braun et al. (Braun et al., 2020). Meta cohort

was constructed by R package “SVA”. To evaluate cancer

stemness, the gene expression profiles of stem cells were

acquired from the Progenitor Cell Biology Consortium

(PCBC, https://progenitorcells.org/) via R package “synapser”.

Cancer immune microenvironment
analysis

To calculate the infiltration level of the immune cells, we applied

the deconvolution algorithm “CIBERSORTx” by CIBERSORTx

(https://cibersortx.stanford.edu/) (Newman et al., 2019). The

immune score, stromal score and ESTIMATE score were

calculated via the algorithm “ESTIMATE”. Detailed information of

cancer immune circle related pathways was derived from the database

TIP (Xu et al., 2018). Cancer immune circle related pathway activity

was measured by algorithm “GSVA” (Hänzelmann et al., 2013).

Cancer stemness analysis

The one-class logistic regression (OCLR) algorithm based on the

gene expression profiles of stem cells viaRpackage “glmnet”was used

to estimate the stemness of cancer (Engebretsen and Bohlin, 2019).

Detailed process of the stemness index calculation was conducted

according to the research of et al. (Malta et al., 2018). The stemness

index generated by the algorithm was defined as mRNAsi.

Weighted correlation network analysis

To identify the co-expressed gene modules related to the cancer

stemness and the tumor neoantigen load, we applied the R package

“WGCNA” to construct the gene co-expression network (Langfelder

and Horvath, 2008). The soft-threshold β value of the co-expression

networkwas selected as 5. Adjacencymatrix was transformed into the

topological overlap matrix (TOM). MinModuleSize was set as 100.

Enrichment analysis

Enrichment analysis was applied to analyze the biology

function mediated by the module component genes, the.

Metascape (https://metascape.org/) was used to analyze and

visualize the result of the enrichment analysis (Zhou et al., 2019).

Construction of the model to predict
immunotherapy responsiveness

To recognize the gene modules significantly correlated with

cancer neoantigen load and cancer stemness, we analyzed the

correlation between gene module and TNB, mRNAsi, TMB,

therapy responsiveness, respectively. Genes of modules that

significantly correlated with the above features were selected.

Then, the stepwise Cox model was implemented for the further

gene selection. Stepwise algorithm was conducted in the AIC

(Akaike information criterion) by R package “survival”.

Bayesian regression was conducted to calculate the

coefficients of the genes and selected the candidate genes.

Bayesian regression was conducted by R package

“spBayesSurv” (Zhang et al., 2019). Finally, principal

component analysis (PCA) was conducted to identify the

tumor heterogeneity related genes. The tumor neoantigen

and stemness based immunotherapy resistance score (TSIRS)

was determined as follows:

TSIRS � ∑
n

i�1
eipci

ei represents the expression level of the selected genes. ci
represents the coefficient of the selected genes.
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Pharmacogenomic analysis

The transcription data of cancer cell lines and the targets of the

anti-tumor drugswere downloaded fromGenomics ofDrug Sensitivity

in Cancer (GDSC, http://www.cancerrxgene.org/downloads) (Yang

et al., 2013). Spearman correlation analysis was conducted to

analyze the correlation between our TSIRS and drug sensitivity.

Spearman correlation was used to analyze the correlation between

IC50 and TSIRS. p < 0.05 was considered statistically significant.

Cell cultural and CCK-8 assay

BGC-823 cells were cultured with Dulbecco’s Modified Eagle’s

Medium (HyClone, UT, USA) containing 10% FBS (Excell Bio,

Taicang, China) and penicillin (Beyotime, Shanghai, China) at 37°C

and 5% CO2. The cells were treated with different doses of PF-

4708671 (MedChemExpress, Shanghai, China) for 48 h. The

viability of BGC-823 cell was detected using CCK-8 assay kit

(Beyotime, Shanghai, China). The procedure followed the

manufacturer’s instructions. The OD450 value was detected.

EdU assay

The proliferation of BGC-823 cells was detected using EdU

Kit (RiboBio, Guangzhou, China). The cells were incubated in

EdU culture medium (50 μM) for 2 h, fixed with

paraformaldehyde (4%), and penetrated with Triton X-100

(0.5%). The nucleus was stained by DAPI reagent.

