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Hepatocellular carcinoma (HCC) is the second most lethal malignant tumor because of its
significant heterogeneity and complicated molecular pathogenesis. Novel prognostic
biomarkers are urgently needed because no effective and reliable prognostic
biomarkers currently exist for HCC patients. Increasing evidence has revealed that
pyroptosis plays a role in the occurrence and progression of malignant tumors. However,
the relationship between pyroptosis-related genes (PRGs) and HCC patient prognosis
remains unclear. In this study, 57 PRGs were obtained from previous studies and
GeneCards. The gene expression profiles and clinical data of HCC patients were acquired
from public data portals. Least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was performed to establish a riskmodel using TCGAdata. Additionally, the
risk model was further validated in an independent ICGC dataset. Our results showed that 39
PRGs were significantly differentially expressed between tumor and normal liver tissues in the
TCGA cohort. Functional analysis confirmed that these PRGs were enriched in pyroptosis-
related pathways. According to univariate Cox regression analysis, 14 differentially expressed
PRGs were correlated with the prognosis of HCC patients in the TCGA cohort. A risk model
integrating two PRGs was constructed to classify the patients into different risk groups. Poor
overall survival was observed in the high-risk group of both TCGA (p < 0.001) and ICGC (p <
0.001) patients. Receiver operating characteristic curves demonstrated the accuracy of the
model. Furthermore, the risk score was confirmed as an independent prognostic indicator via
multivariate Cox regression analysis (TCGA cohort: HR � 3.346, p < 0.001; ICGCcohort: HR�
3.699, p< 0.001).Moreover, the single-sample gene set enrichment analysis revealed different
immune statuses between high- and low-risk groups. In conclusion, our new pyroptosis-
related risk model has potential application in predicting the prognosis of HCC patients.
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INTRODUCTION

Worldwide, primary liver cancer is the sixth most prevalent
malignancy and the fourth leading cause of cancer-related
death (Villanueva, 2019). Hepatocellular carcinoma (HCC),
the most common type of primary liver cancer, usually
develops after long-term chronic hepatitis, liver fibrosis, and
cirrhosis (Sia et al., 2017). Despite significant advances in
diagnosis and treatment over the past few decades, the
prognosis of HCC remains unsatisfactory because of its
extreme heterogeneity (Nault and Villanueva, 2015). The 5-
years survival rate of HCC is only 18%, ranking second after
pancreatic cancer in terms of lethality (Jemal et al., 2017)
(Siegel et al., 2018). HCC is a complex and multistep disease
involving genetic and epigenetic alterations. Currently, the
prognostication of HCC is mainly based on clinicopathological
staging systems, although multiple marker features, such as
mutations in the well-known TP53 gene and the expression of
cellular proliferation-related genes, have been identified to
predict survival (Li et al., 2018) (Schulze et al., 2015)
(Totoki et al., 2014). Therefore, novel prognostic
biomarkers are urgently needed to predict survival and
outline individualized treatment plans for HCC patients.

Pyroptosis, a form of gasdermin-mediated programmed cell
death activated by inflammasomes, occurs in vertebrates as an
innate immune response mechanism (Wallach et al., 2016; Shi
et al., 2017). Reduced pathogen clearance efficiency and adaptive
immune response dysfunction may be caused by the
dysregulation of pyroptosis, resulting in tissue damage.
Increasing evidence has revealed that pyroptosis plays a
role in the occurrence and progression of diverse
human diseases, including malignant tumors. More
recently, several studies demonstrated that the pyroptosis
of tumor cells could be induced chemically in vitro and in
vivo (Rébé et al., 2015). Because activating pyroptosis
stimulates the release of multiple inflammatory mediators
that may promote cancer progression, such as IL-1 and IL-
18, some researchers consider pyroptosis a protumorigenic
mechanism (Dunn et al., 2012) (Hu et al., 2010) (Tang et al.,
2020). Nevertheless, recent research has confirmed that
exogenously activated pyroptosis induces strong antitumor
activity (Wang et al., 2019) (Xia et al., 2019).

