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With the rapid development of short-read sequencing technologies, many population-
scale resequencing studies have been carried out to study the associations between
human genome variants and various phenotypes in recent years. Variant calling is
one of the core bioinformatics tasks in such studies to comprehensively discover
genomic variants in sequenced samples. Many efforts have been made to develop
short read-based variant calling approaches; however, state-of-the-art tools are still
computationally expensive. Meanwhile, cutting-edge genomics studies also have
higher requirements on the yields of variant calling. Herein, we propose Partial-Order
Alignment-based single nucleotide polymorphism (SNV) and Indel caller (Psi-caller), a
lightweight variant calling algorithm that simultaneously achieves high performance and
yield. Mainly, Psi-caller recognizes and divides the candidate variant site into three
categories according to the complexity and location of the signatures and employs
various methods including binomial model, partial-order alignment, and de Bruijn graph-
based local assembly to handle various categories of candidate variant sites to call
and genotype SNVs/Indels, respectively. Benchmarks on simulated and real short-read
sequencing data sets demonstrate that Psi-caller is times faster than state-of-the-art
tools with higher or equal sensitivity and accuracy. It has the potential to well handle
large-scale data sets in cutting-edge genomics studies.

Keywords: variant calling, partial order alignment, short read sequencing, SNV/Indel detection, local assembly

INTRODUCTION

High-throughput sequencing (HTS) has become a fundamental approach to characterize human
genomes (Lander et al., 2001; Shendure et al., 2019). Especially, the discovery of genomic variants
from HTS data, i.e., variant calling, is one of the most important HTS applications that is
fundamental in many genomics studies to discover the associations between genome variations
and important phenotypes and diseases (Shastry, 2002; Weischenfeldt et al., 2013; Kosugi et al.,
2019), as well as the diversity and evolution of human genomes at both individual and population
levels (Auton et al., 2015; Wu et al., 2019). Single nucleotide polymorphisms (SNVs) and short
insertions/deletions (Indels) are the genomic alteration that usually refers to the change of less
than 50-base pair (bp) nucleotide fragments compared to structural variants. Variant calling is
the detection of the nucleotide differences between donor and reference genomes from millions to
billions of HTS reads. With the rapid development of HTS technologies such as Illumina platform
(Caporaso et al., 2012) and long-read sequencing technologies, such as Pacific Biosciences (PacBio)
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(Roberts et al., 2013) and Oxford Nanopore Technologies
(ONT) (Jain et al., 2016), the calling of variants are promising
with high yield and precision. Long reads greatly improve
the detection of structural variants because of the long-range
spanning information (Goodwin et al., 2016). However, long
reads often suffer from high error rates including substitution,
small insertions, and deletion (Roberts et al., 2013; Jain et al.,
2016), which is still non-trivial for long read-based caller to
distinguish genuine variants and sequencing errors. For most
short-read sequencing platforms, Indel errors are rare and
simultaneously achieve high base accuracy (>99%), which have
been proven more helpful for SNV/Indel calling in several large-
population genome projects (Auton et al., 2015; Wu et al., 2019).

However, existing variant calling approaches are
computationally expensive and/or have relatively low sensitivity
and accuracy, which becomes the bottleneck of variant calling
for large-scale studies, such as population sequencing projects,
which requires analyzing tens of thousands of data sets. It is on
demand to develop more advanced bioinformatics approaches
with higher speed, sensitivity, accuracy, and scalability. In recent
years, many efforts have been made to develop alignment-based
approaches such as GATK (McKenna et al., 2010), FreeBayes
(Garrison and Marth, 2012), and Clair (Luo et al., 2020),
which has been mainstream approaches in short read-based
variant calling. Such approaches extract signatures of SNVs
and Indels from the pileups of the reads in relatively small
genomic regions, and various kinds of methods, such as local
assembly (GATK), Bayesian statistics (FreeBayes, GAKT), and
deep neural network (Clair), are used to analyze the features to
detect potential variants. In detail, GATK uses logistic regression
to model base errors, hidden Markov models to compute read
likelihoods, and naive Bayes classification to identify variants,
which are then filtered to remove likely false positives using a
Gaussian mixture model with hand-crafted features capturing
common error modes. FreeBayes enables direct detection
of haplotypes from short reads using a Bayesian statistical
framework, which is capable of modeling multiallelic loci in sets
of individuals with non-uniform copy number. Clair supports
variant calling for short reads and long reads using a deep
learning-based method, where the summary of aligned reads
around putative candidate variant sites was used as input of the
deep learning framework.

