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Background: Lung adenocarcinoma (LUAD), themost common subtype of non-small cell
lung cancer (NSCLC), is associated with poor prognosis. However, current stage-based
clinical methods are insufficient for survival prediction and decision-making. This study
aimed to establish a novel model for evaluating the risk of LUAD based on hypoxia,
immunity, and epithelial-mesenchymal transition (EMT) gene signatures.

Methods: In this study, we used data from TCGA-LUAD for the training cohort and
GSE68465 and GSE72094 for the validation cohorts. Immunotherapy datasets
GSE135222, GSE126044, and IMvigor210 were obtained from a previous study.
Using bioinformatic and machine algorithms, we established a risk model based on
hypoxia, immune, and EMT gene signatures, which was then used to divide patients
into the high and low risk groups. We analyzed differences in enriched pathways between
the two groups, following which we investigated whether the risk score was correlated with
stemness scores, genes related to m6A, m5C, m1A and m7G modification, the immune
microenvironment, immunotherapy response, and multiple anti-cancer drug sensitivity.

Results: Overall survival differed significantly between the high-risk and low-risk groups
(HR � 4.26). The AUCs for predicting 1-, 3-, and 5-year survival were 0.763, 0.766, and
0.728, respectively. In the GSE68465 dataset, the HR was 2.03, while the AUCs for
predicting 1-, 3-, and 5-year survival were 0.69, 0.651, and 0.618, respectively. The
corresponding values in the GSE72094 dataset were an HR of 2.36 and AUCs of 0.653,
0.662, and 0.749, respectively. The risk score model could independently predict OS in
patients with LUAD, and highly correlated with stemness scores and numerous m6A, m5C,
m1A and m7G modification-related genes. Furthermore, the risk model was significantly
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correlated with multiple immune microenvironment characteristics. In the GSE135222
dataset, the HR was 4.26 and the AUC was 0.702. Evaluation of the GSE126044 and
IMvigor210 cohorts indicated that PD-1/PD-LI inhibitor treatment may be indicated in
patients with low risk scores, while anti-cancer therapy with various drugs may be
indicated in patients with high risk scores.

Conclusion: Our novel risk model developed based on hypoxia, immune, and EMT gene
signatures can aid in predicting clinical prognosis and guiding treatment in patients
with LUAD.

Keywords: lung adenocarcinoma, hypoxia, immune, EMT, gene signature, immunotherapy response

1 INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common subtype of
non-small cell lung cancer (NSCLC) (Hyuna et al., 2021). Despite
advances in standard treatment strategies based on clinical stage,
the survival rate remains poor among patients with LUAD (Bi
et al., 2020; Siegel et al., 2021), and the associated tumors are
highly heterogeneous. Thus, developing a method for accurately
stratifying risk and guiding treatment is essential.

Hypoxic conditions in the tumor microenvironment (TME)
and immune microenvironment play a crucial role and are
regarded as the major drivers of malignancy in LUAD.
Further, both environments are strongly associated with
malignant progression, therapeutic resistance, and poor
prognosis (Wang D. D. et al., 2021; Wu et al., 2021; Zhang Y.
et al., 2021). Several studies have recently shown that a hypoxic
stimulus can alter the TME, decreasing the proportion of immune
cells and increasing the expression of immunosuppressive
cytokines (Zeng et al., 2021). Thus, hypoxia is considered the
major immunosuppressive mechanism during cancer
development (Labiano et al., 2015). Moreover, hypoxic
stimulation can activate epithelial-mesenchymal transition
(EMT), a key link in cancer progression (Jiang et al., 2011).
Despite these findings, reliable prognostic signatures based on the
fundamental combination of hypoxia, immunity, and EMT gene
signatures have yet to be established.

Hence, to aid in improving clinical management strategies, the
present study aimed to establish a novel model for evaluating
LUAD risk based on genes related to hypoxia, immunity,
and EMT.

2 MATERIALS AND METHODS

2.1 Data Acquisition
Gene expression data, clinical survival information, and gene
mutation information for patients with LUAD were downloaded
from The Cancer Genome Atlas (TCGA) database (TCGA-
LUAD) (Schabath et al., 2016) and the Gene Expression
Omnibus (GEO) database (GSE68465, GSE72094) (Zhang A.
et al., 2021). The TCGA-LUAD data were used for the
training cohort, while those for GSE68465 and GSE72094 were
used for the validation cohorts. The TCGA-LUAD dataset was

delivered via an Illumina HiSeq 2000 microarray, the GSE68465
dataset was delivered via the Affymetrix Human Genome U133A
Array, and the GSE72094 dataset was delivered via the Rosetta/
Merck Human RSTA Custom Affymetrix 2.0 microarray. The
“sva” package of R software was used to correct the batch effect
between different datasets using the “combat” algorithm.

