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DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA
damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of
cancer. Two major mechanisms are responsible for the repair of DSBs, homologous
recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both
pathways, involving a myriad of protein factors functioning in a highly coordinated manner
at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest
single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional
biochemical or genetic methods, single-molecule studies have painted an increasingly
detailed picture for every step of the DSB repair processes.
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INTRODUCTION

Maintenance of genome stability is paramount to the survival of all living organisms. Both extrinsic
environmental factors, as well as intrinsic, routine cellular processes such as transcription and
replication can lead to DNA damage and contribute to genome instability. Understanding DNA
damage and genome maintenance is a crucial aspect of cancer research, as they are involved in
carcinogenesis and cancer therapies (Hoeijmakers, 2009).

Though accounting for only 0.01% of the ∼105 spontaneous DNA lesions that a cell experiences
per day, double strand breaks (DSBs) pose a unique challenge to repair in that the physical continuity
of the DNA molecule is disrupted (Lindahl, 1993; Vilenchik and Knudson, 2003). DSBs can arise
from a variety of exogenous factors such as ionizing radiation and chemotherapeutic drugs, as well as
endogenous sources such as replication stress, V(D)J recombination, and meiosis. In addition, DSBs
can also be generated when single strand breaks (SSBs), which are much more common, are
encountered by DNA replication forks (Ohnishi et al., 2009). Mis-repair of DSBs can lead to
deleterious consequences, causing large-scale chromosome rearrangements or local genetic
mutations (Aparicio et al., 2014). Therefore, the repair process of DSBs is tightly controlled,
employing complementary pathways consisted of intricately linked and carefully orchestrated steps.

Two major, well conserved, pathways in DSB repair are homologous recombination (HR) and
canonical nonhomologous end joining (NHEJ). Together with pathways of alternative end joining
(alt-NHEJ) and single-strand annealing (SSA), these four mechanisms are tasked to minimize
undesired loss of genetic information in the process of restoring the physical continuity of DNA.
Canonical and alternative end joining repair pathways directly join and ligate the two broken ends of
a DSB after minimal end processing (Lieber, 2010). As these pathways require little to minimal
sequence context, NHEJ and alt-NHEJ have typically been viewed as error-prone in repair. In
contrast, homologous recombination is based on the search and pairing of the broken DNA end(s) to

Edited by:
Marta Popovic,

Rudjer Boskovic Institute, Croatia

Reviewed by:
Anthony Davis,

University of Texas Southwestern
Medical Center, United States

Federica Marini,
University of Milan, Italy

*Correspondence:
Eric C. Greene

ecg2108@cumc.columbia.edu

Specialty section:
This article was submitted to

Signaling,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 21 July 2021
Accepted: 28 October 2021

Published: 15 November 2021

Citation:
Kong M and Greene EC (2021)

Mechanistic Insights From Single-
Molecule Studies of Repair of Double

Strand Breaks.
Front. Cell Dev. Biol. 9:745311.
doi: 10.3389/fcell.2021.745311

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7453111

REVIEW
published: 15 November 2021
doi: 10.3389/fcell.2021.745311

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.745311&domain=pdf&date_stamp=2021-11-15
https://www.frontiersin.org/articles/10.3389/fcell.2021.745311/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.745311/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.745311/full
http://creativecommons.org/licenses/by/4.0/
mailto:ecg2108@cumc.columbia.edu
https://doi.org/10.3389/fcell.2021.745311
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.745311


existing homologous sequence elsewhere in the genome, thus
maximizing repair fidelity (San Filippo et al., 2008). HR is cell
cycle dependent and takes place in S and G2 phases, when
homologous sequences in sister chromatids are available as
repair templates. Whereas the end-joining pathways remain
functional throughout the cell cycle (Symington and Gautier,
2011).

Over the past two and half decades, single-molecule
microscopy and spectroscopy have made significant
contributions to characterizations of systems previously
considered intractable, thanks in no small part to
technological innovations in fields from physics to
nanotechnology and protein engineering. In this review, we
begin with a brief description of single-molecule techniques
frequently used in the studies of protein-DNA interactions.
The sections that follow will be dedicated to homologous
recombination and nonhomologous end joining, where we
first provide an overview of each of these pathways in
mammalian cells. We highlight and discuss in detail the
findings from single-molecule studies that contributed to
mechanistic understanding of steps involved in each repair
mechanism. While the focus is on eukaryotic DSB repair,
insights from pioneering studies of bacterial repair proteins
will also be presented when appropriate.

OVERVIEW OF SINGLE-MOLECULE
TECHNIQUES

A crucial hurdle that all in vitro single-molecule imaging studies
of protein-DNA interactions must overcome is that as flexible
polymers, DNA molecules, especially those significantly longer
than their persistence length, collapse into random coils in the
absence of external forces on the ends. Under most
circumstances, unambiguous characterization of protein-DNA
transactions is only possible when imaging is unencumbered by
the presence of multiple DNA segments in close vicinity. To that
end, several experimental approaches have been developed to
maintain extended conformation of DNA molecules by exerting
forces on their ends. In the sections below, we briefly describe
these implementations.

Broadly speaking, there are two strategies for extending single
DNA molecules to a desired end-to-end distance: mechanical
force extension, typically through the use of optical or magnetic
tweezers, and hydrodynamic force extension.

Optical Tweezers (OT) is an implementation of optical
manipulation that controls and measures motion of trapped
microscopic dielectric particle(s) using optical/electromagnetic
forces (Ashkin, 1970; Ashkin et al., 1986). Beyond its applications
that led to two separate awards of the Nobel Prize in Physics
(Steve Chu in 1997 and Arthur Ashkin in 2018), optical trapping
has been widely adopted today as a tool to study biophysical and
biochemical properties of biological macromolecules and
processes (Moffitt et al., 2008; Bustamante et al., 2020). The
basic principles of optical trapping involve creating a tightly
focused laser beam where the spatial gradient of its intensity
exerts a restoring force on an object within the beam, balancing

out the scattering force that pushes the object along the direction
of light propagation (Ashkin et al., 1986). While the object is near
(∼150 nm) the center of the beam, the restoring force is linearly
related to the displacement of the object from the center, acting as
a Hookean spring (Neuman and Block, 2004). Single DNA
molecules are typically extended using optical tweezers by
fixing one end of the DNA to an optically trapped bead, while
the other end is attached to either a physically fixed part of the
flow cell assembly such as the surface or a micropipette, or
another optically trapped bead (i.e., DNA dumbbells)
(Figure 1A).

Similar to optical tweezers, magnetic tweezers utilize
paramagnetic microspheres that are held in magnetic fields
generated by external magnets (De Vlaminck and Dekker,
2012). Typically, the two ends of a DNA molecule are
attached to the magnetic bead and the flow cell surface, with
the molecule being extended by vertical positioning of the
magnetic field relative to the flow cell (Figure 1B). While
implementation of torque measurements has been developed
for optical tweezers by using nanofabricated quartz cylinders
held in angular optical traps (La Porta and Wang, 2004), the
ability and ease to apply torque to a tetheredmolecule in magnetic
tweezers by simply rotating the external magnetic field remain
unparalleled. In addition to indirectly measuring torque through
monitoring the DNA end-to-end distance, direct torque and twist
measurements are also possible on magnetic tweezers with
circularly symmetric or near-zero torque fields.

In comparison to mechanical force extension, hydrodynamic
flow represents a more straightforward, albeit less precise,
method to unravel DNA molecules. Flow stretching readily
complements optical tweezers where only one end of the DNA
is attached to a bead held in an optical trap, as such combination
was initially used to study DNA conformational dynamics and
polymer physics models (Perkins et al., 1995). When combined
with surface-tethered DNA, flow stretching allows parallelization
of measurements on multiple DNA molecules (Figure 1C).
Briefly, one end of the DNA molecules is first immobilized on
the surface of the flow cell, where they are randomly distributed
spatially. These DNAmolecules are then extended in the presence
of applied buffer flow. Depending on the application, the down-
flow ends may be left free, thus requiring continuous flow for the
duration of these single-tethered experiments for real time
observations. Alternatively, the second ends may also be
anchored to the surface, forming double-tethered DNA and
enabling steady-state observations in the absence of any buffer
flow (Figure 1C). One common area of concern in these
experiments is the potential of interference from the flow cell
surface in protein-DNA interactions that are being studied.

