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Atheroclerosis refers to a chronic inflammatory disease featured by the accumulation of
fibrofatty lesions in the intima of arteries. Cardiovasular events associated with
atherosclerosis remain the major causes of mortality worldwide. Recent studies have
indicated that ferroptosis, a novel programmed cell death, might participate in the process
of atherosclerosis. However, the ferroptosis landscape is still not clear. In this study, 59
genes associated with ferroptosis were ultimately identified in atherosclerosis in the intima.
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed for functional annotation. Through the construction
of protein–protein interaction (PPI) network, five hub genes (TP53, MAPK1, STAT3,
HMOX1, and PTGS2) were then validated histologically. The competing endogenous
RNA (ceRNA) network of hub genes was ultimately constructed to explore the regulatory
mechanism between lncRNAs, miRNAs, and hub genes. The findings provide more
insights into the ferroptosis landscape and, potentially, the therapeutic targets of
atherosclerosis.
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INTRODUCTION

Coronary artery disease (CAD) and stroke, caused by atherosclerosis (AS), are considered as types of
chronic inflammatory arterial diseases characterized by the accumulation of lipids and the formation
of atherosclerotic plaques (Benjamin et al., 2017; Libby et al., 2019). Endothelial dysfunction and low-
density lipoprotein cholesterol (LDL) infiltration into the subendothelial layer of arteries initiated
atherogenesis (Peluso et al., 2012; Förstermann et al., 2017; Kattoor et al., 2017). Lipid peroxidation
played a significant part in the pathogenesis of AS (Gisterå and Hansson, 2017).

Ferroptosis is a form of programmed cell death definitely modulated by iron-dependent lethal
lipid peroxidation. Morphologically, ferroptosis is characterized by vanished mitochondria
cristae and condensed and ruptured mitochondrial membranes (Mou et al., 2019). Iron overload
or the inactivation of glutathione peroxidase 4 (GPX4) promoted reactive oxygen species (ROS),
which hastened lipid peroxidation, eventually leading to ferroptosis (Tang et al., 2021). ROS was
implicated in endothelial dysfunction, which was the initiating link of AS (Maiocchi et al., 2021).
Recent studies have elucidated the status of ferroptosis in AS (Bai et al., 2020; Stockwell et al.,
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2020; Zhou et al., 2021). Ferrostatin-1 (Fer-1) alleviated the
atherosclerotic lesion in high-fat diet (HFD)-fed ApoE−/−

mice, probably via attenuating the endothelial dysfunction
induced by oxidation-modified LDL (ox-LDL) (Bai et al.,
2020). Prostaglandin-endoperoxide synthase 2 (PTGS2), a
ferroptosis-related protein, positively correlated with the
severity of AS (Zhou et al., 2021). However, how ferroptosis
regulates the progress of AS still requires further investigation.

In the present study, datasets were downloaded from the Gene
Expression Omnibus (GEO). Afterward, bioinformatics analyses
were performed to select differentially expressed genes (DEGs).
Combined with ferroptosis-related genes (FRGs), five hub
genes—TP53, MAPK1, STAT3, HMOX1, and PTGS2—were
ultimately screened and validated histologically.

MATERIALS AND METHODS

Data Collection and Acquisition of
Ferroptosis-Related Gene
The RNA expression data were collected from the GEO (http://
www.ncbi.nlm.nih.gov/geo/) database with series numbers
GSE97210, GSE125771, GSE41571, and GSE28829. FRGs
that drive, suppress, or mark ferroptosis were retrieved
from the public FerrDb database (http://www.zhounan.org/
ferrdb). After removing repetitive genes, 149 FRGs that were
validated by experiments were eventually obtained for
subsequent analyses.