Herein, we propose Partial-Order Alignment-based SNV and
Indel caller (Psi-caller), a novel ultrafast and versatile alignment-
based variant calling approach with two key features. (1) Psi-
caller recognizes candidate variant sites from pileup alignments
and then divides the sites into three different categories according
to the complexity and position of signatures. (2) Psi-caller applies
various approaches, i.e., binomial model, partial-order alignment
(POA) and de Bruijn graph-based local assembly, to detect and
genotype SNVs and Indels in the above three different categories.
The speed of Psi-caller is faster than that of state-of-the-art
variant callers, especially one order of magnitude faster than some
of the most popular approaches such as GATK and FreeBayes.
Moreover, it also has higher or equal yields as well. We believe
that it has the potential to play an important role in many
forthcoming genomic studies.

METHODS

Overview of the Psi-Caller Approach
Psi-caller uses sorted BAM or CRAM files as inputs. The input
files can be provided by commonly used read aligners such
as BWA (Li and Durbin, 2009). Mainly, Psi-caller extracts
the divergences between reads and reference from the detailed
information of read alignments (i.e., CIGARs) and uses them
as signatures to detect and genotype SNVs and short Indels.
The approach has four major steps as follows, and a schematic
illustration is shown in Figure 1.

(1) Task splitting: Psi-caller splits reference genome into fixed-
size blocks to make a number of variant calling subtasks.
The subtasks are further operated in a parallel way with
multiple CPU threads.

(2) Candidate recognition: Psi-caller analyzes the divergences
between the reads and reference to recognize candidate
SNV and Indel sites. Local genomic regions with variant
signatures are recognized as candidates and categorized
into three classes according to their positions and the
ratio of supporting reads, i.e., high confidence candidates
(termed as HCs), low confidence candidates (termed as
LCs), and candidates in tandem repeat regions and low-
complexity regions (termed as TRCs).

(3) Variants detection and genotyping: Psi-caller employs
various approaches, i.e., direct binomial model, POA, and
de Bruijn graph-based local assembly, to call and genotype
SNVs and Indels in HCs, LCs, and TRCs.

(4) Post-processing: Psi-caller integrates the variants
from multiple subtasks and filters the calls with
relatively low scores.

Task Splitting
Psi-caller divides the input data into blocks to implement parallel
computing. Benchmarks on several data sets in various sizes
suggest that this strategy greatly helps achieve highly scaling
performance (refer to “Results” section for details). In detail, a
user-defined size parameter is employed (default: 20,000,000 bp)
to split the reference genome non-overlapping blocks. For each
block, a Psi-caller instance (termed as a task) is run and output
the corresponding results to a separate intermediate file. Thus,
all the tasks are run in a parallel way using GNU parallel (Tange,
2020) with a user-defined number of CPU cores.

Candidate Variant Sites Generation
For each task, Psi-caller uses Samtools (Li et al., 2009) to
extract detailed information of read alignment, including the
chromosome, starting position, and CIGARs for each of the
reads. All the alignments with low quality (default: MAPQ < 10,
can be tuned with “-q” option) and supplementary alignments
(flag = 2048), secondary alignments (flag = 256), mate unmapped
reads (flag = 8), and unmapped reads (flag = 4) are filtered out.
The remaining high-quality alignments are then traversed from
upstream to downstream to make a triple consisting of three
variables, i.e., (V, S, L), which can be seen as a summary of
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FIGURE 1 | The workflow of Psi-caller approach. Psi-caller detects SNV/Indels mainly in three steps. In step 1 (“Candidate recognition”), Psi-caller first generates
multiple tasks according to chromosome and block size for parallelization and then extract candidate variant site separately for each task. In step 2 (“Variants
detection and genotyping”), Psi-caller implements three difference approaches to generate variant calls and assigns genotypes. In step 3 (“Post-processing”),
Psi-caller concatenates the resulting output from various tasks and removes duplicated variants.

the pileup read alignments. A schematic illustration is shown in
Supplementary Figure 1.