A variation of surface-tethered single-molecule imaging
technique named DNA curtains has been developed to
minimize potential of surface interference and maximize
parallelization (Graneli et al., 2006; Visnapuu et al., 2008). The
platform uses nanofabricated chromium structures on flow cell
surfaces to precisely align hundreds of DNA molecules at pre-
determined positions (Figure 1D). Such alignment is achieved by
first forming a biotinylated lipid bilayer, to which one end of the
DNA molecules are tethered, on the surface of the microfluidic
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device. The fluidity of lipid molecule allows these single-tethered
DNA molecules to diffuse freely without flow. In the presence of
buffer flow, DNA molecules are pushed against the chromium
diffusion barriers and uniformly extended in parallel.
Furthermore, the lipid bilayer also serves as a close mimic to
biological membranes in cellular environments, minimizing non-
specific surface adsorption of protein or DNA. Directional
double-tethering is achieved by using orthogonal attachment
chemistry at both the lipid bilayer and the chromium anchors,

the latter deposited a specified distance away from the alignment
barriers (Figure 1D). Further development of the initial dsDNA
curtain technique allowed tethering of ssDNA and greatly
expanded repertoire of biological processes that could be
investigated with this technology (Ma et al., 2017b; De Tullio
et al., 2018).

Visualization of protein-DNA interactions on extended DNA
molecules is commonly based on fluorescence microscopy.
dsDNA can be visualized by staining with fluorescent

FIGURE 1 | Schematics of single-molecule setups. (A) Schematic illustration of optical tweezers, where a single DNAmolecule is tethered at one end to an optically
trapped bead, and the other end to (i) another bead held in a second optical trap, (ii) amicro-pipette fixed to the flow cell, or (iii) the surface of the flow cell. (B) Schematic
illustration of magnetic tweezers, where a single DNA molecule is held between a magnetic bead and the flow cell surface. Torsional stress can be applied by rotation of
the external magnets. (C) Left: Hydrodynamic flow extension of DNA molecules attached to either (i) an optically trapped bead or (ii) the flow cell surface. DNA
molecules may be tethered to the surface at both ends if desired.Right: Top view of flow extended and surface tethered DNA in a flow cell, illustrating the random spatial
distribution of these molecules. (D) Left: Schematic of DNA curtains where molecules tethered at one end to the lipid bilayer are aligned at the diffusion barrier. Single-
tethered DNA may be extended by buffer flow (i). Alternatively, DNA maybe double-tethered at the pedestal (ii). Right: Top view of single- or double-tethered DNA
curtains, where molecules are aligned in uniformity. (E) Schematic illustration of smFRET, where the energy transfer may be either intramolecular (i) and (iii) or
intermolecular (ii). DNA molecules are immobilized on the flow cell surface via biotin-streptavidin linkage with biotin placed at the ends of short substrates (i) and (ii), or
internally for ∼kbp length substrates (iii). (F) Schematic illustrate of total internal reflection fluorescence microscopy (TIRFM), achieved either through objective (i) or
through prism (ii). Green and gray dots represent excited inside and dark fluorophores outside the evanescence field, respectively.
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intercalating dyes such as YOYO-1 or SYTOX Orange. Multiple
options exist for protein labeling, including fluorescent fusion
proteins, fluorescent nanocrystals (quantum dots), and a myriad
of increasingly bright and photostable small-molecule fluorescent
probes such as Alexa Fluor, ATTO, Janelia Fluor dyes (Ha and
Tinnefeld, 2012). Fluorescent excitation may be readily
accomplished via epi-fluorescence, total internal reflection, or
confocal illumination. Each illumination scheme has its own
advantages and disadvantages. For example, while total
internal reflection reduces background noise significantly
compared to epi-fluorescence, it is also restricted to imaging
within ∼200 nm of the surface, due to the depth reachable by
evanescence waves produced by total internal reflection at that
surface (Selvin and Ha, 2008) (Figure 1E).

In contrast to the direct imaging approaches described above,
single-molecule Forster Resonance Energy Transfer (smFRET)
experiments shed light on interactions that occur at much smaller
distance scale (Roy et al., 2008). smFRET monitors the distance,
usually between 1 and 10 nm, between single pairs of donor and
acceptor fluorophores, by measuring their intensities and the
extent of non-radiative energy transfer (Ha et al., 1996).
Unencumbered by diffraction limited resolution (∼250 nm) in
typical fluorescence based single-molecule imaging experiments,

smFRET has been widely employed in biophysical studies on
topics ranging from replication, transcription and repair to RNA
and protein conformational dynamics (Feng et al., 2021). In vitro
smFRET experiments usually requires immobilization of
fluorescently labeled macromolecules, either DNA or protein,
on the passivated flow cell surface, where excitation of
fluorophores is achieved through total internal reflection
(Figure 1F). Although the length of surface-immobilized DNA
used in smFRET experiments is typically short (∼100 bp), longer
DNA substrates on the order of kbp have also been successful in
experiments under conditions such that DNA could become
chromatinzed (Graham et al., 2017).

OVERVIEW OF HOMOLOGOUS
RECOMBINATION

Usually considered the error-free repair pathway for DSBs, HR
can be divided into four distinct stages: end resection, formation
of presynaptic filament, homology search, and repair synthesis
(Figure 2A). In mammalian cells, resection is initiated first by the
MRN complex consisting of Mre11, Rad50, and Nbs1, in complex
with CtIP (Sartori et al., 2007; Shibata et al., 2014; Anand et al.,

FIGURE 2 | Repair of DNA double strand breaks via (A) homologous recombination or (B) nonhomologous end-joining pathways. Schematics of homologous
recombination and nonhomologous end-joining pathways. See main text for details.
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2016). This short-range resection begins with Mre11 nicking the
strand with a 5′ terminal at the break. The nick is then extended
towards the break in the 3′–5′manner by the exonuclease activity
of Mre11. The single-stranded DNA gap created by short-range
resection acts as a platform for long-range resection machineries
to land. Proteins involved in long-range resection include EXO1,
DNA2, BLM, and WRN (Eid et al., 2010; Nimonkar et al., 2011;
Sturzenegger et al., 2014). EXO1 is a versatile and active 5′–3′
exonuclease. BLM and WRN are RecQ family helicases that can
processively translocate on ssDNA in a 3′–5′ direction. Strand
separation by BLM and WRN generates 5′ DNA flaps which are
substrates for DNA2 activity. Together, their actions generate
long 3′ ssDNA tails that are rapidly bound by the heterotrimeric
ssDNA binding protein complex RPA to protect the integrity of
DNA. Given that resection commits repair to homologous
recombination, the process is subject to many forms of
regulation. Phosphorylation of CtIP by CDK and ATM is
essential for resection, through stimulating endonuclease
activity of Mre11 as well as mediating interactions with
BRCA1-BARD1 (Peterson et al., 2013; Wang et al., 2013).
Furthermore, BRCA1 also plays an important role in removal
of 53BP1, which is recruited to DSB sites and blocks 5′ end
resection in G1 phase (Bunting et al., 2010;Mirman and de Lange,
2020). The assembly of presynaptic filament begins with binding
of recombinase RAD51, homolog of bacterial RecA, to ssDNA,
replacing RPA (Sung et al., 2003; Bonilla et al., 2020). Formation
of the RAD51-ssDNA nucleofilament must overcome the
inhibitive effects of RPA and is facilitated by recombination
mediator proteins such as yeast Rad52 and human BRCA2
(Sung, 1997a; New et al., 1998; Jensen et al., 2010). BRCA2
interacts with RAD51 and together they are targeted to RPA-
bound ssDNA by DSS1, a stable interaction partner of BRCA2
that also helps displacement of RPA from ssDNA. Stability of the
Rad51-ssDNA filament is regulated by a number of pro- and anti-
recombination proteins. Paralogues of human RAD51 form two
distinct complexes, RAD51B-RAD51C-RAD51D-XRCC2
(BCDX2) and RAD51C-XRCC3 (CX3) (Masson et al., 2001a;
Masson et al., 2001b). Together with the yeast complex Rad55-
Rad57, as well as the Shu complexes, these paralog complexes are
known to promote RAD51 filament formation and stability
(Sung, 1997b; Bernstein et al., 2011; Liu T. et al., 2011; Bonilla
et al., 2020). The RAD51-ssDNA nucleofilament must then
undergo a homology search in an effort to locate and pair
with homologous sequence elsewhere in the genome to be
used as template for potentially error-free repair (Renkawitz
et al., 2014; Haber, 2018). The search process is mediated by
many proteins, including RAD54 (Petukhova et al., 1998;
Petukhova et al., 2000; Zhang et al., 2007; Renkawitz et al.,
2013). During the search, the presynaptic filament interrogates
the dsDNA template and samples base pairing for homology.
After recognition of homologous sequence is established, a stable
heteroduplex called the displacement loop (D-loop) is formed,
where the invading 3′ ssDNA tail is base paired with the
complementary strand in the template DNA, displacing the
homologous strand. D-loops formation, similar to that of the
presynaptic filament, offers another opportunity for regulation.
BRCA1-BARD1, RAD51AP1-UAF1, and PALB2 have all been