Wound healing assay

BGC-823 cells in each group were treated with or without PF-

4708671 and then administered with mitomycin for 1 h to inhibit

cell proliferation. The wounds were created using a pipette tip. The

cells were washed by PBS and then the cultural medium was added.

The images were taken at 0, 24 and 48 h after scratching.

Statistical analysis

Continuous variables between the two groups were compared

byWilcoxon rank sum. The prognosis of patients in the two groups

was compared by Log-rank test. TimeROC analysis was conducted

to analyze the efficiency of the prediction indexes. The correlation of

two continuous variables was analyzed by the Spearman correlation

analysis. For the analysis of cell-line assay, the difference between

two groups was compared using student-t test. If not specially

mentioned, p < 0.05 was considered as statistically significant.

Results

Characteristics of tumor
microenvironment in the response and
non-response groups

Tumor microenvironment plays a pivotal role in the

effectiveness of the immunotherapy (Tomaszewski et al.,

2019; Vitale et al., 2019). Thus, we analyzed the

microenvironment features of the response and non-

response groups. First, we compared the infiltration levels

of immune cells in the tumor microenvironment in the

response group and non-response group. We found

significantly increased levels of M1 macrophages, activated

NK cells, activated CD4 memory cells, follicular helper T cells

and gamma delta T cells in the immunotherapy response

group (Figure 1A). When comparing the activity of cancer

immune circle related process in two groups, we found that

the activity of the “Killing of cancer cells” process was

significantly higher in the response group than in the non-

response group (Figure 1B). Next, we analyzed the expression

level of immune checkpoints in the two groups. The results

demonstrated that the response group has a higher expression

level of LAG3 than the non-response group (Figure 1C).

ESTIMATE algorithm was applied to evaluate the immune

status of the two groups. However, the two groups did not

show significant differences in Immune score, Stromal score,

and ESTIMATE score (Figure 1D). We also analyzed the

somatic mutation features of the two groups. TMB and

TNB were significantly higher in the response group

compared with the non-response group (Figures 1E,F).

Construction of the TSIRS

First, we conducted the WGCNA analysis to identify the

gene modules correlated with TNB and stemness of cancer.

Sample clustering tree was shown in Figure 2A. Then, a

network was constructed with a soft threshold of 5 (Figures

2B,C). Next, we built the adjacency matrix and constructed the

TOM (Figure 2D). Finally, a total of 26 modules were

identified. Among all the 26 modules, module

“MElightgreen” was significantly correlated with cancer

TNB, mRNAsi and therapy responsiveness (Figure 2E).

Thus, genes in module “MElightgreen” were selected for

the construction of TSIRS. Candidate genes for TSIRS

construction in MElightgreen module were identified and

their coefficients were calculated by using a machine-

learning-based method (Figure 2F). The TSIRS was

determined as the sum of the product of gene expression

level and coefficient.
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FIGURE 1
Comparison of microenvironment characteristics of the response and non-response group in IMvigor210 cohort, The immune infiltration level
(A), cancer immune circle related process activity (B), immune checkpoint expression (C), ESTIMATE score (D), TMB (E) and TNB (F) in the response
and non-response groups. *p < 0.05, **p < 0.01, ***p < 0.001. TMB: Tumor mutation burden. TNB: Tumor neoantigen burden.
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Enrichment analysis of the module
component genes

To investigate the biological function medicated by the

genes of MElightgreen module, we applied enrichment

analysis via Metascape (Figure 3A). The top 3 enriched

terms were “transport of small molecules”, “transport of

bile salts and organic acids, metal ions and amine

compounds” and “kidney epithelium development”. Our

results indicated that genes in the module were enriched

FIGURE 2
WGCNA analysis to identify the genes module correlated with cancer TNB and mRNAsi for TSIRS construction. (A) Clustering dendrogram of
samples. (B) Scale-free index for different soft-thresholds. (C) Mean connectivity for different soft-thresholds. (D) Clustering dendrogram of
modules. (E)Heatmap of the correlation between eigengene and gender, TMB, TNB, therapy responsiveness andmRNAsi. (F) Coefficient of selected
genes. TMB, Tumor mutation burden; TNB, Tumor neoantigen burden; mRNAsi, mRNA stemness index.
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in the biology function of substance transport (Figure 3B).