Hypoxia- and EMT-related genes were extracted from the
hallmark gene set in the Molecular Signatures Database
v7.0(MSigDB, www.gsea-msigdb.org), which includes 200
hypoxia genes and 200 EMT-related genes; 2,498 immune-
related genes were acquired in the ImmPort (http://www.
immport.org/). This study was approved by the Ethics and
Research Committees of Sun Yat-Sen Memorial Hospital and
Sun Yat-Sen University.

2.2 Screening of Differentially Expressed
Hypoxia-, Immunity-, and EMT-Related
Genes
Information regarding the expression of 200 hypoxia-, 2,498
immune-, and 200 EMT-related genes was collected from the
TCGA-LUAD database. Differentially expressed genes (DEGs)
between LUAD and normal lung tissue were then identified using
the Wilcoxon test according to |Log2FC| > 1 and p < 0.05 would
considered as DEGs. Log2FC > 1 indicating upregulated genes
and Log2FC < −1 indicating downregulated genes, respectively.
Heat and volcano maps were then generated to show the
expression of different genes.

2.3 Functional Exploration of DEGs
An R software package (clusterprofiler, version 3.12) was used to
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis. Using
Fisher’s exact test, those with false discovery rate (FDR)-
corrected p values less than 0.05 were regarded as significant
indicators.

2.4 Construction and Verification of the Risk
Model
First, RNA expression in the TCGA-LUAD, GSE68465, and
GSE72094 datasets was cross-checked to identify co-expressed and
differentially expressed hypoxia-, immunity-, and EMT-related
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genes. Consequently, univariate Cox analysis of overall survival (OS)
was performed to screen for hypoxia-, immunity-, and EMT-related
genes with prognostic values. Next, least absolute shrinkage and
selection operator (LASSO) regression with 10-fold cross-validation
was performed, and 1,000 cycles were run via the R software package
“glmnet.” For each cycle, 1,000 random simulations were performed.
Based on the optimal lambda value, the best possible gene was
selected to construct the model, and a risk formula was established.

The risk scores were calculated according to the expression of
each gene and its corresponding regression coefficients using
the following equation: risk score � ∑genes Cox coefficient ×
gene expression. The patients were then categorized into high-
risk and low-risk groups based on the optimal cutoff value,
which was computed using the “surv_cutpoint” function in the
“survminer” R package. Receiver operating characteristic curves
were drawn via the R Package “survivalROC” to estimate the
predictive sensitivity of the formula. Model effectiveness was
evaluated in the validation set using the same coefficients and
cutoff values used in the training set. We then evaluated whether
the risk score formula exhibited independent prognostic value
when combined with clinical variables via multiple regression
analysis.

2.5 Selection of m6A, m5C, m1A and m7G
Genes
The expression matrices of m6A genes were including
(METTL14, METTL3, RBM15, RBM15B, WTAP, CBLL1,
ZC3H13, ALKBH5, FTO, YTHDC1, YTHDF1, YTHDC2,
YTHDF2, IGF2BP1, YTHDF3, FMR1, HNRNPC,
HNRNPA2B1, ELAVL1, and LRPPRC). The expression of
m5C genes including (NSUN7, ALYREF, NSUN1, NSUN6,

NSUN3, NSUN4, NSUN2 and NSUN5); The expression of
m1A genes including (ALKBH3, ALKBH1 and YTHDF2); The
expression of m7G genes including (METTL1, BUD23 and
RNMT).

2.6 Differential Analysis of Immune Cell
Infiltration, Immune Function, and Immune
Checkpoint Function and the Validation of
Immunotherapeutic Responses
Immune cell infiltration was identified using timer 2.0
(cistrome.shinyapps.io/timer/) via the Timer, QUANTISEQ,
CIBERSORT, CIBERSORT-ABS, XCELL, MCPCOUNTER,
and EPIC algorithms. The “gsva” R package was used to
process the single-sample gene set of the enrichment
analysis (ssGSEA) to calculate the activity status of
13 immune-related pathways. The selection of immune-
checkpoint genes was based on the findings of a previous
study (Isomura et al., 2021). The ESTIMATE algorithm was
used to calculate the stromal score, immune score, and
ESTIMATE score of TCGA-LUAD samples.