Identification of Differentially Expressed
Ferroptosis-Related Genes
The “AnnoProbe” package was employed in the re-annotation of
the series matrix. The “limma” package in R software was utilized
to calibrate the microarray data and identify the DEGs between
the atherosclerotic plaques and normal arterial intimae. The
messenger RNAs (mRNAs) and long non-coding RNAs
(lncRNAs) that meet the defined criteria, |log2FC| ≥ 1 and
adjusted p < 0.05, were considered as DEGs and differentially
expressed lncRNAs (DElncRNAs), respectively. Thereafter, the
intersecting genes between DEGs and FRGs were defined as the
differentially expressed ferroptosis-related genes (DE-FRGs). The
DEGs and DElncRNAs were displayed in volcano plots based
on the “ggplot2” package. The number of DE-FRGs was shown
in a Venn diagram using the “Venndiagram” package. The
expressions of DE-FRGs were visualized in a heatmap with the
“ggplot2” package.

Gene Set Enrichment Analysis in
Atherosclerotic Plaque
Gene set enrichment analysis (GSEA) was employed to detect the
related signaling pathways in atherosclerotic plaque progression,
which was performed using the OmicStudio online tool (http://
www.omicstudio.cn/tool). The significant gene sets that conform
to the nominal (NOM) p-value <0.05 and false discovery rate
(FDR) <25% were shown.

Functional Annotation and Pathway
Enrichment of DEGs and DE-FGRs
Gene Ontology (GO) biological process and Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotation
were performed using the Metascape website (http://
metascape.org). Biological process and KEGG pathway
enrichment analyses using the “ClusterProfiler” package
were performed to obtain insights into the potential
functions of the DEGs and DE-FRGs. The top 20 results
were shown in the enrichment scatter plots.

Construction of Protein–Protein Interaction
Network of DE-FRGs
The STRING database (http://string-db.org/) was employed to
analyze the interactions of the distinct DE-FRGs. Cytoscape
software 3.8.1 (http://cytoscape.org/) was then utilized to
construct and visualize the protein–protein interaction (PPI)
network. The molecular complexes were examined using the
MCODE algorithm. The top 5 genes of the PPI network were
defined as the hub genes, which were calculated based on the
maximum neighborhood component (MNC), degree, and edge
percolated component (EPC) algorithms by utilizing the
cytoHubba plug-in.

Identification of the Correlation of Hub
FRGs and Mitochondrial Function-Related
Genes
A total of 1,262 genes related to mitochondrial function were
obtained from the online database Integrated Mitochondrial
Protein Index (IMPI; https://mitominer.mrc-mbu.cam.ac.uk/
release-4.0/impi.do). The intersecting genes of the DEGs and
mitochondrial function-related genes (MFRGs) were defined
as the differentially expressed mitochondrial function-related
genes (DE-MFRGs). Pearson’s correlation analysis between
the hub genes and DE-MFRGs was performed utilizing the
“stats” package. All results were displayed in a heatmap.

Validation of Hub Gene Expression of
Atherosclerotic Plaque Datasets
The three microarray datasets of atherosclerotic plaques
(GSE28829: n � 29, advanced vs. early plaques; GSE125771:
n � 16, high vs. low calcified plaques; and GSE41571: n � 11,
ruptured vs. stable plaques) that were retrieved from the GEO
database were used to verify the expressions of the hub genes.
The “limma” package was also applied to identify the DEGs
with thresholds of |log2FC| ≥ 1 and adjusted p < 0.05. The
results were visualized in volcano plots and the hub genes
were marked.

Atherosclerosis Animal Model Procedure
The animal experiment was reviewed and approved by the
Animal Ethics Committee, which was subordinate to the First
Affiliated Hospital of Sun Yat-Sen University (permit no.
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2021593). Five-week-old male Apoe−/− mice (purchased from
GemPharmatech Co., Ltd., Nanjing, China) were subsequently
randomly divided into two groups. The mice of the control
group were fed with normal chow diet for 12 weeks; the mice of
the high-fat group were fed a high-fat diet for 12 weeks. All the
mice were sacrificed after feeding for 12 weeks, and the heart
tissues, including aortic roots, were collected.

Hematoxylin and Eosin, Oil Red O, and
Masson Staining
Hematoxylin and eosin (HE) and Oil Red O staining were
conducted in accordance with the methods mentioned in a
previous study (Jiang et al., 2020). The atherosclerotic lesions
in the aortic valve of mice were observed with a microscope
(CKX53; Olympus Optical Co., Ltd., Tokyo, Japan).