shown to stimulate D-loop formation (Dray et al., 2010; Liang
et al., 2016; Zhao et al., 2017). In order to initiate nascent DNA
synthesis using the now paired strand as template, RAD51 is
removed from the heteroduplex to expose the 3′ of the invading
ssDNA, where DNA replication machineries including PCNA,
RFC, and polymerase δ are assembled and can commence repair
synthesis (Li et al., 2009; Sebesta et al., 2011; McVey et al., 2016).
Finally, for DSBs with two free DNA ends, the repair may be
completed through synthesis dependent strand annealing
(SDSA), where the invading strand now extended through
DNA synthesis dissociates from the D-loop structure and
reanneals with the other broken end (San Filippo et al., 2008;
Mehta and Haber, 2014). No crossover events occur as a result of
SDSA. Alternatively, the second broken end may be captured by
and annealed to the displaced strand of the D-loop, leading to the
formation of a double Holliday junction (dHJ). Dissolution of
dHJs by BLM and Topo IIIα will result in non-crossover events,
while resolution can lead to either crossover or non-crossover
events, depending on the resolvases involved (Xue et al., 2013;
Bizard and Hickson, 2014; Chen et al., 2014; Matos and West,
2014).

SM Studies of DNA End Resection
The Escherichia coli RecBCD is a helicase and nuclease complex
that plays a critical role in repair of DSBs in bacteria by
homologous recombination, whose function in promoting
recombination is regulated by the Chi (χ, crossover hotspot
instigator) sequence in DNA (Dillingham and
Kowalczykowski, 2008; Smith, 2012). Biophysical properties of
RecBCD have been extensively characterized over the past two
decades using a plethora of different single-molecule techniques.
Though known to be a highly processive helicase, the actions of
individual RecBCD complexes had not been directly observed
(Roman et al., 1992). Using YOYO-stained λ-DNA conjugated to
an optically trapped bead and extended by flow (Figure 3A, left),
velocity and processivity of single RecBCD enzymes were
measured by quantifying the loss of YOYO signal as the
dsDNA was converted to ssDNA through actions of the
enzyme (Figure 3A, right) (Bianco et al., 2001). Using the
same imaging technique, the mechanism of regulation for the
recombination hotspot χ sequence was elegantly elucidated.
Single RecBCD complexes were observed to pause precisely
upon encountering the χ site and slow down afterwards,
which was revealed to be due to a change in the lead helicase
from RecD to RecB, rather than the loss of RecD as previously
believed (Spies et al., 2003; Handa et al., 2005; Spies et al., 2007).
Moving from naked DNA towards a more physiological
environment, further studies on RecBCD using the high
throughput DNA curtains showed that the powerful complex
is capable of ejecting stably bound proteins from DNA
(Finkelstein et al., 2010; Terakawa et al., 2017).

An early responder in mammalian DNA damage response,
53BP1 is an enigmatic factor that is known to prevent the
formation of long 3′ overhangs by limiting 5′ end resection at
DSB sites in G1 cells (Mirman and de Lange, 2020). The 53BP1-
mediated block to end resection mediated is accomplished
through effector proteins RIF1 and PTIP, whose recruitment
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depends on 53BP1 N-terminal phosphorylation by ATM (Callen
et al., 2013; Zimmermann et al., 2013). For HR to proceed,
restoration of end resection in S/G2 cells relies on the
antagonistic functions of BRCA1 towards 53BP1 (Chapman
et al., 2012; Densham et al., 2016; Hustedt and Durocher,
2016). Super-resolution light microscopy techniques such as
the single-molecule localization microscopy (SMLM) has
proven invaluable in elucidating the behavior of 53BP1 in
response to DNA damage by ionizing radiation (Depes et al.,
2018). SMLM measurements have shown cell type specific
recruitment patterns of 53BP1, as well as dynamic changes in
chromatin architecture, after high and low linear energy transfer
irradiations (Bobkova et al., 2018; Hausmann et al., 2020).

End resection in human cells begins with the short-range
resection initiated by the MRN complex with its phosphorylated
cofactor CtIP, which produces a nick ∼20 nt away from the end
(Anand et al., 2016; Cannavo and Cejka, 2014). Single-molecule
imaging of fluorescently labeled MRN showed that the protein
utilizes facilitated diffusion to reach the DNA ends (Figure 3B,
left) (Myler et al., 2017). Because the NHEJ initiating factor Ku
also binds tightly to DNA ends, it raises the question of howMRN
behaves when encountering DNA-bound Ku, as it also relates to

the problem of pathway choice in DSB repair (Scully et al., 2019).
Myler et al. showed in the same study that MRN is able to release
DNA-bound Ku via an Mre11-dependent nucleolytic reaction
(Figure 3B, right), thus providing a mechanism for initiation of
HR even when Ku is the first to arrive at DSB sites (Myler et al.,
2017). Recent follow-up on the topic from the same groups
corroborated and extended the initial finding by including
CtIP and DNA-PKcs in the DNA curtain assay, showing
nucleolytic release of DNA-PK by MRN/CtIP (Deshpande
et al., 2020).