Given the lack of information on immune therapy in the
TCGA-LUAD cohort, the predictive capability of the risk score
formula was evaluated using the GSE135222 (NSCLC),
GSE126044 (NSCLC), and IMvigor210 (metastatic urothelial
cancer) cohorts (Charoentong et al., 2017; Mariathasan et al.,
2018; Jung et al., 2019; Yu et al., 2019; Yu et al., 2020a; Cho et al.,
2020).

2.7 Predicting Anti-Cancer Drug Response
To evaluate the ability of the risk score to predict the
chemotherapeutic response, the half-maximal inhibitory

FIGURE 1 | Flow chart of this study.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7587773

Ouyang et al. Gene Signature to Forcast LUAD

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


concentration (IC50) of common chemotherapeutic drugs was
first calculated in the TCGA-LUAD training group, using the
“pRRophetic” package in R software. The Wilcoxon rank test was
then used to compare the difference in IC50 between the low- and
high-risk groups. Finally, the R package “ggplot” was used to
visualize the data.

2.8 Statistical Analysis
DEGs were screened using the Wilcoxon test. Univariate Cox
analysis of overall survival (OS) was performed to screen relevant
genes with prognostic values. Kaplan–Meier survival curves were
generated and compared between the two groups using the log-
rank test. The associations between the risk score determined
using the prognostic model and the stromal score, stemness score,
and immune score were assessed using Spearman correlation
analysis. All statistical analyses were performed using R version
4.0.0 (R-project.org) and its adequate packages. Statistical
significance was set at p < 0.05.

3 RESULTS

Totals of 500 and 840 patients with LUAD were selected from the
training and validation sets, respectively. The detailed clinical
features of these patients are summarized in Supplementary
Table S1. The flowchart of the study is shown in Figure 1.

3.1 Differentially Expressed Hypoxia-,
Immune-, and EMT-Related Genes
In the training set, 66 of 169 hypoxia-related genes, 556 of
1,214 immune-related genes, and 81 of 177 EMT-related genes
were differentially expressed between LUAD and adjacent normal
tissues. Of these, 37 hypoxia-related genes, 345 immune-related
genes, and 50 EMT-related genes were upregulated, while
29 hypoxia-related genes, 211 immune-related genes, and
31 EMT-related genes were downregulated (Figures
2A,B,E,F,I,J). In total, there were 703 of 1,560 DEGS, 432 and

FIGURE 2 | Separativelly screening of differentially expressed hypoxia, immunity and EMT related genes. (A) Volcano plots showing the hypoxia-related DEGs. (B)
Heatmaps of differentially expressed hypoxia-related mRNAs. (C) GO enrichment of hypoxia-related DEGs. (D) KEGG pathways of hypoxia-related DEGs. (E) Volcano
plots showing the immune-related DEGs. (F) Heatmaps of differentially expressed immune-related mRNAs. (G) GO enrichment of immune-related DEGs. (H) KEGG
pathways of immune-related DEGs. (I) Volcano plots showing the EMT-related DEGs. (J) Heatmaps of differentially expressed EMT-related mRNAs. (K) GO
enrichment of EMT-related DEGs. (L) KEGG pathways of EMT-related DEGs.
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271 of which were upregulated and downregulated, respectively
(Figures 3A,B).

3.2 Functional Analysis of Hypoxia-,
Immune-, and EMT-Related DEGs
In the GO enrichment analysis, we identified the top 5 GO
categories with significant enrichment of genes related to
hypoxia, immunity, or EMT. The most significantly altered
hypoxia-, immune-, and EMT-related genes were involved in
the metabolic processing of ADP, in signaling receptor activator
activity, and in extracellular matrix organization, respectively
(Figures 2C,G,K; Supplementary Tables S2, S4, S6). We then
performed KEGG analysis and identified the top 15 KEGG
categories with significant enrichment of hypoxia-, immune-,
and EMT-related genes. The altered hypoxia-related genes were
mostly associated with glycolysis, while the altered immune-
related genes were mostly associated with cytokine–cytokine
receptor reactions. The EMT-related genes exhibiting the most
significant alterations were involved in focal adhesion (Figures

2D,H,L) (detailed in Supplementary Tables S3, S5, S7). Further,
when these gene signatures were combined, the most correlated
GO and KEGG categories were signaling receptor activator
activity cytokine–cytokine receptor reactions, respectively
(Figures 3C,D) (Supplementary Tables S8, S9).