Here, we explored the mRNA expression level of pyroptosis-
related genes (PRGs) and their relationship with the survival of
HCC patients to identify differentially expressed prognostic genes
using TCGA data. We constructed a risk-coefficient model
consisting of two genes: GSDME and PLK1. The prognostic
model was further validated using an ICGC cohort.
Importantly, the model shows a promising predictive ability
and may be used in clinical decision making for HCC patients.

MATERIALS AND METHODS

Data Acquisition
The gene expression profile and clinical data of 371 HCC cases
were acquired from the TCGA database up to September 3,

2020 and processed into a matrix file with Perl programming
language. The gene expression data and corresponding
clinicopathological data of another 231 HCC cases were
acquired from the ICGC database (https://dcc.icgc.org/
projects/LIRI-JP) as a validation cohort. Additionally, 57
genes related to pyroptosis from a previous study and
GeneCards (https://www.genecards.org/) were collected and
shown in Supplementary Table S1 (Xia et al., 2019).

Identification of Differentially Expressed
PRGs
Differentially expressed PRGs between tumor and non-tumor
tissues in the TCGA cohort were screened with a threshold
false discovery rate (FDR) < 0.05 using the “limma” R
package. Cases without expression data for most genes
were excluded.

Signature Construction
The “survival” R package was used to perform univariate Cox
analysis in TCGA cases to study the prognostic value of
PRGs. Then, differentially expressed prognostic PRGs were
selected as candidate genes for further analysis. The
correlation networks to statuses between these candidate
genes were analyzed via the “igraph” R package. Least
absolute shrinkage and selection operator (LASSO) cox
regression analysis was conducted in the TCGA cohorts to
build a prognostic model of PRGs using 10-fold cross
validation with the “glmnet” R package. Subsequently,
individualized risk scores were obtained based on the
mRNA expression of selected genes and their regression
coefficients estimated in the LASSO Cox regression
analysis. The risk score of each HCC patient was
calculated with the following formula:

Risk score � ∑
n

i�1
(ExpipCoei)

The median risk score was utilized to classify patients into high-
and low-risk groups.

Evaluation of the Prognostic Signature
The “stats” and “Rtsne” R packages were used to conduct
principal component analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE), respectively, to
study the distribution of different risk groups. Univariate
Cox regression and multivariate Cox regression analyses
were conducted to evaluate the independent prognostic
value of the signature using the “survival” R package. The
variables included in the univariate Cox regression analysis
were age, gender, grade, TNM stage, and risk score.
Variables with p < 0.05 in the univariate Cox regression
were included in the multivariate Cox regression analysis.
The Kaplan–Meier method and log-rank test were
performed to compare overall survival (OS) between
high-risk and low-risk groups. Additionally, receiver
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operator characteristic (ROC) curves plotted with the
“timeROC” R package were applied to assess the accuracy
of the risk model.

Functional Enrichment Analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed using the

FIGURE 1 | Differentially expressed PRGs and functional enrichment analysis. (A) Expression status of 39 differentially expressed PRGs in HCC and adjacent
normal samples. Red and green represent tumor (T) and adjacent normal tissues (N), respectively. (B) GO functional analysis of 39 differentially expressed PRGs (BP:
biological processes, CC: cellular components, MF: molecular function). (C) KEGG pathway analysis of 39 differentially expressed PRGs.
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“clusterProfiler” R package. Moreover, single-sample gene set
enrichment analysis (ssGSEA) was applied to score the
infiltrating levels of diverse immune cells and the activity
levels of multiple immune-related pathways via the “gsva” R
package. p values < 0.05 and q values < 0.05 were used as the
threshold.

Statistical Analysis
All statistical analyses were performed using R software (Version
4.0.2). A p value < 0.05 was considered statistically significant.

RESULTS

Differentially Expressed PRGs in the TCGA
Cohort and Their Functional Analysis
We obtained 57 PRGs from a previous study and analyzed the
expression level of these genes in 371 HCC patients from TCGA
(Xia et al., 2019). Based on the screening criteria of FDR<0.05,
39 PRGs were significantly differentially expressed between
tumor and normal liver tissues. As shown in the boxplot,
IL1B, MST1, GBP1, and NLRP3 were downregulated, and the
other 35 PRGs were upregulated in tumor tissues (Figure 1A).