Meanwhile, the results also indicated that the enriched

terms were enriched in the “Transport of the small

molecules” (Figure 3B). It implied that the small

molecules metabolic features of cancer may play an

essential role in the immunotherapy resistance.

FIGURE 3
Enrichment analysis revealed the biology functions mediated by module component genes. (A) Enrichment terms of the MElightgreen module
component genes. (B) Network of the enriched pathways.

Frontiers in Cell and Developmental Biology frontiersin.org07

Luo et al. 10.3389/fcell.2022.1003656

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1003656


FIGURE 4
TSIRS predicts patient prognosis in the training cohort. (A)Distribution of the high TSIRS group and the low TSIRS group in IMvigor210cohort. (B)
Comparison of patient prognosis of the high TSIRS group and the low TSIRS group in IMvigor210 cohort. (C) Patient therapy responsiveness rate of
the high TSIRS group and the low TSIRS group in IMvigor210 cohort. (D,E) Comparison of patient TSIRS in different immune (D) and IC (E) subtype.
(F,G)Correlation between TSIRS and TNB (F) andmRNAsi (G). (H)Comparison of patient cancer immune circle related process activity, immune
checkpoint expression and immune infiltration level. *p < 0.05, **p < 0.01, ***p < 0.001. TNB, Tumor neoantigen burden; mRNAsi, mRNA stemness
index.
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FIGURE 5
The prognosis effectiveness of TSIRS in GSE91061 cohort and David A. Braun cohort. (A)Distribution of the high TSIRS group and the low TSIRS
group in GSE91061 cohort. (B) Comparison of patient prognosis of the high TSIRS group and the low TSIRS group in GSE91061 cohort. (C) Patient
therapy responsiveness rate of the high TSIRS group and the low TSIRS group in GSE91061 cohort. (D) Distribution of the high TSIRS group and the
low TSIRS group in David A. Braun cohort. (E) Comparison of patient prognosis of the high TSIRS group and the low TSIRS group in David A.
Braun cohort. (F) Patient therapy responsiveness rate of the high TSIRS group and the low TSIRS group in David A. Braun cohort.

Frontiers in Cell and Developmental Biology frontiersin.org09

Luo et al. 10.3389/fcell.2022.1003656

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1003656


FIGURE 6
TSIRS predicts prognosis and microenvironment characteristics of patients during anti-PD1/PDL1 treatment, (A) Distribution of the high TSIRS
group and the low TSIRS group inmeta cohort. (B)Comparison of patient prognosis of the high TSIRS group and the low TSIRS group inmeta cohort.
(C) Patient therapy responsiveness rate of the high TSIRS group and the low TSIRS group in meta cohort. (D) Correlation between TSIRS and cancer
stemness, ESTIMATE Score, expression level of genes coding multidrug resistance related protein, cancer immune circle related pathway
activity, immune checkpoint expression and immune infiltration level. *p < 0.05, **p < 0.01, ***p < 0.001.
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Heterogeneity between the high TSIRS
group and low TSIRS group

First, we calculated the TSIRS in the training cohort. The

patients were divided into the high TSIRS group and low TSIRS

group (Figure 4A). We found that the prognosis was significantly

worse in the high TSIRS group (Figure 4B). The drug

responsiveness rate was also lower in the high TSIRS group

(Figure 4C). Next, we compared the TSIRS in samples of different

immune and IC subtypes. Among the 3 immune subtypes,

immune inflamed subtype has the lowest TSIRS (Figure 4D).

Meanwhile, IC2+ subtype was lowest TSIRS (Figure 4E).

Spearman correlation analysis indicated that TSIRS was

negatively correlated with cancer TNB and mRNAsi (Figures

4F,G). These results also indicated that the TSIRS can well predict

the responsiveness of immunotherapy. Next, we compared the

microenvironment characteristics between the high TSIRS group

and low TSIRS group (Figure 4H). Microenvironment

characteristics were significantly different in the high TSIRS

group and low TSIRS group, including cancer immune circle

related process activity, immune checkpoint expression, and

immune infiltration.