3.3 Predictive Ability of the Risk Score
A total of 11,074 genes were co-expressed; among them, 430 of
668 hypoxia-, immune-, and EMT-related DEGs were selected
(Figures 4A,B). Then, these 430 genes were used in the univariate
Cox regression analysis. A total of 57 prognostic genes were
identified (Figure 5A). To avoid overfitting the prognostic model,
LASSO regression analysis was performed. Finally, 27 genes were
selected and included in the risk score formula, as follows: Risk
score � ADAM12 × 0.0537 + CCL20 × 0.1149 + LGR4 × 0.0481 −
CTSG × 0.0435 + PDGFB × 0.2173 + INSL4×0.0526 +
LIFR×0.0033 + LDHA × 0.1794 − FBP1 × 0.0417 −
MAP3K8×0.3235 + SEMA3A × 0.0329 + MC1R × 0.1367 −
CD79A × 0.1300 −WFDC2 × 0.0577 + PDYN × 0.2017 −GDF15
× 0.0710 + BCAN × 0.1043 + DDIT4 × 0.0715 − SPOCK1 ×

FIGURE 3 | Integrally screening of differentially expressed hypoxia, immunity and EMT related genes. (A) Volcano plots of the integrated DEGs. (B)Heatmaps of the
integrated mRNAs. (C) GO enrichment based of integrated DEGs. (D) KEGG pathways of integrated DEGs.
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0.0148 + TNFRSF11A × 0.1982 − CX3CR1×0.1238 − AKAP12 ×
0.0061 + ANGPTL4 × 0.0227 + GPI × 0.1924 − CAT × 0.0789 +
FURIN × 0.0187 + F2RL1 × 0.1408 (Figures 5B,C). Based on am
optimistic cut off, 144 and 356 patients were categorized into the
high-risk and low-risk groups, respectively (Figures 6A–C).
Kaplan–Meier survival analysis revealed that OS was lower in
the high-risk group than in the low-risk group (Figure 6E). The
area under the curve (AUC) values for predicting 1-, 3-, and 5-
year OS were 0.763, 0.766, and 0.728, respectively (HR � 4.26;
95%CI 3.15–5.75; p < 0.0001; Figure 6D). These results show that
the risk model based on the 27 genes listed above had high
accuracy in predicting the OS of patients with LUAD. Besides, we
also proved the novel risk score independently predict the OS of
LUAD (Supplementary Figure S1).

3.4 Stability of the Risk Score Formula
Constructed Using Hypoxia-Related Genes
To check the stability of the model developed from the training
set, patients in the validation sets (GSE68465 and GSE72094)
were also divided into a high-risk group and a low-risk group
according to the same cut-off value and risk formula as those in
TCGA cohort (Figures 7A–C,F–H). The results indicated that
OS was markedly lower in the high-risk group than in the low-
risk group (Figures 7E,J). In the GSE68465 set, the AUCs for
predicting 1-, 3-, and 5-year OS were 0.69, 0.651, and 0.618,
respectively (HR � 2.03; 95% CI � 1.55–2.65; p < 0.0001). In the
GSE72094 cohort, the corresponding AUCs were 0.653, 0.662,
and 0.749, respectively (HR � 2.36; 95% CI � 1.63–3.43; p < 0.001;
Figures 7D,I).

3.5 Subgroup Analysis Using the Risk Score
Formula
Next, we analyzed the association between clinical features
(including stage, age, and sex) and the risk score in the
TCGA-LUAD database. The risk score remained significantly
effective across all subgroups based on tumor stage, sex, and age
(Figure 8), supporting the reliability of the risk score formula.
Moreover, in the univariate and multivariate Cox regression
analysis, the risk score formula was identified as an
independent prognostic indicator of poor outcomes in patients
with LUAD (Supplementary Figures S1A,B).

3.6 Functional Analysis
Further analysis of the differences in enrichment pathways
between the low-risk and high-risk groups showed that the
most different pathways were related to the humoral immune
response, collagen-containing extracellular matrix, and focal
adhesion (Figures 9A,B; Supplementary Tables S10, S11).
This may explain why OS was lower in the high-risk group
than in the low-risk group.