Additionally, GO and KEGG analyses were performed to study
the biological functions of these differentially expressed PRGs.
The results of GO functional analysis revealed that the positive
regulation of cytokine production, inflammasome complex, and
endopeptidase activity involved in apoptotic processes were the
most enriched GO terms in biological process, cellular
component, and molecular function categories, respectively
(Figure 1B). In the KEGG pathway analysis, the PRGs were
mainly enriched in pyroptosis-related pathways, such as the
NOD-like receptor signaling pathway (Fritz et al., 2006).
Moreover, the PRGs were identified to participate in the
C-type lectin receptor signaling pathway and pathways
related to bacterial and viral infections, including hepatitis B
and C infections (Figure 1C).

Construction of the Predictive Signature in
the TCGA Cohort
After excluding cases without survival information and those
with a follow-up time of 0 days, univariate Cox regression
analyses were carried out to assess the correlations between
PRG expression and OS in 365 HCC patients in the TCGA
cohort. The results showed that 18 PRGs were significantly
correlated with the prognosis of HCC patients (p < 0.05)
(Supplementary Figure S1). The clinicopathological
characteristics of the patients involved in our study were
analyzed in Table 1. We selected 14 PRGs that were
differentially expressed and significantly correlated with the
OS of HCC patients (Figures 2A–C). A correlation network
between these genes was established and presented in Figure 2D.
Then, LASSO Cox regression analysis was conducted to identify
the markers with the best predictive performance and calculate
the regression coefficient. As a result, GSDME and PLK1 were
identified to establish a risk model. The risk score for each
patient was calculated as follows: Risk score � 0.1475 ×
expression level of GSDME + 0.2859 × expression level of
PLK1. Based on the median risk score, HCC patients were
divided into high- and low-risk groups (Figure 3A). With
increasing risk scores, the incidence of death increased
(Figure 3B). PCA and t-SNE results demonstrated that
patients with different risk statuses were clustered in two
areas (Figures 3C,D). Additionally, Kaplan–Meier survival
curves revealed that patients with high risk scores exhibited a
poorer OS than those with low risk scores (p < 0.001)
(Figure 3E). Time-dependent ROC curves were generated to
evaluate the accuracy of the model in predicting the prognosis of
HCC patients in the TCGA cohort, and the areas under the
curves (AUCs) were 0.727, 0.693, and 0.674 at 1 year, 2 years,
and 3 years, respectively (Figure 3F).

Further Validation of the Model in the ICGC
Cohort
To further evaluate the robustness of the two-gene signature
established in the TCGA cohort, the risk scores of HCC patients
in the ICGC cohort were also calculated according to the same
formula. Then, ICGC cases were classified into high- and

TABLE 1 | Clinicopathological characteristics of HCC patients involved in
the study.

Characteristic TCGA cohort ICGC cohort

Total 365 231
Age
Median 61 69
Rage 16–90 31–89

Gender
Female 34(32.60%) 61 (26.41%)
Male 43(67.40%) 170 (73.59%)

Grade
Grade 1 55 (15.07%) NA
Grade 2 175 (47.95%) NA
Grade 3 118 (32.33%) NA
Grade 4 12 (3.28%) NA
Unknown 5 (1.37%) NA

Stage
Ⅰ 170 (46.57%) 36(15.58%)
Ⅱ 84 (23.01%) 105(45.45%)
Ⅲ 83 (22.74%) 71(30.74%)
Ⅳ 4 (1.10%) 19(8.23%)
Unknown 24 (6.58%) 0(0.00%)

T
T1 180 (49.32%) NA
T2 91 (24.93%) NA
T3 78 (21.37%) NA
T4 13 (3.56%) NA
Unknown 3(0.82%) NA

N
N0 248(67.94%) NA
N1 4(1.10%) NA
Unknown 113(30.96%) NA

M
M0 263(72.06%) NA
M1 3 (0.82%) NA
Unknown 99(27.12%) NA
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low-risk groups according to the median risk score (Figure 4A).
Similarly, the number of deaths increased with higher risk scores
(Figure 4B). The classifying ability of the risk score was
confirmed by PCA and t-SNE analysis (Figures 4C,D).
Consistently, Kaplan–Meier plots showed that high risk
scores were also significantly correlated with poor OS in the
ICGC cohort (p < 0.001) (Figure 4E). The AUCs of 0.716 at
1 year, 0.711 at 2 years, and 0.726 at 3 years obtained from ROC
curve analyses demonstrated that the model accurately
predicted the prognosis of HCC patients from the ICGC
database (Figure 4F).