The short overhang generated by MRN allows long-range
resection factors BLM/DNA2 or EXO1 to assemble and carry out
extensive resection. Significant insights into the biophysical
characteristics of these enzymes as well as their regulation
have been gained from single-molecule studies. Fluorescence
imaging on DNA curtains demonstrated that human and yeast
Exo1 are both processive nucleases that are susceptible to
displacement by multivalent ssDNA binding proteins such as
RPA, though extensive resection by human EXO1 was supported
by the SOSS1, another ssDNA binding complex essential for HR
in human cells (Myler et al., 2016). The coordination and
regulation of long-range end resection among its participants

FIGURE 3 | Single-molecule studies of resection in HR. (A) Left: Schematics of unlabeled RecBCD resecting YOYO1-stained DNA attached to an optically trapped
bead and extended by hydrodynamic flow. Right: Velocity (Δx/Δt) and processivity of RecBCD resection could be measured by quantifying shortening of YOYO1 tract
(Δx) over time (Δt). (B) Left: Schematics of fluorescently labeled MRN binding to and sliding on single-tethered dsDNA, with end-bound Ku, in a single-tethered DNA
curtain assay. Right: Kymographs showing the Mre11-dependent nucleolytic reaction leading to MRN and Ku release from DNA. White arrows indicate MRN
binding. Red arrows indicate dissociation of both MRN and Ku. Adapted from (Myler et al., 2017). (C) Sgs1 bound randomly to single-tethered dsDNA in DNA curtain (i),
but was targeted to the free ends in the presence of Top3-Rmi1 (ii). Translocation (green tract in kymograph) by Sgs1-Top3-Rmi complex was only activated by addition
of Dna2 (iii). End resection required further addition of RPA as evident by the shortening of YOYO1-staining of dsDNA accompanied by increase of fluorescence RPA
signal at the DNA end (iv). Adapted from Xue et al. (2019b).
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was well illustrated in a recent DNA curtain study focused on
Sgs1, the yeast ortholog of BLM (Figure 3C) (Xue et al., 2019b).
The authors showed that Sgs1 unwound dsDNA from internal
positions in the presence of RPA (Figure 3Ci) and can be targeted
to dsDNA ends in either Top3-Rmi1-dependent or independent
manner (Figure 3Cii). However, Sgs1 remained inactive at DSBs
until the addition of Dna2, which activated long-range
translocation by Sgs1 from DNA ends (Figure 3Ciii).
Furthermore, this complex lacked nucleolytic activity, which
was only triggered through addition of RPA (Figure 3Civ),
thus underscoring the importance of RPA in end resection as
previously reported (Cejka et al., 2010a; Niu et al., 2010).
Simultaneously, Sgs1 functions were also being studied using
magnetic tweezers, where dsDNA unwinding initiated from a
ssDNA gap with a 5′ flap produced comparable velocities to those
from DNA curtain measurements, though rewinding of dsDNA,
suggested to involve strand switching by Sgs1, was also observed
(Kasaciunaite et al., 2019). In addition to the role in end
recruitment of Sgs1 observed on DNA curtains, Top3-Rmi1
was shown to increase Sgs1 velocity when initiating
translocation from flapped gap substrate, consistent with
previously observed stimulatory effects (Cejka et al., 2010b;
Kasaciunaite et al., 2019). The role of RPA in human RECQ
helicase BLM-mediated resection was examined by two recent
DNA curtain studies. BLM exhibited high speed and robustness
in DNA unwinding regardless of the presence of RPA, while its
end resection activity was dependent on the phosphorylation
status of RPA (Xue et al., 2019a; Soniat et al., 2019). In the latter
paper, resection by BLM/EXO2 or BLM/DNA2 on single-
tethered DNA curtain was quantified in the presence of RPA
or its phosphomimetic or phosphoblocking mutants.
Phosphorylation on residues in RPA32 was found to reduce
velocity and processivity of end resection by both BLM/EXO2
and BLM/DNA2, as well as inhibit their resection past individual
nucleosomes, therefore acting as a negative regulator of resection
(Soniat et al., 2019).

SM Studies of Presynaptic Filament
Formation and Dynamics
As the 3′-ssDNA tail is being generated by long-range resection, it
is rapidly bound and protected from nucleases by single strand
binding proteins, which must then be replaced by recombinases.
The bacterial SSB and recombinase RecA were among the first to
be studied using single-molecule methods. Efforts to characterize
fundamental behavior of SSB typically favored smFRET
experiments with surface-immobilized single-stranded DNA
that is labeled at the ends with a donor/acceptor fluorophore
pair. Wrapping of ssDNA around the SSB tetramer during
binding would bring the donor and acceptor closer and allow
FRET efficiency to be used as a main observable. It was elegantly
shown that tetrameric SSB could spontaneously diffuse on
ssDNA, capable of removing secondary structure such as a
small stem-loop hairpin and promoting formation of RecA
filaments (Roy et al., 2009). Coupling an optically trapped
bead to the smFRET substrate to apply pN-level of force on
the complex, Zhou et al. was able to discern the molecular

mechanism for SSB sliding as reptation, where the motion is
facilitated by the formation of a DNA bulge and its propagation
around the protein opposite its direction of sliding (Zhou et al.,
2011).

Following binding of SSB to the 3′-ssDNA overhang, the
E. coli recombinase RecA must be loaded to form a
nucleoprotein filament capable of homology search and strand
invasion. Observation of this process at the single-molecule level
was first reported using smFRET and DNA substrates with short
ssDNA overhang, where the donor/acceptor pair was placed at
the junction and end of ssDNA (Figure 4A) (Joo et al., 2006). Five
monomers of RecA were determined necessary for nucleation
and dynamic binding and dissociation of single monomers from
both ends of the filament contributed to filament growth.
Notably, it was shown that RecA could displace SSB from
ssDNA when a preformed nucleation cluster was present (Joo
et al., 2006). Having first shown RecA binding of flow-extended
double-stranded λ-DNA tethered to an optically trapped bead,
Kowalczykowski et al. then reported formation of fluorescently
labeled RecA filament on SSB-coated surface-tethered ssDNA
(Galletto et al., 2006; Bell et al., 2012). In this work, Bell et al.
observed that a RecA dimer was required for filament nucleation
through titration of RecA concentration and its relationship with
nucleation frequency. Using two-color labelling of RecA, it was
demonstrated that RecA filament growth was bidirectional but
faster in the 5′-3′ direction, consistent with previous findings
(Galletto et al., 2006; Joo et al., 2006). Furthermore, E. coli
recombination mediator proteins RecOR were shown to
stimulate both RecA nucleation and filament growth (Bell
et al., 2012).

Many of the same characteristics exhibited by SSB and RecA
are conserved in their eukaryotic counterparts. Human RPA has
been shown by smFRET to diffuse on ssDNA and melt secondary
structures (Nguyen et al., 2014). Dynamics of RPA filament were
thoroughly investigated using single-stranded DNA curtains
(Gibb et al., 2012; Ma et al., 2017b). RPA filament formed on
ssDNA was shown to be stable for over 2 h when unbound
proteins were flushed out (Gibb et al., 2014a; Deng et al.,
2014; Ma et al., 2016). When challenged with free protein in
solution, it was observed that ssDNA-bound RPA could be
exchanged with those in solution in a manner dependent on
concentrations of the free RPA, consistent with facilitated
dissociation previously reported for DNA binding proteins
with multiple contacts (Graham et al., 2011; Gibb et al., 2014a;
Deng et al., 2014; Ma et al., 2016). Direct visualization of
fluorescently labeled human RAD51 showed conserved end-
biased bidirectional filament growth on dsDNA, initiated by
nucleation of ∼2–3 monomers (Hilario et al., 2009). Assembly
of RAD51 filament on the physiologically relevant RPA-coated
DNA as well as its disassembly characteristics were also
recapitulated on ssDNA curtains (Ma et al., 2016).

To overcome RPA-mediated inhibition of RAD51 filament
formation, mediator proteins such as BRCA2 and RAD51
paralogs are needed (Bonilla et al., 2020). Effects of yeast
Rad52, considered a possible functional ortholog of human
BRCA2, on the dynamics of presynaptic filaments were
revealed using ssDNA curtains (Figure 4B, left) (Gibb et al.,

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7453117

Kong and Greene Single-Molecule Studies of DSB Repair

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


2014b). Fluorescently labeled Rad52 was shown to nucleate on
RPA-coated ssDNA and promote bidirectional growth for
additional Rad52 binding (Figure 4B, right). Rad52-RPA
clusters were also observed to remain after formation of
extended Rad51 filaments and served as nucleation sites for
additional binding of RPA and Rad52 (Gibb et al., 2014b).
Recent smFRET work suggests that the Rad52 destabilizes the
DBD-D DNA binding domain of RPA, thereby increasing access
to ssDNA previously occluded by RPA (Pokhrel et al., 2019).