TSIRS well predicts patient prognosis and
therapy responsiveness in validation
cohorts

To further test the robustness of the TSIRS in predicting anti-

PD1/PDL1 therapy responsiveness, we calculated the TSIRS of

samples in GSE91061 cohort and David A. Braun cohort. The

samples of GSE91061 cohort and David A. Braun cohort were

classified into the high TSIRS group and the low TSIRS group,

respectively (Figures 5A,D). In the two external validation

cohorts, the high TSIRS group has the significantly worse

prognosis compared to the low TSIRS group (Figures 5B,E).

Furthermore, the therapy responsiveness rate of the high TSIRS

group was lower than the low TSIRS group in the two validation

cohorts (Figures 5C,F). Therefore, the TSIRS has high efficiency

in predicting the patient outcome during the anti-PD1/

PDL1 therapy.

TSIRS is a robust tool in predicting
responsiveness and cancer immune
features during the anti-PD1/PDL1 therapy

We then constructed the meta cohort based on the three anti-

PD1/PDL1 therapy cohorts. TSIRS of the meta cohort samples

was calculated. Next, meta cohort samples were divided into high

TSIRS and the low TSIRS group according to the calculated

scores (Figure 6A). Our result demonstrated that patients with

high TSIRS have significantly worse prognosis compared with

low TSIRS (Figure 6B). Meanwhile, high TSIRS patients have a

lower therapy responsiveness rate (Figure 6C). The result further

indicated the robustness of the TSIRS in predicting the

responsiveness and prognosis of patients with anti-PD1/

PDL1 therapy. We then analyzed the correlation between the

TSIRS and cancer microenvironment features (Figure 6D). We

found that the TSIRS was negatively correlated with cancer

stemness (mRNAsi) and positively correlated with the

expression of multi-drug resistance associated protein

(ABCC2, ABCC3, ABCC6 and ABCC10). This result

suggested that patients with resistance to anti-PD1/

PDL1 therapy may have potential multi-drug resistance

characteristics.

The identification of potential alternative
drugs for patients resistant to anti-PD1/
PDL1 therapy

To explore the potential alternative drugs for

immunotherapy resistant patients, we analyzed the correlation

between TSIRS and drug responsiveness in cancer cells. By

spearman correlation analysis, we identified 25 drugs whose

sensitivity is correlated with TSIRS (Figure 7A). The targets of

the 25 identified drugs were shown in Figure 7B. Among all the

selected drugs, the IC50 of PF-4708671 has the lowest correlation

coefficient with TSIRS, which suggests that PF-4708671 may be

the potential alternative for patients resistant to anti-PD1/

PDL1 therapy. Thus, PF-4708671 was selected for further

analysis. CCK-8 assay, EdU assay and wound healing assay

were conducted to validate the anti-cancer efficiency of PF-

4708671. The Results indicated that PF-4708671 can

effectively inhibit the proliferation and migration of cancer

cells (Figures 7C–H).

Discussion

Immunotherapy, especially anti-PD1/PDL1 therapy, is an

important component of current comprehensive cancer

treatment (Cramer et al., 2019; Ralli et al., 2020). Many

clinical trials have demonstrated that anti-PD1/PDL1 therapy

can achieve satisfactory clinical benefits for solid tumors (Robert

et al., 2015; Schmid et al., 2018). However, the high non-response

rate of anti-PD1/PDL1 therapy is a major application problem

(Rosenbaum et al., 2021). The underlying immune mechanism of

non-responsive to anti-PD1/PDL1 therapy is also not fully

understood. Thus, we developed a robust tool for predicting

anti-PD1/PDL1 therapy response and analyzed the immune

characteristics potentially associated with anti-PD1/

PDL1 therapy responsiveness.