The Independent Predictive Ability of the
Model
To evaluate the ability of the signature as an independent
prognostic indicator, multiple variables were included in

univariate and multivariate Cox regression analyses. As a
result, univariate Cox regression analysis revealed that a higher
risk score predicted the OS of HCC patients in both TCGA and
ICGC cohorts (HR � 4.197, 95% CI:2.498–7.050, p < 0.001; HR �
4.806, 95% CI: 4.354–9.811, p < 0.001, respectively) (Figures
5A,B). In the multivariate analysis, the risk score was further
demonstrated to be an independent predictor for TCGA and
ICGC patients (HR � 3.346, 95% CI: 1.968–5.689, p < 0.001; HR �
3.699, 95% CI: 1.823–7.504, p < 0.001, respectively)
(Figures 5C,D).

Functional Analysis Based on the Model in
TCGA and ICGC Cohorts
GO and KEGG analyses were performed to analyze the
biological functions related to the risk model. The
differentially expressed genes between high- and low-risk

FIGURE 2 | Identification of candidate PRGs in the TCGA cohort. (A) Venn diagram to screen 14 differentially expressed PRGs related to the OS of HCC patients
(DEGs: differentially expressed genes). (B)Heatmap showed thatMSTG1was downregulated, and the other 13 intersection genes were upregulated in HCC. (C) Forest
plots showed that the intersection genes were all significantly correlated with the OS of HCC patients according to the univariate Cox regression analysis. (D)Correlation
network between the intersection genes. Different colors represent different correlation coefficients.
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groups were included in the analysis. The top 5 GO terms and
KEGG results were presented in Table 2. These genes were
enriched in several functions related to the cell cycle, such as
mitotic nuclear division, nuclear division, and chromosome
segregation. Tumor immunity is an important factor
affecting cancer progression. Thus, we also investigated the
correlation between the risk model and tumor immunity. The

levels of immune cells and immune-related pathways were
quantified with ssGSEA. In the TCGA cohort, the scores for
aDCs, iDCs, macrophages, Tfh cells, Tregs, and MHC class I
were significantly higher, whereas B cells, mast cells, NK cells,
type I IFN response, and type II IFN response were
significantly lower in the high-risk group than in the low-
risk group (Figures 6A,B). In the ICGC cohort, the scores for

FIGURE 3 | Predictive performance of the two-PRGmodel in the TCGA cohort. (A) Risk score curve shows the distribution of the model and the median score. (B)
Distribution of survival statuses and risk scores in the TCGA cohort. (C) Principal component analysis (PCA) results in the TCGA cohort. (D) t-distributed stochastic
neighbor embedding (tSNE) results in the TCGA cohort. (E) Kaplan–Meier curves show the OS of patients in different risk groups. (F) ROC curves were used to evaluate
the predictive power of the model in the TCGA cohort (AUC: area under the curve).
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aDCs, DCs, macrophages, Th2 cells, Tregs, APC co-
inhibition, and HLA were significantly higher, whereas
B cells, NK cells, type I IFN response, and type II IFN
response were significantly lower in the high-risk group
than in the low-risk group (Figures 6C,D).

DISCUSSION

HCC is the second most lethal malignant tumor because of its
extreme heterogeneity and complicated molecular pathogenesis
(Nault and Villanueva, 2015). Accurately predicting the OS of

FIGURE 4 | Predictive performance of the two-PRG model in the ICGC cohort. (A) Risk score curve shows the distribution of the model and the median score. (B)
Distribution of survival statuses and risk scores. (C) Principal component analysis (PCA) results in the ICGC cohort. (D) t-distributed stochastic neighbor embedding
(tSNE) results in the ICGC cohort. (E) Kaplan–Meier curves show the OS of patients in different risk groups. (F)ROC curves were used to evaluate the predictive power of
the model in the ICGC cohort (AUC: area under the curve).
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HCC patients is of great importance for clinical decision
making. However, there are currently no effective and
reliable prognostic biomarkers for HCC patients. Thus,
establishing a robust prediction model and identifying
effective biomarkers to predict the outcomes of HCC patients
are urgently needed.