Many of these same characteristics of Rad52 were also
recapitulated in a DNA curtain study of human RAD52,
whose deletion in vertebrates does not produce a strong
phenotype, with the exception that human RAD52 and RPA
could not rebind to remaining clusters after assembly of human
RAD51 filaments (Ma et al., 2017a). In addition, effects of RAD51
paralogs on presynaptic filaments have been the subject of several
recent single-molecule studies. In a smFRET study of C. elegans
RAD-51 paralogs RFS-1/RIP-1, surfaced-immobilized substrates

FIGURE 4 | Single-molecule studies of filament assembly and dynamics in HR. (A) smFRET study of assembly of RecA filaments on 3′-ssDNA overhang of duplex
DNA substrates, where formation of RecA filaments leads to further separation of the donor and acceptor fluorophores and lower FRET efficiency. Adapted from Joo
et al. (2006). (B) Left: Single-stranded DNA curtain showing bidirectional growth of Rad52 after nucleation on unlabeled RPA-coated single stranded DNA. Right:
Kymograph of ssDNA shows double-sided wedge shape in fluorescence signal over time. Adapted from Gibb et al. (2014b). (C) Left: Scanning confocal
fluorescence imaging of ssDNA held between two optically trapped beads. Right: RAD-51 paralogues RFS-1/RIP-1 was shown to work synergistically with BRC-2 in
stimulation of unlabeled RAD-51 filament assembly, as reflected by the loss of fluorescent RPA signal in the kymographs. Adapted from Belan et al. (2021). (D) Left:
Translocation by RECQ5 on RAD51 filaments in ssDNA curtain assay, where RAD51 was displaced in the process, as shown by the increase in fluorescent RPA signal.
Right: Kymographs showing increase of fluorescent RPA signal as RAD51 was removed by RECQ5 from ssDNA. Wedge shape growth, from 3′ to 5′, of the
fluorescence signal at low RECQ5 concentrations shows the direction of translocation. Adapted from Xue et al. (2021).
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were labeled with donor and acceptor dyes seven nucleotides
apart in the ssDNA region (Taylor et al., 2015). Addition of RAD-
51 to naked ssDNA led to transition from high FRET to low
FRET, reflecting the stretching of ssDNA upon RAD-51 binding.
RFS-1/RIP-1 bound RAD-51 filament exhibited intermediate
FRET value along with broadening of the FRET signal
distribution, suggesting that these paralogs remodeled RAD-51
filaments to a more flexible conformation (Taylor et al., 2015).
Most recently, optical tweezers with confocal fluorescence
imaging (Lumicks C-trap) and DNA curtains were separately
applied to better understand the actions of RFS-1/RIP-1 and the
yeast Rad51 paralogs Rad55-Rad77, respectively (Belan et al.,
2021; Roy et al., 2021). Both studies showed that the paralogs
promote RAD51 filament assembly through transient
interactions, dissociating rapidly by hydrolyzing ATP. In
addition, Belan et al. found that RFS-1/RIP-1 synergize with
BRC-2 (human BRCA2 homolog) in promoting presynaptic
filament assembly, specifically by engaging with the 5′ end of
the RAD-51 filament to stimulate growth in a 3′→5′ direction
(Figure 4C) (Belan et al., 2021). Roy et al. also showed that
Rad55-Rad57 antagonism of anti-recombinase Srs2 might be
through promoting faster re-assembly of Rad51 rather than
inhibiting the anti-recombinase itself, as previously suggested
(Liu J. et al., 2011; Roy et al., 2021).

Excessive recombination, also referred to as hyper-
recombination, however, can be genotoxic and must be
prevented. Counteracting the effects of RAD51 mediators that
promote filament assembly are the negative regulators, or anti-
recombinases. Several SF1 helicases are known to display anti-
recombinase activity. Bacterial UvrD and PcrA have been
implicated in dismantling of RecA filaments in genetic and
biochemical experiments (Veaute et al., 2005; Bidnenko et al.,
2006; Lestini andMichel, 2007; Petrova et al., 2015). In particular,
smFRET studies showed that PcrA strips RecA filaments off DNA
through a reeling motion (Park et al., 2010). The yeast SF1
helicase Srs2 has also been shown to prevent recombination
by dismantling the Rad51-ssDNA nucleofilament through
stimulation of ATP hydrolysis by Rad51 and its dissociation
(Krejci et al., 2003; Veaute et al., 2003; Antony et al., 2009).
Actions of Srs2 on different HR intermediates have been
visualized at the single-molecule level. In one smFRET study,
Srs2 cleared Rad51 bound to short ssDNA overhangs and
exhibited repetitive motion at the ssDNA/dsDNA junction,
proposed to prevent reformation of Rad51 filament (Qiu et al.,
2013). Single-stranded DNA curtain experiments showed that
Srs2 was capable of processively translocating on naked ssDNA,
as well as RPA-coated ssDNA, Rad51-ssDNA, and ssDNA bound
by both RPA and Rad52 (De Tullio et al., 2017; Kaniecki et al.,
2017). While translocating on protein-bound ssDNA, Srs2 also
efficiently removed RPA, Rad51, Rad52, and short
heteroduplexes formed with Rad51. Remarkably, this robust
anti-recombination function of Srs2 was strongly inhibited by
the presence of meiosis-specific recombinase Dmc1 within the
presynaptic filament (Crickard et al., 2018).

In addition to SF1 helicases, members of the RecQ subfamily
of SF2 helicases have also been implicated in anti-recombination
functions (Branzei and Szakal, 2017; Larsen and Hickson, 2013).

A DNA curtain study showed that Sgs1, apart from its role in end
resection, also acted on presynaptic filaments (Crickard et al.,
2019). Sgs1 was observed translocating on RPA-coated ssDNA
and, in accordance with its expected anti-recombinase activity,
displacing Rad51 while translocating on the Rad51-ssDNA
filament. Sgs1-mediated Rad51 removal was found to be
independent of Rad51 ATP hydrolysis, in stark contrast to the
mechanism employed by Srs2 (Antony et al., 2009; Kaniecki et al.,
2017). Though similar to the case of Srs2, Sgs1 action was also
inhibited by Dmc1 (Crickard et al., 2019). Functional
conservation of RECQ helicases in anti-recombination was
recently demonstrated for the human RECQ5 on DNA curtain
(Figure 4D, left) (Xue et al., 2021). RECQ5 not only translocated
on ssDNA bound by RPA, RAD51, or DMC1, but also removed
these proteins in the process (Figure 4D, right). Real-time
observation of RAD51 removal by RECQ5 is consistent with
previous results from biochemical assays (Hu et al., 2007). Similar
to Sgs1, RECQ5 was able to strip ATPase-deficient RAD51 from
ssDNA, suggesting a mechanism not coupled to RAD51 ATP
hydrolysis. The ability of RECQ5 to translocate and disrupt
DMC1 filaments contrasts with the inhibitory effects of Dmc1
on Sgs1 and Srs2, suggesting that it may play a role in meiosis
(Xue et al., 2021). Finally, as mentioned above in the context of
DNA end resection, BLM showed robust dsDNA unwinding but
little interaction with RPA- or active ATP-bound RAD51-coated
ssDNA in DNA curtain assays, even though it was considered an
anti-recombinase capable disrupting inactive ADP-bound
RAD51 filaments (Bugreev et al., 2007; Xue et al., 2019a). The
apparent differences in the abilities of RECQ5 and BLM to
interact with different HR intermediates may arise from
differences in protein domain architecture and reflect division
of labor among RECQ helicases in HR.