Immunohistochemistry Staining of Hub
Gene Validation
For immunohistochemistry (IHC), the heart tissueswere harvested and
fixed for 24 h with 10% neutral buffered formalin before the optimal
cutting temperature (OCT) embedding procedure. Then, the
embedded blocks were processed as 5-μm cryosections that were
fixed in 4% paraformaldehyde (PFA) for another 10min. After
washing with phosphate-buffered saline (PBS) three times, antigen
retrieval was followed by the heat method for 3min. The slides were
washed in PBS for another three times, blocked in 5% bovine serum
albumin (BSA) for 1 h at 37°C, and then incubated with HOMX1
antibody (GB11549; Servicebio, Wuhan, China) at 1:600 dilution,
MAPK1 antibody (GB11370-1; Servicebio) at 1:200 dilution, PTGS2
antibody (GB11077-1; Servicebio) at 1:500 dilution, TP53 antibody
(10442-1-AP; Proteintech, Wuhan, China) at 1:200 dilution and
STAT3 antibody (ET1607-38; Huabio) at 1:100 dilution at room
temperature for 60min. Staining followed the IHC kit protocol of
Servicebio, and the nuclei were visualized by hematoxylin staining and
examined using the CKX53 microscope (Olympus Optical Co., Ltd.).

Construction of the lncRNA–miRNA–mRNA
ceRNA Network
The co-expressions of DElncRNAs and hub genes were
analyzed with Pearson’s correlation. Only DElncRAN–hub gene
pairs with a correlation coefficient >0.5 and p < 0.05 were selected.
Subsequently, the ENCORI dataset (starbase.sysu.edu.cn)
was employed to determine potentially interacting lncRNA–
microRNA (miRNA) pairs. The miRanda, TargetSacan, and
ENCORI databases were chosen to identify miRNA–mRNA
pairs. Finally, lncRNA–miRNA–mRNA networks, which
comprised five hub FRGs, were ultimately constructed.

RESULTS

Identification of DE-FRGs and DElncRNAs
in Atherosclerotic Plaques
To investigate FRGs differentially expressed in atherosclerotic
plaques, 149 FRGs were extracted from FerrDb, a database for

regulators, markers, and diseases associated with ferroptosis.
Through differential expression analysis of GSE97210, 4,017
lncRNAs and 6,754 genes were significantly differentially
expressed in atherosclerotic plaques compared with normal
intimae, with thresholds of |log2FC| ≥ 1 and adjusted p < 0.05
(Figures 1A, B). After taking the intersection of DEGs and
FRGs, a total of 59 FRGs expressed differentially were defined as
DE-FRGs (Figure 1C). The expressions of the 59 DE-FRGs were
visualized in a heatmap (Figure 1D).

Gene Set Enrichment Analysis
To compare the distinct pathways between the two groups, GSEA
was subsequently conducted. The Toll-like receptor pathway,
NOD-like receptor pathway, transforming growth factor beta
(TGF-β) signal pathway, Janus kinase (JAK)/signal transducer
and activator of transcription (STAT) signal pathway, cell cycle,
vascular smooth muscle contraction, and cytosolic DNA sensing
pathway were significantly enriched in atherosclerotic plaques
(Figure 2).

Functional Enrichment Analysis of DEGs
and DE-FRGs
Based on GO and KEGG pathway analyses, exploration of the
potential biological functions and pathways of DEGs was
conducted for the two groups. The top 20 results were shown
in the enrichment scatter plots. Based on GO analysis, the DEGs
were significantly enriched in related processes such as positive
regulation of IκB kinase/NF-κB signaling and regulation of
autophagy (Figure 3A). Investigation of the KEGG pathway
analysis primarily suggested that these DEGs were involved in
TGF-β signaling pathway, chemokine signaling pathway, and
vascular smoothmuscle contraction (Figure 3B). In addition, GO
analysis was performed on DE-FRGs, for which the results
indicated that the DE-FRGs were involved in iron transport,
autophagy, and negative regulation of the Toll-like pathway
(Figure 3C). As expected, these DE-FRGs were significantly
enriched in ferroptosis, mitophagy, and autophagy, as
indicated by the KEGG pathway analysis (Figure 3D).