We collected 57 genes related to pyroptosis from a
previous study. Based on a systematical analysis using a
TCGA dataset, 39 differentially expressed PRGs between
HCC and non-tumor tissues were identified. According to
GO functional and KEGG pathways analyses, these genes are
primarily related to pyroptosis. Then, univariate and LASSO
Cox regression analyses were carried out to establish an
mRNA-based risk model to predict the prognosis of HCC.
The model includes two PRGs: GSDME and PLK1. According
to the median risk score, patients with HCC were classified
into different risk groups, and patients in the high-risk group
exhibited a significantly poorer prognosis. The results of ROC
curve analyses indicated the predictive performance of this
prognostic model. Moreover, the risk model was
demonstrated to be independent of other
clinicopathological factors in HCC. More importantly, we
further validated the model using an independent ICGC
dataset. To our satisfaction, the model was confirmed to be
an independent risk factor and exhibited an excellent
predictive power in the ICGC cohort.

GSDME, a gene related to hereditary hearing loss, has been
reported to be involved in various cancers in the past few
decades (Laer et al., 1998) (De Schutter et al., 2020) (de

Beeck et al., 2011). Recently, increasing evidence confirmed
that GSDME functions as a pore-forming effector molecule and
is activated after caspase-3-mediated cleavage, leading to
secondary necrosis after apoptosis or primary necrosis termed
pyroptosis without apoptosis (Broz et al., 2020) (Rogers et al.,
2017) (Wang et al., 2018) (Wang et al., 2017). Differential
methylation patterns of GSDME have been identified between
tumor and normal tissues in specific cancer types. Ibrahim et al.
reported that GSDME methylation exhibited potential as a
prognostic biomarker of colorectal cancer and pan-cancer
(Ibrahim et al., 2019a) (Ibrahim et al., 2019b). Croes et al.
showed that GSDME methylation was strongly correlated with
the prognosis of breast cancer patients (Croes et al., 2018). In the
current study, we revealed that GSDME mRNA expression could
predict the survival of HCC patients. As a pivotal molecule of
mitosis and cytokinesis, PLK1 maintains genome stability in
eukaryotic cells (Combes et al., 2017) (Liu et al., 2010). Cell
cycle dysregulation is known to contribute to cancer. Therefore, it
is not surprising that PLK1 expression is increased in various
human malignant tumors, such as breast cancer, colorectal
cancer, and melanoma, and PLK1 upregulation is associated
with the poor prognosis of cancer patients (Takai et al., 2005)
(Gutteridge et al., 2016). Wu et al. reported that combined
treatment with the PLK1 inhibitor BI2536 and DDP at low
doses induced pyroptosis via the caspase-3/GSDME axis in
esophageal squamous cell carcinoma (Wu et al., 2019). Here,
we revealed that the mRNA expression of PLK1 is also increased
in HCC and significantly associated with the poor prognosis of
HCC patients.

FIGURE 5 | Univariate and multivariate Cox regression analysis in TCGA and ICGC cohorts. (A) Forest plot of the univariate regression analysis in the TCGA cohort.
(B) Forest plot of the univariate regression analysis in the ICGC cohort. (C) Forest plot of the multivariate regression analysis in the TCGA cohort. (D) Forest plot of the
multivariate regression analysis in the ICGC cohort.
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Although several researchers have studied the relationship
between pyroptosis and human cancer, there are few reports on
its correlation with tumor immunity. An important aspect of our
study is that we explored the correlations between the risk model
and tumor immunity in HCC patients. Interestingly, we found that
the infiltration levels of macrophages and Tregs were significantly
increased in the high-risk group in both the training and validation
cohorts. Previous studies have confirmed that increased infiltration
levels of Tregs and tumor-associated macrophages, which promote
immune invasion, are correlated with the poor prognosis of HCC
patients (Liang et al., 2020) (Fu et al., 2007) (Zhou et al., 2016).
Furthermore, NK cells, type I IFN response, and type II IFN
response were significantly lower in the high-risk group. Studies
have shown that the number of NK cells in tumor tissues is
positively related to the survival of HCC patients (Sun et al.,
2015). IFNs have been identified as pivotal factors in
coordinating the interactions between tumors and the immune
system (Dunn et al., 2006). Therefore, we speculate that impaired

antitumor immunity may contribute to the poorer prognosis of
patients with high-risk scores.