SM Studies of Homology Search
Once the stable presynaptic filament forms, it must locate
sequence homology elsewhere in the genome, against a vast
background of heterologous sequence. The recombinase then
catalyzes a strand exchange reaction to form a heteroduplex
containing the ssDNA base paired with the complementary
strand and displacing the strand containing the homologous
sequence (D-loop). At its core, the homology search process is
highly similar to target search by other ubiquitous sequence
specific DNA-binding proteins. A theoretical solution to the
target search problem has been known for four decades as
facilitated diffusion (Berg et al., 1981). Understanding of this
process, involving a combination of 1D and 3D diffusion as
well as microscopic hopping and intersegmental transfer, has
seen significant contributions from single-molecule
experiments. Following their earlier work on RecA filament
assembly, the Kowalczykowski and Ha groups were the first to
shed light on the mechanism behind homology search by RecA
presynaptic filaments (Forget and Kowalczykowski, 2012;
Ragunathan et al., 2012). In the first study, dsDNA serving
as the homologous sequence donor was held between two
optically trapped beads in a “dumbbell” configuration
(Figure 5A). By systematically varying the distance between
the beads, hence the contour length and 3D conformation of
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the DNA, it was shown that RecA filaments conducted
homology search via multiple weak contacts for sampling
DNA sequence within a 3D volume, a mechanism the
authors termed “intersegmental contact sampling”
(Figure 5A) (Forget and Kowalczykowski, 2012). In the
second smFRET study, free dsDNA homology donor and
surface-immobilized RecA-ssDNA were labeled with donor
and acceptor dyes, respectively. By observing the dynamic
FRET values while controlling for sequence homology, a
sliding model was proposed, in which RecA filaments can
diffuse along the dsDNA track while efficiently sampling for
homology as short as six nucleotides (Ragunathan et al., 2012).
Together these studies demonstrate that homology search by
RecA filaments occurs through facilitated diffusion using a
combination of 1D sliding and 3D diffusion, expedited via
intersegmental contact sampling.

More detailed understanding of minimum sequence
homology requirements and kinetics of sampling were
uncovered in a pair of papers using single-stranded DNA
curtains (Lee et al., 2015; Qi et al., 2015). In these
experiments, presynaptic filaments were assembled on long
ssDNA tethered to the lipid bilayer surface, while fluorescently
labeled duplexes containing varying degrees of homology were
free in solution (Figure 5B). The first study revealed that eight
nucleotides of homology was the minimum requirement for
recognition by Rad51 and stable capture, while subsequent
strand exchange occurred in precise three nucleotide steps (Qi
et al., 2015). The follow-up work illustrated that the base triplet
stepping for homology recognition (Figure 5B) was a conserved
feature in the RecA family of recombinases from RecA to Rad51,
including the meiosis-specific Dmc1. Dmc1, however, was also
unique in its ability to stabilize internal mismatches. Whereas

FIGURE 5 | Single-molecule studies of homology search in HR. (A) Left: Dual optical trap setup allowed precise control of dsDNA end-to-end distance in study of
homology search by RecA. Right: Fluorescent RecA-ssDNA bound to expected homology positions in dsDNA after incubation. dsDNA could be visualized by staining
with YOYO1. Adapted from Forget and Kowalczykowski (2012). (B) Fluorescently-labeled and microhomology-containing dsDNA fragments were incubated with
nucleofilaments formed by Rad51-family recombinases on ssDNA curtain. Dissociation times of bound-particles post-wash (Δt) showed energy stabilization
occurring in steps of Watson-Crick base triplets. (C) Left: Presynaptic complexes were assembled by mixing Rad51 and Rad54 with dye-labeled partial duplex DNA
containing homology in the ssDNA overhang region.Right:Dual color imaging of labeled DNA and Rad54 showed that Rad54 drove active homology search along DNA
in an ATP hydrolysis-dependent manner. Adapted from Crickard et al. (2020).
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mismatches in RecA or Rad51 filaments could be tolerated but
would not contribute to stabilizing recognition complex (Lee
et al., 2015).

Adding to the complexity of homology search is the fact that
the process in eukaryotic cells also involves the multi-functional
SWI2/SNF2 motor proteins Rad54 and Rdh54 (Ceballos and
Heyer, 2011). Early single-molecule work had shown that both
Rad54 and Rdh54 are highly processive translocases on dsDNA
(Amitani et al., 2006; Nimonkar et al., 2007; Prasad et al., 2007).
While Rad54 is also known to facilitate Rad51-mediated
homologous DNA pairing in vitro and homology search in
vivo, its exact mechanism of action remained unknown
(Petukhova et al., 1998; Renkawitz et al., 2013). Recently,
using double-tethered dsDNA curtains as sequence donor and
labeled partial duplex DNA with 3′ Rad51-ssDNA filament,
Rad54 was shown to promote targeting to homologous DNA
by translocating with the presynaptic filament on dsDNA
(Figure 5C) (Crickard et al., 2020). This ATP-dependent
behavior adds to the 3D diffusion mechanism of the
homology search and serves in reducing dimensionality and
increasing search efficiency. Moreover, while driving active
translocation, Rad54 induced transient strand opening coupled
to RPA binding, potentially allowing the Rad51 presynaptic
complex to sample both strands of dsDNA donor for
homology (Crickard et al., 2020).

OVERVIEW OF NHEJ

Upon formation of a DSB, the “canonical” NHEJ pathway
proceeds through three distinct steps: synapsis, end processing,
and ligation (Figure 2B). The DNA ends are first recognized by
Ku70-Ku80, a ring-shaped heterodimer with high affinity to
DNA ends (Walker et al., 2001). After binding, Ku70-Ku80
(Ku) serves as a ‘tool belt’ that interacts and stabilizes many
subsequence NHEJ proteins (Lieber, 2008). One of the first
factors recruited to DNA-bound Ku is DNA-PKcs (DNA-
dependent protein kinase, catalytic subunit), a member of the
phophoinositide 3-kinase family (Gottlieb and Jackson, 1993;
Smith and Jackson, 1999; Falck et al., 2005). Together they form
the DNA-PK holoenzyme, whose kinase activity is required for
NHEJ, as it phosphorylates many other NHEJ accessory factors as
well as itself (Uematsu et al., 2007; Jette and Lees-Miller, 2015;
Jiang et al., 2015). In the next step, the two broken DNA ends
must be brought to close proximity to enable synapsis in a
dynamic process. The mechanism of synapsis depends on
binding of LIG4 (DNA ligase IV), XRCC4, and XLF (XRCC4-
like factor) (Stinson and Loparo, 2021). LIG4 and XRCC4 form
an active complex, through interactions between XRCC4 and the
region between the BRCT motifs in the C-terminal of LIG4
(Critchlow et al., 1997; Grawunder et al., 1997; Grawunder
et al., 1998; Sibanda et al., 2001; Wu et al., 2009). XLF was
identified to interact with LIG4-XRCC4 to promote NHEJ
(Ahnesorg et al., 2006; Buck et al., 2006). Evidence also
suggests that XRCC4 and XLF may form filaments that help
bridge DNA ends (Hammel et al., 2011; Ropars et al., 2011;
Andres et al., 2012; Mahaney et al., 2013). Post synapsis, blunt

ends that do not require further processing may be ligated directly
by XRCC4-LIG4. However, naturally occurring DSBs typically
have incompatible ends that cannot be readily ligated. Therefore,
end processing in the forms of resection by nucleases and/or
addition and filling-in by the X family of DNA polymerases are
often needed before generating compatible ends for ligation
(Waters et al., 2014; Chang et al., 2016). Artemis is a nuclease
associated with NHEJ and essential for V(D)J recombination (Ma
et al., 2002; Riballo et al., 2004). Its C-terminal region has been
found to interact with LIG4 and DNA-PKcs (Niewolik et al.,
2006; De Ioannes et al., 2012; Malu et al., 2012). While members
of the X family DNA polymerase, pol λ, pol μ, and TdT (terminal
deoxynucleotidyl transferase) are all implicated in NHEJ with
different levels of template dependence (Nick McElhinny et al.,
2005). Recruitment of these polymerases to sites of NHEJ is
known to occur through interactions with Ku and XRCC4-LIG4
via their N-terminal BRCT domain (Mahajan et al., 2002; Fan and
Wu, 2004; Ma et al., 2004). Notably, recent structural evidence
has indicated that synapsis of DNA ends with single nucleotide
homology could be mediated solely by TdT or pol μ, in the
absence of other NHEJ core factors (Kaminski et al., 2020; Loc’h
et al., 2016). In cases of unligatable chemical blocks at DNA ends,
PNKP (polynucleotide kinase 3′-phosphatase), aprataxin and
PNKP-like factor (APLF), or tyrosyl-DNA phosphodiesterase
1/2 (TDP1/2) may be recruited to DSB sites for processing
(Zhao et al., 2020a). Finally, PAXX (paralogue of XRCC4 and
XLF) is a recently discovered factor that promotes ligation and
assembly of core NHEJ proteins (Ochi et al., 2015; Xing et al.,
2015). Although its functions in NHEJ appear to overlap with
those of XLF (Tadi et al., 2016).

