AUTHOR=Sheng Xiaolong , Zhao Jinyun , Li Miao , Xu Yan , Zhou Yi , Xu Jiaqi , He Rundong , Lu Hongbin , Wu Tianding , Duan Chunyue , Cao Yong , Hu Jianzhong TITLE=Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Accelerate Functional Recovery After Spinal Cord Injury by Promoting the Phagocytosis of Macrophages to Clean Myelin Debris JOURNAL=Frontiers in Cell and Developmental Biology VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.772205 DOI=10.3389/fcell.2021.772205 ISSN=2296-634X ABSTRACT=
Macrophage phagocytosis contributes predominantly to processing central nervous system (CNS) debris and further facilitates neurological function restoration after CNS injury. The aims of this study were to evaluate the effect of bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BMSC-Exos) on the phagocytic capability of macrophages to clear myelin debris and to investigate the underlying molecular mechanism during the spinal cord injury (SCI) process. This work reveals that monocyte-derived macrophages (MDMs) infiltrating into the SCI site could efficiently engulf myelin debris and process phagocytic material. However, the phagocytic ability of macrophages to clear tissue debris is compromised after SCI. The administration of BMSC-Exos as an approach for SCI treatment could rescue macrophage normal function by improving the phagocytic capability of myelin debris internalization, which is beneficial for SCI repair, as evidenced by better axon regrowth and increased hindlimb locomotor functional recovery in a rodent model. Examination of macrophage treatment with BMSC-Exos revealed that BMSC-Exos could promote the capacity of macrophages to phagocytose myelin debris