To date, this is the first study to investigate the relationships
between a considerable number of PRGs and the prognosis of HCC
patients. We obtained multiple prognostic PRGs and constructed a
novel pyroptosis-related prognostic model. However, there are still
some limitations to our study. First, the prognostic signature was
established and validated using retrospective data, and its clinical
applicability needs to be verified with prospective data. Second, the
underlying biological functions and specificmolecularmechanisms
of the two genes in combination require further examination.
Third, the correlations between the risk score and tumor
immunity were not experimentally proven.

In summary, we constructed and validated a novel risk model
consisting of two PRGs. The model demonstrated independent
prognostic value, thereby providing important insight into the
survival prediction of HCC. However, further verification and
mechanistic exploration are indispensable in the future.

TABLE 2 | GO and KEGG analysis results in TCGA and ICGC cohorts based on differentially expressed PRGs.

Category TCGA ICGC

ID Terms p-value ID Description p-value

BP GO:
0140014

Mitotic nuclear division 3.42E-30 GO:
0140014

Mitotic nuclear division 5.93E-20

BP GO:
0000280

Nuclear division 3.43E-27 GO:
0000280

Nuclear division 3.29E-17

BP GO:
0007059

Chromosome segregation 1.07E-25 GO:
0007059

Chromosome segregation 2.90E-16

BP GO:
0048285

Organelle fission 1.14E-25 GO:
0000070

Mitotic sister Chromatid segregation 3.68E-16

BP GO:
0000070

Mitotic sister Chromatid segregation 2.26E-24 GO:
0048285

Organelle fission 2.11E-15

CC GO:
0098687

Chromosomal region 1.28E-23 GO:
0062023

Collagen-containing extracellular matrix 3.91E-15

CC GO:
0000793

Condensed chromosome 4.64E-23 GO:
0000779

Condensed chromosome, centromeric
region

7.63E-14

CC GO:
0000775

Chromosome, centromeric region 8.32E-22 GO:
0000775

Chromosome, centromeric region 2.10E-13

CC GO:
0000779

Condensed chromosome,
centromeric region

1.54E-21 GO:
0000793

Condensed chromosome 4.30E-13

CC GO:
0005819

Spindle 4.25E-20 GO:
0098687

Chromosomal region 1.89E-12

MF GO:
0003688

DNA replication origin binding 2.86E-10 GO:
0008395

Steroid hydroxylase activity 2.39E-10

MF GO:
0140097

Catalytic activity, acting on DNA 4.34E-09 GO:
0008514

Organic anion Transmembrane
transporter activity

1.80E-09

MF GO:
0017116

Single-stranded DNA helicase activity 9.14E-09 GO:
0020037

Heme binding 2.67E-09

MF GO:
0003678

DNA helicase activity 5.67E-08 GO:
0046906

Tetrapyrrole binding 3.66E-09

MF GO:
0008094

DNA-dependent ATPase activity 1.23E-07 GO:
0004497

Monooxygenase activity 4.98E-09

KEGG
pathway

hsa04110 Cell cycle 5.58E-23 hsa04110 Cell cycle 6.60E-14

KEGG
pathway

hsa03030 DNA replication 1.81E-14 hsa00980 Metabolism of xenobiotics by cytochrome
P450

9.00E-13

KEGG
pathway

hsa03430 Mismatch repair 1.16E-05 hsa00982 Drug metabolism - cytochrome P450 5.90E-12

KEGG
pathway

hsa00010 Glycolysis/Gluconeogenesis 3.02E-05 hsa00830 Retinol metabolism 5.37E-10

KEGG
pathway

hsa04114 Oocyte meiosis 3.08E-05 hsa05204 Chemical carcinogenesis 1.18E-09
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