SINGLE-MOLECULE STUDIES OF NHEJ

Fundamental Mechanism of Synapsis
Synapsis is the step in which the two broken DNA ends are
brought together to close proximity such that NHEJ machinery
may assemble in a stable complex and assess the actions needed to
restore the structural integrity of DNA. Detailed mechanistic
insights on this critical early step are therefore prerequisite to
understanding of the pathway. The dynamic nature of the process
involving two DNA ends has made smFRET the single-molecule
platform of choice in studying the system. By measuring the
fluorescence energy transfer between the donor-labeled surface-
immobilized fragment and the acceptor-labeled freely-diffusing
fragment, smFRET allows real-timemonitoring of intermolecular
synapsis. High FRET indicates close proximity of the two DNA
ends, while fluctuating FRET values would suggest dynamics in
the process of DNA end alignment.

Early models derived from work using purified proteins in
bulk biochemical assays, electron microscopy, and x-ray
scattering as well as laser microirradiation of cells followed by
immunofluorescence imaging suggested that DNA-PKcs is
recruited by Ku to DNA breaks and together they are able to
bridge the broken DNA ends (DeFazio et al., 2002; Hammel et al.,
2010b; Kim et al., 2005; Weterings et al., 2003). Nonetheless, the
lack of spatiotemporal resolution precluded these studies from
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revealing any transient intermediate steps or subcomplexes in the
process. Using smFRET with two DNA fragments containing
four nucleotide homology at the ends and differentially labeled
with donor and acceptor fluorophores, Rothenberg and
coworkers observed co-localization of the donor/acceptor pairs
after addition of purified NHEJ components except DNA-PKcs
(Figure 6A, left) (Reid et al., 2015). Although aggregated joining
was observed in the presence of DNA-PKcs, this result cast doubt
over the requirement of DNA-PKcs in synapsis. This end joining
process mediated by Ku70-Ku80, XRCC4-LIG4, and XLF was
revealed to be dynamic, as shown by FRET efficiency
distributions (Figure 6A, right). These distributions exhibited
widths indicative of the possibility that the DNA ends may be
positioned in a side-by-side manner, in addition to end-to-end.
Examination of fluctuating FRET trajectories in conjunction with
using substrates that varied in end chemistry also supported the
notion of DNA ends in “adjacent configuration” during the

synaptic process that is highly dynamic (Figure 6A). More
mechanistic details were uncovered in a later follow-up
smFRET study by the Rothenberg and Lieber laboratories
(Zhao et al., 2019). It was shown that the first “flexible” stage
of blunt end synapsis (FS), mediated by Ku and XRCC4-LIG4,
involves the dsDNA ends being brought into a parallel side-by-
side configuration where they can still slide along each other, as
evidenced by fluctuating FRET efficiency values. Flexible
synapsis, shown to be independent of DNA-PKcs, can then be
converted to a close synaptic state (CS) by XLF or PAXX, where
the two DNA ends are aligned in close proximity in an end-to-
end manner.

The lack of DNA-PKcs requirement in synapsis as monitored
by smFRET contradicts existing evidence for its role in NHEJ in
vivo (Baumann and West, 1998; Cottarel et al., 2013; Jiang et al.,
2015; Zhao et al., 2006). This apparent discrepancy was further
investigated by Loparo and coworkers using smFRET and cell-

FIGURE 6 | Single-molecule studies of end synapsis in NHEJ. (A) Left: Schematics of intermolecular smFRET showing synapsis upon addition of purified human
Ku, XRCC4, LIG4, but in the absence of DNA-PKcs, to be dynamic with fluctuating andwidely distributed FRET efficiency, suggesting that the two broken endsmay slide
relative to and past each other during synapsis. Right: Side-by-side sliding of the donor with respect to the acceptor could give rise to the fluctuating FRET efficiency
values. (B) Left: Schematics of intramolecular smFRET used to monitor end synapsis mediated by NHEJ factors in egg extract. Right: Distinct high FRET state
reverted back to low FRET state, showing short-range synapsis was dynamic. (C) Magnetic tweezers with novel DNA substrate design tracks DNA extension and
enables measuring dwell times (Δt) of transient synapsis, by cycling between low force/extension that allows formation of synaptic complex and high force/extension to
disrupt synapsed but unligated ends. A change in DNA extension (Δx) at the same high force is observed when the synapsed ends are disrupted.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 74531112

Kong and Greene Single-Molecule Studies of DSB Repair

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


free extract of X. laevis eggs (Figure 6B) (Graham et al., 2016).
Xenopus egg extract represents a more physiological system
compared to biochemical reconstitution of purified proteins,
and has been established for single-molecule imaging studies
as well as being capable of Ku- and DNA-PK-dependent DNA
end joining (Di Virgilio and Gautier, 2005; Labhart, 1999;
Yardimci et al., 2012). In addition to intermolecular synapsis
of two separate DNA fragments, a longer 2 kbp DNA fragment
with donor/acceptor-labeled blunt ends and an internal biotin for
surface immobilization was used in this study to facilitate
intramolecular end joining (Figure 6B, left) (Graham et al.,
2017). Based on the distance between the donor/acceptor dyes,
synapsis was observed to occur through two distinct stages: long-
range (LR) where both dyes were present but no FRET, and short-
range (SR) where FRET was seen between the dye pair
(Figure 6B, right). In contrast to previous single-molecule
work, LR synapsis in Xenopus egg extracts required both
Ku70-Ku80 and DNA-PKcs, though the kinase activity of the
latter is not needed. Transition from LR to SR synapsis would
occur after several seconds and require the catalytic activity of
DNA-PK, as well as the presence of XRCC4-LIG4 and XLF,
though not the catalytic activity of LIG4.

Unlike order of assembly studies, quantifying biophysical
observables such as step-wise reaction energetics has mostly
been intractable for bulk biochemistry. In particular, a novel
DNA substrate featuring two free DNA ends tethered via a leash
held by magnetic tweezers has been developed as a unique single-
molecule force spectroscopy approach to probe the energetics of
NHEJ synapsis with reconstitution of purified proteins (Kostrz
et al., 2019; Wang et al., 2018). By cycling between low and high
forces on a single tether and monitoring changes in tether length,
Strick and coworkers demonstrated that Ku and DNA-PKcs are
required to first establish a brief (∼100 ms) stage of synapsis of
DNA ends (Wang et al., 2018) (Figure 6C). This initial step is
further stabilized by either XRCC4-LIG4 and XLS and/or PAXX,
each contributing kBT-scale energy, leading to long-lived
(∼seconds) intermediate stages and stable (∼minute) synaptic
complexes. Notably, these results support the two distinct stages
of synapsis observed by Graham et al. using smFRET. The
subcomplex containing Ku and DNA-PKcs and stabilized by
PAXX (∼2 s) appears consistent with the long range synapsis,
while the full complex further stabilized by XRCC4-LIG4 and
XLF (∼66 s) would correspond to the short range synapsis
(Stinson and Loparo, 2021). Most recently, the same technique
was applied to demonstrate the dynamic properties of
prokayrotic NHEJ synapsis involving just the Ku heterodimer
and Ligase D (Oz et al., 2021). Although debates remain regarding
whether DNA-PKcs is required for synapsis, as the results appear
to be dependent on the system employed, recent single-molecule
work have unambiguously shown the process to be a dynamic
process with distinct stages.