Protein–Protein Interaction Network
Construction and Visualization
For the purpose of exploring the interactions between each DE-
FRG, all DE-FRGs were submitted to the STING database, which is
well known for PPI. The PPI networkwas established and visualized
using Cytoscape 3.8.1. After removing the isolated DE-FRGs, the
PPI networks of DE-FRGs were displayed including 54 nodes and
190 edges (Figure 4A). According to the scores calculated using the
MCODE algorithm, the PPI networks were divided into two
clusters (Figure 4B). The first cluster was composed of nine
genes (TP53, CD44, STAT3, CAV1, TLR4, IFNG, MAPK1, and
PTGS2), whereas the second cluster consisted of six genes (LAMP2,
NQO1, SQSTM1, ATG13, HMOX1, and ATF4). Subsequently, the
top 5 intersecting genes analyzed based on the MNC, degree, and
EPC algorithms were selected as the hub genes, which included
TP53, MAPK1, STAT3, HMOX1, and PTGS2 (Figure 4C).
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Identification of the Relationship Between
Hub Genes and Mitochondrial Function
Since ferroptosis is always accompanied by mitochondrial
dysfunction (Battaglia et al., 2020; Otasevic et al., 2021), the
relationship between hub genes and MFRGs was analyzed.
Among the 1,262 MFRGs, 505 genes were eventually

classified as DE-MFRGs (Supplementary Figure S1A). A
total of 210 DE-MFRGs were upregulated and 295 were
downregulated. Pearson’s correlation analysis showed that
most DE-MFRGs were highly correlated with the hub
FRGs, whether positive or negative (|r| ≥ 0.5, p < 0.05)
(Supplementary Figure S1B).

FIGURE 1 | Identification of differentially expressed ferroptosis-related genes (DE-FRGs) and differentially expressed long non-coding RNAs (DElncRNAs). (A,B)
Volcano plots displaying significantly differentially expressed genes (A) and lncRNAs (B) in atherosclerotic plaques. Red dots represent the upregulated genes and blue
dots denote the downregulated genes, with thresholds of |log2FC| ≥ 1 and adjusted p < 0.05. (C) Venn diagram displaying the DE-FRGs. (D) Heatmap displaying the
expressions of the 59 DE-FRGs in atherosclerotic plaques. Red bricks indicate the more highly expressed FRGS and blue bricks indicate lower expression.
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Validation of Hub Gene Expression in
Atherosclerotic Plaque
To find out whether the hub genes were differentially expressed
in other types of atherosclerotic plaques, another three
microarray datasets (GSE28829, GSE125771, and GSE41571)
were chosen for analysis. A total of 320 DEGs were identified
between early and advanced plaques, 34 between low and highly
calcified plaques, and 1,431 between ruptured and stable plaques
(Figures 5A–C). Only HMOX1 among the 5 hub genes was
consistently upregulated in advanced and ruptured
atherosclerotic plaques, which suggested that a higher level of
HMOX1 expression could predict more serious kinds of
atherosclerotic plaques. HMOX1 was also highly expressed in
highly calcified atherosclerotic plaques, although there was no
statistical significance. To determine the expression of the five
top-ranking hub genes in atherosclerotic plaques, a preclinical
model of AS was generated. Compared with the control, more
obvious atherosclerotic plaques and lipid accumulation were

observed in mice fed the Western diet. Likewise, atherosclerotic
plaques exhibited apparent fibrous caps, as revealed byMasson’s
stain (Supplementary Figure S2). As expected, HMOX1 and
PTGS2 were highly expressed in atherosclerotic plaques induced
by the Western diet (Figure 6). However, no differences in
MAPK1, TP53 and STAT3 were seen between the two groups.

Construction of the lncRNA–miRNA–mRNA
ceRNA Network
Based on the competitive endogenous RNA hypothesis,
lncRNA–miRNA–mRNA competing endogenous RNA
(ceRNA) networks were constructed to explore the functions
of lncRNAs acting as miRNA sponges in atherosclerotic plaques
(Figure 7). The co-expressed upregulated lncRNA and hub FRG
pairs were integrated into the upregulated ceRNA network with
the predicted miRNAs. This ceRNA network contained 1,439
lncRNA nodes, 184 miRNA nodes, 5 hub gene nodes, and
20,292 edges.