3.7 Tumor Stemness Analysis and Gene
Mutation Landscape
Growing evidence indicates that increased expression of
stemness-related biomarkers in tumor cells is highly correlated
with drug resistance, cancer recurrence, and tumor proliferation
(Luo and Vögeli, 2020). Hence, we assessed the correlations of the
DNA stemness score (DNAss) and RNA stemness score (RNAss)
with the risk score. The results indicate that the risk score was

FIGURE 4 | Venn diagram of the intersected genes and DEGs. (A) Venn diagram of the intersected genes among the cohorts of TCGA, GSE68465 andGSE72094.
(B) Venn diagram of the intersected hypoxia, immune and EMT related DEGs.
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significantly positively correlated with the DNAss and RNAss
(Figures 10A,B). Besides, this study also compared the gene
mutation landscape between high and low risk score group. We
found in high risk score group, the mutation frequency of TP53,
TTN and KEAP were obviously higher than low risk score group
(Supplementary Figure S2).

3.8 Expression of m6A, m5C, m1A and m7G
Modification-Related Genes
Previous research has indicated that m6A, m5C, m1A and m7G
modification, which were reversible epigenetic RNA process,
significantly involved in the proliferation and migration of
cancer cells (Dib et al., 2017; Barbieri and Kouzarides,
2020). In this study, the expression of m6A modification

genes WTAP, HNRNPA2B1, IGF2BP2, HNRNPC, CBLL1,
ELAVL1, RBM15B, LRPPRC, and ELAVL1, the expression
of m5C modification gene ALYREF, NSUN1 and NSUN2
and the expression of m7G modification gene METTL1,
BUD23 and RNMT were significantly higher in the high risk
group, while the expression of m6A modification gene
METTL3, the expression of m5C modification gene NSUN7
and NSUN6 were significantly higher in the low-risk group
(Figures 10C–F).

3.9 Analysis of Immune Status
The relationship between the risk score and the immune status of
the patients in the TCGA cohort is shown in Figures 11A,B.
There were significant alterations in immune checkpoint genes.
Thus, we further compared the expression of immune

FIGURE 5 | Construction of risk score formula. (A) Forest plots showing the results of survival related gene via univariate Cox regression analysis between
interacted genes and OS. (B) LASSO coefficient profile plots of the 57 prognostic related genes showing that the variations in the size of the coefficients of parameters
shrink with an increasing value of the k penalty. (C) Penalty plot for the LASSO model for the 57 prognostic genes with error bars denoting the standard errors.
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checkpoint-related genes between the high-risk group and the
low-risk group. The tumor immune microenvironment was also
assessed using the immune score, ESTIMATE score, and stromal
score (Yoshida et al., 2021). All three scores were negatively
correlated with the risk score (Figures 11C–H), indicating
stronger tumor immune activity in low-risk patients than in
high-risk patients.

3.10 Analysis of Anti-Cancer Treatment
Sensitivity
To verify the prognostic value of the risk score formula for
immunotherapy sensitivity, we selected three immunotherapy
datasets from patients with NSCLC and metastatic urothelial
cancer. The risk score formula was associated with
progression-free survival (PFS) in patients with NSCLC
undergoing anti-PD-1/PD-L1 therapy in the GSE135222

cohort (HR � 4.26; 95% CI � 3.15–5.75; p � 0.04)
(Figure 12A), and the AUC value for predicting the 12-
month PFS was 0.702 (Figure 12B). In the GSE126044
cohort, the risk score was higher in patients with NSCLC
who had experienced no benefit (disease progression [PD])
from nivolumab or pembrolizumab than in those who had
experienced a benefit (partial response [PR] + stable disease
[SD]) (p � 0.017) (Figure 12C). Furthermore, the risk score
was associated with worse immunotherapy response in
patients with metastatic urothelial cancer (Figures 12D,F).
The risk score was also significantly correlated with several
immune checkpoint-related genes: PD-1, CD8A, CTLA4,
CXCL9, GZMA, HAVCR2, IDO1, PRF1, LAG3, IFNG,
GZMB, and TBX2 (Figure 13G). Our analysis further
revealed that a high risk score was associated with high
sensitivity to common NCCN (National Comprehensive
Cancer Network, https://www.nccn.org) recommended anti-