First, we analyzed the immune heterogeneity across the

immunotherapy response group and non-response group. We
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FIGURE 7
The potential alternative drug for patients resistant to anti-PD1/PDL1 therapy, (A) The correlation between the TSIRS and drug IC50 value. (B)
Targeting pathways of the drugs. (C) The effect of PF-4708671 on the viability of cancer cells. (D) Representative images of EdU staining. Scale bar:
100 μm. (E) The effect of PF-4708671 on the proliferation ability of cancer cells. n = 6. (F) Representative images of wound healing assay. Scale bar:
400 μm. (G,H) The effect of PF-4708671 in cancer cells presented as the box plot (G) and line chart (H). n= 6. *p < 0.05, **p < 0.01, ***p < 0.001.
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found that the response group has a higher immune activity,

TNB and TMB than that in the non-response

group. Furthermore, the expression level of immune

checkpoint LAG3 is higher in the response group. Recent

studies demonstrated that high LAG3 expression associates

with the immune suppressive microenvironment (Andrews

et al., 2017). Meanwhile, LAG3 is a promising cancer therapy

target (Ruffo et al., 2019). These microenvironment

differences between the response group and non-response

group may contribute to the distinct clinical outcome of

the two groups and inferred potential therapy resistance

mechanism.

TNB and cancer stemness are two important indicators for

predicting the responsiveness of immunotherapy (Wang P.

et al., 2021; Unver, 2021). Thus, WGCNA was applied to

identify the gene modules correlated with TNB and cancer

stemness. In order to predict the responsiveness of patients to

anti-PD1/PDL1 therapy, a gene model was constructed based

on the identified gene modules using multiple machine-

learning methods. When comparing the biological features

of the high TSIRS group and the low TSIRS group, we found

that infiltration level of M1 microphage was significantly

different in the two groups. M1 microphage is the

macrophage with a pro-inflammatory phenotype that plays

an important role in maintaining anti-tumor immune

response (Najafi et al., 2019). This difference in immune

microenvironment may contribute to the non-response of

the high TSIRS group. In the validation cohorts, TSIRS also

effectively predicted the prognosis of patients with anti-PD1/

PDL1 therapy. Thus, TSIRS can be a potential tool for the

identification of anti-PD1/PDL1 therapy candidates in clinic

practice.

We also explored the potential of TSIRS in predicting the

characteristics of the cancer immune microenvironment.

Among the 9 multidrug resistance related proteins, TSIRS

was significantly positive correlated with the expression level

of 4 of them. The ABC protein family is the transport proteins

which is the driver of drug efflux across the cell membrane

(Wang P. et al., 2021). They play important roles in multidrug

resistance of cancer (Jadhao et al., 2021). Thus, the anti-PD1/

PDL1 therapy resistant cancer patients may exhibit multidrug

resistance. Meanwhile, TSIRS was significantly correlated with

the infiltration level of CD4 T cells (memory resting) and

expression level of TIGIT. It has been found that TIGIT can

enhance the activity of Treg cells and contribute to the

formation of tumor immune suppression

microenvironment (Chen et al., 2020). The expression of

TIGIT may associate with the resting status of CD4 T cells.

Thus, TSIRS can well predict immune status of tumor

microenvironment.

We next attempted to explore alternative drugs for

patients who did not benefit from anti-PD1/

PDL1 therapy. Pharmacogenomic analysis and cancer

cell-based experiment implied that PF-4708671 may be

potentially applied in the patients with high TSIRS. PF-

4708671 is a specific inhibitor of p70 ribosomal S6 kinase 1

(Park et al., 2015). Qiu ZX et al. indicated that PF-4708671

has the inhibitory effect on non-small cell lung cancer (Qiu

et al., 2016). Our results also revealed that PF-4708671 can

inhibit the proliferation and migration of cancer cells.

Therefore, PF-4708671 may be an adjuvant for patients

with high TSIRS.

The study still has some limitations. First, due to the lack

of the publicly available data of anti-PD1/PDL1 therapy, the

validation based on the data from immunotherapy cohorts

remains inadequate. Second, the in-depth in vitro and in

vivo experiment are needed to further validate the

application potential and anti-cancer mechanism of the

predicted drugs. Further biological studies are in demand

to explore the clinic translation potential of PF-4708671.

These deficiencies will be improved with the progress of

immunotherapy-related big data and the further studies.

In conclusion, our study provides a robust anti-PD1/

PDL1 therapy resistance prediction tool-TSIRS based on

the TNB and stemness of cancer. The TSIRS can well

predict the prognosis and microenvironment features of

patients receiving anti-PD1/PDL1 treatment and has great

application potential in precision cancer therapy. For patients

with resistance to anti-PD1/PDL1 therapy, PF-4708671 may

be developed as a candidate for cancer comprehensive

treatment.
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