FIGURE 2 | Gene set enrichment analysis. GSEA in atherosclerotic plaques. NOM p < 0.05, FDR < 25%.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 8008335

Huang et al. Ferroptosis Gene Signature of Atherosclerosis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


DISCUSSION

In this study, we mainly concentrated on the role of ferroptosis in
the development of AS. A chronic and progressive disease of the
arteries, AS is characterized by the accumulation of lipid and/or
fibrous composition in the intima of arteries. Once the lipid-rich
plaques rupture, a stroke or heart attack might occur, which are still
the major causes of mortality worldwide (Benjamin et al., 2017). In
the initial stage of AS, LDL deposition into the intima was modified
by the oxidation (ox-LDL), which exhibited immunogenic and pro-
inflammatory properties (Tabas et al., 2007; Tabas and Bornfeldt,
2016; Bai et al., 2020; Stockwell et al., 2020; Zhou et al., 2021).
Ferroptosis was induced by excessive iron and lethal lipid
peroxidation (Bai et al., 2020; Stockwell et al., 2020; Zhou et al.,
2021). Excessive iron accelerated the production of ROS, which led
to lipid peroxidation via Fenton reaction, which is necessary for
ferroptosis (Pratt et al., 2011; Dev and Babitt, 2017; Stockwell et al.,
2017). Several studies have demonstrated that iron overload
bolstered the development of AS, and a low-iron diet or the
administration of iron chelators reduced the severity of AS in

preclinical models (Zhang et al., 2010; Hu et al., 2019; Cai et al.,
2020; Vinchi et al., 2020). Consistently, recent studies have
highlighted the importance of ferroptosis in AS. In vitro, ox-LDL
triggered the ferroptosis of human umbilical vein endothelial cells
(HUVECs) with elevated ROS generation and impaired viability,
which was rescued by the activation of PDSS2/Nrf2 signaling (Yang
et al., 2021). In addition, in a mouse model of AS, suppression of
ferroptosis by Fer-1 improved the ROS-stimulated lipid
peroxidation and endothelial dysfunction, thus attenuating the
atherosclerotic lesion (Bai et al., 2020).

We screened five ferroptosis-related genes—TP53, MAPK1,
STAT3, HMOX1, and PTGS2—that are probably implicated in
AS via bioinformatics analysis. The tumor suppressor p53
(TP53) is considered as a classical tumor suppressor. In
response to cellular stresses such as DNA damage, hypoxia,
oncogene activation, and ribosomal stress, activated TP53 could
boost cell cycle arrest, DNAdamage repair, various pathways of cell
death, and metabolic changes (Hafner et al., 2019). It was reported
that a TP53 mutation was involved in oncogenesis (Levine, 2020).
TP53 has been demonstrated to promote cancer ferroptosis