FIGURE 6 | Prognostic analysis of the risk score formula in the training set. (A) Distribution of risk score for the training set. (B) Patterns of the survival time and
survival status between the high-risk and low-risk groups for training set. (C) Heatmaps of the 27 prognostic genes for each patient in training set. (D) Time-related ROC
analysis proved the prognostic performance of the risk score in the training set. (E) Kaplan-Meier survival curve of the patients in the high-risk and low-risk groups for OS
in the training set.
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FIGURE 7 | Prognostic analysis of the 27-gene signature model in the validation sets GSE68465 and GSE72094. (A) Distribution of risk score for the GSE68465.
(B) Patterns of the survival time and survival status between the high-risk and low-risk groups for GSE68465. (C)Heatmaps of the 27 prognostic genes for each patient in
GSE68465. (D) Time-related ROC analysis proved the prognostic performance of the risk score in the GSE68465. (E) Kaplan-Meier survival curve of the patients in the
high risk score and low risk score groups for OS in the GSE68465. (F) Distribution of risk score for the GSE72094. (G) Patterns of the survival time and survival
status between the high-risk and low-risk groups for GSE72094. (H) Heatmaps of the 27 prognostic genes for each patient in GSE72094. (I) Time-related ROC analysis
proved the prognostic performance of the risk score in the GSE72094. (J) Kaplan-Meier survival curve of the patients in the high-risk and low-risk groups for OS in the
GSE72094.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7587779

Ouyang et al. Gene Signature to Forcast LUAD

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


LUAD drugs such as cisplatin, docetaxel, paclitaxel and
gemcitabine (Figure 13). These results show that the risk
score can be used as a potential predictor of chemosensitivity

and that immunotherapy may be more appropriate for low-
risk patients, while chemotherapy may be more appropriate
for high-risk patients.

FIGURE 8 | Clinical subgroups analysis between high risk score group and low risk score group. (A) Time-related ROC analysis and Kaplan-Meier survival curve of
the patients in stage I and stage II. (B) Time-related ROC analysis and Kaplan-Meier survival curve of the patients in stage III and stage IV. (C) Time-related ROC analysis
and Kaplan-Meier survival curve of the male patients. (D) Time-related ROC analysis and Kaplan-Meier survival curve of the female patients. (E) Time-related ROC
analysis and Kaplan-Meier survival curve of the patients more than 70 years old. (F) Time-related ROC analysis and Kaplan-Meier survival curve of the patients less
than or equal to 70 years old.
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4 DISCUSSION

The current era of precision medicine highlights an urgent need
to establish a more precise method for evaluating prognosis and
guiding treatment in patients with LUAD. Hypoxia, the immune
microenvironment, and EMT play crucial roles in tumorigenesis,
progression, and drug resistance in LUAD (Isomura et al., 2021;
Wu et al., 2021; Yoshida et al., 2021).

Numerous studies have identified the existence of a hypoxic
area as one of the key characteristics of cancer growth (Shen et al.,
2015). Indeed, hypoxia promotes cancer metastasis and reduces
the survival rate in patients with cancer (Nobre et al., 2018), and
the expression of hypoxia genes has been shown to increase
metabolism in lung adenocarcinoma cells (Smolle et al., 2020). At
the same time, the hypoxic microenvironment of the tumor
suppresses the ability of immune cells to detect and kill tumor
cells (Vito et al., 2020). Additional studies have reported that the
hypoxic microenvironment influences the effect of tumor
chemotherapy and immune checkpoint inhibitors, which
explain the increasing mortality rate among patients with
LUAD (Ando et al., 2019; Daniel et al., 2019; Gao et al.,
2019). Hypoxia can also contribute to EMT in patients with
LUAD (Ando et al., 2019). Moreover, the immune system plays a
vital role in the development and progression of malignant
tumors (Lin et al., 2021). Immunotherapy is a novel treatment
for LUAD that has achieved multiple satisfactory results (Li et al.,
2020). EMT has also been shown to play a critical role in tumor
development from initiation to metastasis (Taki et al., 2021).
After EMT, LUAD cells can produce more extracellular matrix,
which can hasten tumor metastasis, aggravate immune evasion,
and induce drug resistance (Pastushenko and Cédric, 2019; Cui
et al., 2020; Taki et al., 2021). Based on these findings, the present
study combined hypoxia-, immunity-, and EMT-related gene
signatures to construct a prognostic model for LUAD risk. To our
best knowledge, this is the first study to combine these gene
signatures to predict prognosis in patients with LUAD.