Roles of XLF in Synaptic Complexes
XRCC4-like factor (XLF, or Cernunnos) is identified as an
interactor of XRCC4 and regulator of ligation (Ahnesorg et al.,
2006; Buck et al., 2006). X-ray crystallography and electron
microscopy studies have shown that XLF and XRCC4 can

form filaments in crystals (Andres et al., 2012; Hammel et al.,
2010a; Mahaney et al., 2013; Ropars et al., 2011). Filamentous
structures of XRCC4, XLF, and LIG4 have also been observed at
DSB sites using super-resolution fluorescence microscopy (Reid
et al., 2015). The mode of interaction between XLF-XRCC4
complexes and DNA remained elusive until the collaborative
work from the Modesti, Peterman, andWuite groups. In a single-
molecule tour de force, dual- and quadruple optical traps were
combined with wide-field fluorescence imaging to demonstrate
that XRCC4-XLF complexes robustly bridged two independent
DNA fragments (Brouwer et al., 2016). These complexes acted
like sleeves that were able to withstand high applied forces and
capable of sliding along DNA molecules (Figure 7A). Specific
contributions from XLF in synapsis in the presence of other
NHEJ core proteins were elucidated using smFRET (Figure 7B,
left). Mutagenesis in XLF and XRCC4 showed that close
alignment of donor/acceptor dye labeled DNA ends in the
xenopus egg extracts system required interactions between
these two proteins (Graham et al., 2018). Moreover, binding of
a single dye-labeled XLF dimer was sufficient to mediate this
short-range synapsis, which is shown to also be dependent on
interactions of both XLF head domains with XRCC4 (Figure 7B,
right). These findings call into question the requirement and
relevance of XLF-XRCC4 filaments, as observed in bulk, in
NHEJ. More corroborating evidence incompatible with the
XLF filament hypothesis emerged in a subsequent smFRET
study by Rothenberg and Lieber laboratories using
reconstituted human NHEJ proteins. XLF was found to drive
DNA ends into close proximity in a manner that is not strongly
dependent on XLF concentrations, suggesting that only one to a
few XLF dimers are needed at the DNA ends (Zhao et al., 2019).

End Processing and Ligation
Many DNA ends at DSB sites, regardless of their origins, require
end processing before repair. The arsenal of NHEJ end-
processing enzymes include nucleases, polymerases, kinases,
phosphatases, and phosphodiesterases (Chang et al., 2017).
The effects of chemically diverse DNA ends have on the
dynamics of how they come together during synapsis is a
question uniquely suited for single-molecule studies. Pairing
efficiency as monitored by smFRET was shown to be strongly
affected by phosphorylation status of the 5′ end of compatible
DNA ends with four nucleotide overhangs in a minimal
reconstituted system (Reid et al., 2017). Two distinct kinetic
regimes, transient (<5 s) and persistent (>30 s), were found to
exist for end pairing during the process, and that their energetics
are modulated by the 5′ phosphate, through recognition by LIG4.
In the absence of other end processing factors in this single-
molecule work, a model involving an iterative process was
proposed, where incompatible ends within a synaptic complex
would fall apart to provide access by the processing enzymes and
thus generating new compatible ends for synapsis and ligation
(Reid et al., 2017). Subsequent smFRET work further examined
the ability of LIG4 to sense complex ends in the minimal
reconstituted system. At DNA ends with overhangs containing
varying degrees of complementarity, LIG4 was shown to promote
alignment of complementary ends in pre-catalytic positions, but
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allow dynamic sampling of alignments for terminal mismatches
or ends with embedded complementarity that requires
nucleolytic end process before ligation (Conlin et al., 2017).
While the above-mentioned work demonstrated the
participation of LIG4 in the alignment of DNA ends, in order
to understand how end processing is coordinated with alignment
of DNA, simultaneous observation of end processing enzymes
and synapsis would be required. Taking advantage of the xenopus
egg extracts system, Stinson et al. recently expanded on the
requirement of LIG4-mediated close alignment of the DNA
ends and showed that end processing is coordinated to take
place within this synaptic complex (Stinson et al., 2020). Synaptic
complex formation was monitored through smFRET with donor/
acceptor dye-labeled DNA ends as before. To observe pol λ
activity, the first incoming nucleotide was labeled with a
fluorescent quencher, which once incorporated leads to
quenching of the donor fluorophore. To observe Tdp1 activity,
one of the 3′ adducts is conjugated to the donor fluorophore,
which once processed by Tdp1 will be lost. It was observed that
donor signal loss was preceded by high FRET, indicating close
alignment of DNA end (Stinson et al., 2020). These data clearly
demonstrated that end processing by pol λ and Tdp1 occurs
within the short-range synaptic complex. This level of
coordination between end processing and ligation during
synapsis has thus been proposed as a regulatory mechanism to
minimize errors and maximize fidelity of NHEJ (Stinson et al.,

2020; Stinson and Loparo, 2021). Finally, attesting to the
flexibility of NHEJ, it was recently reported in a smFRET
study that pol μ, another X family polymerase participating in
NHEJ alongside pol λ, alone can mediate synapsis of 3′ overhangs
with at least 1 nt homology, in the absence of Ku (Zhao et al.,
2020b).

CONCLUSION AND PERSPECTIVES

Single-molecule techniques have advanced and matured by leaps
and bounds, thanks to technological improvements in equipment
and reagents such as cameras and fluorescent dyes. The field has
also expanded and benefited from commercialization of single-
molecule instruments. An underlying technical challenge in
single-molecule work has always been to achieve higher spatial
and temporal resolutions. And this drive has steadfastly pushed
technical innovations in the field. As single-molecule studies are
typically built with a bottom-up approach, the field is constantly
striving for increased levels of complexity in biological systems
under examination. For mechanistic studies of homologous
recombination, challenges remain, including but not limited
to, in addressing functions of RAD51 mediator proteins and
incorporating other accessory proteins in reconstituting the
process from filament assembly to strand invasion, among
others. Studying repair in general within the physiologically

FIGURE 7 | Single-molecule studies of roles of XLF in NHEJ synapsis. (A) Left: Quad optical trap was used to show bridging of two separate DNA molecules by
XRCC4-XLF. Middle: One trap was moved to shift one of the two DNA molecules. Right: XRCC4-XLF was able to slide while maintaining the bridge. (B) Left:
Schematics of smFRET study using fluorescently labeled XLF dimer with egg extract. Right: Onset of high FRET, indicative of short-range synapsis between the DNA
ends, was preceded by increase in fluorescence signal corresponding to binding of one XLF dimer.
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relevant context of chromatin has also proven challenging. Since
multiple repair pathways exist and are available to cells for DSB
repair, pathway choice is an overarching subject that bridges
studies of individual repair mechanisms. Though initial work
exists, the molecular mechanism for how competing repair
mechanisms cooperate at the single-molecule level has largely
been elusive. Biochemical reconstitutions of repair using purified
recombinant proteins provide a clear, pre-defined set of
parameters and have been the preferred system for single-
molecule studies. However, functional cell extracts that already
contain the proteins of interest may be the key to the pursuit of
higher degrees of reaction complexity.

The unprecedented level of detail in mechanistic insights from
single-molecule experiments may at times be seemingly at odds
with existing biochemical or in vivo evidence and require careful
reconciliation. It is worth repeating that gaps exist among these
approaches, such that a comprehensive picture is best constructed
when all evidence is considered together. Indeed, differences exist
even between comparable single-molecule studies using the same
techniques, resulting in apparently incompatible interpretation of
the mechanism. Building on existing imaging platforms that
focus on studies of particular stages of the process, further
developments of single-molecule imaging in vivo,

complemented by biochemical and in vitro studies, will
undoubtedly help uncover deeper understanding of DSB repair.
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