FIGURE 3 | Functional annotation of DEGs and DE-FRGs. (A) GO enrichment analysis of biological processes enriched by DEGs. (B) Annotation of pathway
enriched by DEGs. (C) GO enrichment analysis of biological processes enriched by DE-FRGs. (D) KEGG pathway enrichment analysis enriched by DE-FRGs.
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predominantly via regulating SLC7A11 expression and cystine
uptake (Jiang et al., 2015). Importantly, enhancing TP53 activity
protected against AS development in HFD-fed ApoE−/− mice via
regulating smooth muscle cell proliferation and apoptosis (Mercer
et al., 2005; Wu et al., 2014). TP53 is a well-known gene for the
tumor suppressor protein p53 that participates in AS (Guevara
et al., 1999; Merched et al., 2003), but is also involved in lipid
metabolism (Goldstein et al., 2012). Surprisingly, bioinformatics
analysis indicated the relatively low expression of TP53 in
atherosclerotic plaques. IHC staining of TP53 showed no
differences between mouse atherosclerotic plaques. It seems that
the expression of TP53 could not distinguish the deteriorated
plaques. This result might be due to the diversity of plaque
lesions, for which further experimental evidence is needed.
Heme oxygenase (HMOX1), a rate-limiting enzyme of heme
degradation process, controls the generation of biliverdin, iron,
and carbonmonoxide (Stocker and Perrella, 2006).HMOX1, as the
downstream of Nrf2, is involved in the maintenance of cellular
homeostasis, but its role in ferroptosis is controversial in cancer
cells and renal proximal tubule cells (Wang et al., 2021). The
different effects may be related to different cells. In vascular cells,
the role of HMOX1 is protective in endothelial dysfunction (Nitti
et al., 2020). Our study suggested that a higher level of HMOX1
expression potentially predicts the much more serious types of
atherosclerotic plaques, but independently associated with
calcification. Based on this, the effect of HMOX1 involved in
ferroptosis and AS in vitro was investigated to further explore
the mechanism responsible. MAPK1 encoded mitogen-associated
protein kinase 1 (MAPK1), a component of the mitogen-activated
protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK) signaling pathway, which stimulated ferroptosis via
increasing ROS production (Liu et al., 2021; Su et al., 2019).
The downregulation of the lncRNA MALAT1 could
significantly improve the cardiac function in acute
myocardial infarction and hypoxia by inhibiting the ERK/
MAPK pathway (Fan et al., 2019). It is known that the
JAK2/STAT3 pathway is involved in AS (Wang et al., 2018)
and also associated with ferroptosis (Yang et al., 2020). In Jak2
mice, hematopoietic Jak2VF expression contributed to early

FIGURE 4 | Identification of five hub ferroptosis-related genes (FRGs). (A)
Protein–protein interaction (PPI) network of 59 differentially expressed FRGs (DE-
FRGs). Red indicates the driver of ferroptosis, light blue indicates the marker of
ferroptosis, and green indicates the suppressor of ferroptosis. (B) Two clusters
of the PPI network. (C) Hub genes calculated using the maximum neighborhood
component (MNC), degree, and edge percolated component (EPC) algorithms.

FIGURE 5 | Validation of the expressions of hub ferroptosis-related genes (FRGs) in advanced, ruptured, and calcified atherosclerotic plaques. (A–C) Volcano
plots displaying the expressions of hub genes in advanced, ruptured, and highly calcified plaques. Red dots indicate high relative expression and blue dots denote
low relative expression.
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lesion formation and increased complexity in advanced AS, which
promoted the accumulation of iron in plaques and increased
necrotic core formation (Wang et al., 2018). Furthermore, Yang
et al. found that Auranofin, an anti-inflammatory drug used to treat
rheumatoid arthritis, mitigates systemic iron overload and induces
ferroptosis (Yang et al., 2020). PTGS2 upregulation was suggested to
be a downstream marker of ferroptosis, and it was confirmed that
PTGS2 is a hub gene of ferroptosis in human coronary artery AS

(Zhou et al., 2021). A correlationwas shown between the expressions
of PTGS2 and ACSL4, and caspase-1 and NLRP3(12). Although
functional roles of FRGs were implied in our study, the involved
signaling pathways and interaction networkswithin lncRNAs should
be clarified and validated in further research.

Iron bioresorbable coronary scaffold (IBS) system was enrolled
in a randomized phase III clinical trial on stent implantation in
CAD patients. The preclinical study showed a relatively higher
fibrin score in the IBS group, which means a higher risk of
thrombogenicity than permanent cobalt–chromium alloy and
durable polymer (Zheng et al., 2019). The high fibrin score and
corrosion of stents might be related to ferroptosis and iron
overload-regulated cell death. There was no evidence of iron
bioresorbable stents promoting AS, but the stent was implanted
in porcine non-atherosclerotic coronary arteries. This needs to be
confirmed by further research.

In summary, we identified five ferroptosis-related
genes—TP53, MAPK1, STAT3, HMOX1, and PTGS2—in
the development of AS. However, the studies on ferroptosis
and AS are still at an infant stage. More studies will reveal the
limited molecular mechanism of ferroptosis, thus providing more
evidence for ferroptosis in the prevention and treatment of AS.
This study provides new insights into ferroptosis and AS.
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