Using the LASSO Cox algorithm, 200 hypoxia-related genes,
2,498 immune-related genes, and 200 EMT-related genes were
used to identify the most robust biomarkers and establish a novel

risk score. In total, 27 related genes were included in the risk
formula for LUAD prognosis. Using this formula, we classified
patients with LUAD into the high- and low-risk groups. The
formula had AUCs of 0.763, 0.766, and 0.728 for predicting 1-, 3-,
and 5-year OS, respectively, indicating that it has high accuracy
and reliability. Further, OS was significantly lower in the high-risk
group than in the low-risk group, and the risk score exhibited
high predictive capability in the GSE68465 and GSE72094
validation sets.

Subsequent subgroup analysis by sex, age, and stage indicated
that the formula exhibited good predictive capability across all
categories. Prognosis was accurately predicted in male and female
patients and in patients aged >70 years or <70 years. Importantly,
patients in the high-risk group also had significantly lower OS
than patients in the low-risk group, regardless of disease stage,
indicating the need for a gene-based classification for clinical use.
Functional analysis between each group revealed strong
associations between a high risk score and genes related to the
humoral immune response, collagen-containing extracellular
matrix, and focal adhesion. All of these are highly correlated
with the anti-tumor response, tumor metastasis, drug resistance,
and tumor progression (Murphy et al., 2012; Lovitt et al., 2018;
Kosibaty et al., 2021).

Stemness-related biomarkers in tumor cells are highly
correlated with drug resistance, cancer recurrence, and tumor
proliferation (Liu et al., 2021). In this study, stemness-related
biomarkers were positively associated with the risk score,
demonstrating the prognostic value of the formula.
Modification of m6A, m5C, m1A, and m7G are the common
type of modification in RNA and plays critical roles in cancer
development (Teng et al., 2021; Xu F. et al., 2021; Xu R. et al.,
2021). And RNA methylation highly interconnected with
hypoxia, immune response and EMT(Lin et al., 2019; Chao
et al., 2020; Wang E. et al., 2021). In previous study,
researcher identified hypoxia can induced the sumolytion of
m6A enzyme(Hou et al., 2021), hypoxia-inducible factor-1
alpha (HIF-1α) can drive m5C modification to promote
tumorigenesis(Wang J. Z. et al., 2021), m1A and m6A
modification can significantly affect the infiltration of immune

FIGURE 9 | GO and KEGG enrichment analysis between high risk score group and low risk score group. (A) GO enrichment between the high-risk patients and
low-risk patients in TCGA cohort. (B) KEGG pathways between the high-risk patients and low-risk patients in TCGA cohort.
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FIGURE 10 | Analysis of risk score with tumor stem cell score and Differential expression of m6A related gene between high risk score group and low risk score
group. (A) The relationship between risk score and RNAss. (B) The relationship between risk score and DNAss. (C) Differential expression analysis of m6A related gene
between high risk score group and low risk score group. (D)Differential expression analysis of m5C related gene between high risk score group and low risk score group.
(E) Differential expression analysis of m1A related gene between high risk score group and low risk score group. (F) Differential expression analysis of m7G related
gene between high risk score group and low risk score group.

FIGURE 11 | Exploration of tumor immune microenvironment between high risk score group and low risk score group. (A) Heatmap for immune responses based
on CIBERSORT, TIMER, CIBERSORT-ABS, QUANTISEQ,MCPCOUNTER, XCELL, EPIC algorithms among high risk score group and low risk score group. (B) ssGSEA
for the association between immune cell subpopulations and related functions. (C) ESTIMATE score. (D) Immune score. (E) Stromal score. (F) The relationship between
risk score and the ESTIMATE score. (G) The relationship between risk score and the Immune score. (H)The relationship between risk score and the Stromal score.
*p < 0.05; **p < 0.01; ***p < 0.001, ns, not significant.
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cells(Cai et al., 2021; Gao et al., 2021), m7G modification can
drives immune evasion (Devarkar et al., 2016), and m6A, m7G
modification can induce EMT in cancer development (Yu X.
et al., 2020; Xia et al., 2021). Hence we investigate the correlation
of RNA methylation with this risk score. In this study, the
expression of WTAP, HNRNPA2B1, IGF2BP2, HNRNPC,
CBLL1, ELAVL1, RBM15B, LRPPRC, ELAVL1, ALYREF,
NSUN1, NSUN2, METTL1, BUD23, RNMT, METTL3,
NSUN7 and NSUN6 differed significantly between the high-
risk and low-risk groups. These results further support the
value of our risk score formula.

Immune cells in the TME are associated with the development
of cancer (Bruni et al., 2020). Our risk formula was highly
correlated with markers of the immune microenvironment.
Previous studies have reported that the characteristics of the
immune microenvironment can predict sensitivity to immune
checkpoint inhibitor treatment in patients with LUAD (Yu et al.,
2020b; Park et al., 2020). In this study, patients in the low-risk
group had higher immune activity. To validate the prognostic
value of the risk score for immunotherapy sensitivity, we used two
external datasets (GSE135222, GSE126044) containing
information from patients with NSCLC treated with anti-PD-

FIGURE 12 | Validation of the risk score formula for immunotherapy. (A) Kaplan-Meier survival curve of GSE135222 cohort for PFS. (B) Time-related ROC analysis
proved the prognostic performance of the risk score in the GSE135222. (C) The difference of risk score in the subgroup of PD-1 treatment response in GSE126044. (D)
Kaplan-Meier survival curve of IMvigor210 cohort for OS. (E) The difference of Risk score in the subgroup of PD-L1 treatment response. (F) The expression of immue-
related checkpoints among high and low risk groups in IMvigor210 cohort. *p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.
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1/PD-L1 therapy. Our findings indicated that the risk score
formula was associated with PFS and treatment responses in
patients with NSCLC undergoing anti-PD-1/PD-L1 therapy. The
IMvigor210 study examined the effect of PD-L1 inhibitor
treatment in patients with metastatic urothelial cancer
(Mariathasan et al., 2018; Wang S. et al., 2021). Because
relatively few patients were enrolled in the GSE135222 and
GSE126044 cohorts, we further evaluated the formula in the
IMvigor210 cohort. Our results suggest that the risk score
formula is not only suitable for predicting the effect of anti-
PD-1/PD-L1 treatment in lung cancer, but that it may also be
applicable in patients with other cancer types. Hence, a low-risk
score may be an indicator for immunotherapy.

Previously, Sun et al. (2020) reported that the hypoxia-related
signature could aid in predicting OS in patients with early-stage
LUAD. However, whether hypoxia-related gene signatures can be
used to develop a simple predictive formula for late-stage LUAD
outcomes or immunotherapy sensitivity remains unknown.
Other studies have also attempted to use immune- or EMT-
related gene signatures to establish a prognostic model for LUAD
(Tang et al., 2020; Wang et al., 2020). However, few of these
studies used an authentic immune therapy cohort for validation.
Given that multiple factors can have a substantial effect on the
prognosis of LUAD and the intimate interconnections among
hypoxia, immune responses, and EMT function, we aimed to
establish a novel prognostic model based on the integration of
multiple gene signatures. Our analysis indicated that the
prognostic formula developed in this study exhibits precision
for both early- and late-stage LUAD and is valid for predicting
sensitivity to immunotherapy based on findings from a clinical
cohort.

Currently, there are only a few methods for evaluating tumor
sensitivity to chemotherapy (Rochigneux et al., 2020). In this
study, the risk score was positively associated with drug sensitivity

to cisplatin, docetaxel, paclitaxel and gemcitabine. This indicates
that the risk score can be used to determine the appropriateness
and benefit of chemotherapy in patients with LUAD, which
may aid in the development of individualized treatment
strategies.

This study also had some limitations. As the study was based
on information within public databases, real-world prospective
cohort studies are required to validate the risk score formula. The
sequencing methods of the cohort included in this study were
different, this may also affect the accuracy of this formula.
Furthermore, most patients were Caucasian, highlighting the
need to evaluate the predictive ability of the risk score in
patients of other races.

5 CONCLUSION

In summary, this study established a novel 27-gene prognostic
risk score for LUAD. The risk score was independently associated
with OS in patients with LUAD and with functional analysis,
tumor stemness, RNA methylation analysis, the immune
microenvironment, and treatment response. Further, it
accurately predicted prognosis in subgroups according to age,
sex, and disease stage. These findings indicate that molecular risk
stratification may be useful for predicting prognosis and guiding
treatment in patients with LUAD.
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