(1) V (Dictionary) lists the number of alternate bases at a SNV,
INDEL, or the number of reference base otherwise. For
example,

V = {"A" :C1, "C" :C2, "G" :C3, "T" :C4, "N" :C5, "I" :

C6, "D" :C7 } .

(2) S (Integer) is the accumulated base quality for
alternative bases.

(3) L (Dictionary) lists the inserted or deleted sequence. For
example,

L = {"I" : ["AC", "AC"], "D" : ["TTA", "TA"] }.

Psi-caller sorts V according the number of base occurrences
and sums all the occurrences as T. Psi-caller calculates the
frequencies of various alternative bases at each genomic position
by the following equation:

Palt = calt/T (1)

where calt is the number of a specific kind of alternative base listed
in V . A position is recognized as a candidate variant site if there
is at least one kind of alternative base whose frequency is higher
than a threshold Talt . It is also worth noting that there could be
multiple alternative bases having frequencies higher than Talt . In
this situation, Psi-caller records all of them and recognizes this

site as a multi-allele site. In order to reduce the false positives
caused by sequencing errors or mistakes in alignments, Psi-
caller calculates the average base quality of all the alternative
bases at this genomic position by BQave = S/N, where N is the
total number of alternative bases at this genomic position. The
position is discarded if BQave < 20 empirically.

The simple rules mentioned above is able to detect a large
proportion of variants since they have homogeneous and evident
signatures, an example is shown in Supplementary Figure 2.
However, there are a small proportion of variants with more
complex signatures, which are usually longer Indels and/or
located in repeat-rich regions; an example is provided in
Supplementary Figure 3. There are usually relatively poor read
alignments around the variant sites, and more advance methods
are needed. To address these issues, Psi-caller divides all the
candidate variant sites into HCs, LCs, and TRCs beforehand
according to the complexity of the signatures as well as genomic
locations to handle them in various approaches.

Herein, a candidate variant site is regarded as a HC if it meets
the following conditions:

(1) It has high supporting evidences, in practice, Palt > 0.5.
(2) The location of the site is out of tandem repeat and low-

complexity regions (LCRs).
(3) There is no other candidate variant site within flanking

sites (100 bp upstream and downstream empirically).

A candidate variant site is regarded as an LC if it satisfies the
following conditions:
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(1) The highest frequency of all the alternative bases is less than
0.5, or it is a multi-allele site.

(2) The location of the site is out of tandem repeat and low-
complexity regions (LCRs).

(3) There is another candidate variant site within 100 bp
upstream or downstream. It is worth noting that a
candidate variant site is categorized as an LC if this
condition is met, even if it has a >0.5 frequency for any
alternative base.

Sequencing-based methods of variant detection can
be confounded by repetitive and low-complexity regions
(LCRs) (Trost et al., 2018). The LCRs contains (1) assembly
gaps that includes centromeres, telomeres, and constitutive
heterochromatin domains; (2) segmental duplications; (3) the
pseudo-autosomal regions of the sex chromosomes. The short
tandem repeats are defined by RepeatMasker (Smit et al., 2015).

A candidate variant site is regarded as a TRCs if it is located
in short tandem repeat regions or LCRs. Herein, Psi-caller
supports the use of an annotation (in BED format) on short
tandem repeat and LCRs for reference genome to mark such
regions in advance. In this study, the employed repeat annotation
on human reference genome is available at https://github.com/
PacificBiosciences/pbsv/tree/master/annotations, and the CLR
annotation on human reference genome is available at http://tcag.
ca/documents/projects/RLCRs_no_Repeat_Masker.zip.

For Indels, L records the allele sequence for all supporting
alignments. If the context and length of allele sequence are
divergent, the Indel candidate variant site is also regarded as LC.

Variant Detection and Genotyping
Psi-caller handles various types of candidate sites with three
different approaches: (1) for HCs, Psi-caller employs a binomial
model with a genotype prior probability to call and genotype
variants; (2) for LCs, Psi-caller uses a SIMD-based fast POA
method proposed in our previous study [abPOA (Gao et al.,
2020)] to generate the consensus sequence of the reads of the
potential variant sites; and (3) for TRCs, Psi-caller uses a de Bruijn
graph-based local assembly on a larger local region to generate
contigs of the reads. The POA-based and local assembly based
methods enable high-quality consensus sequences of the reads
around variant sites to be generated, and the variants are detected
by realigning the consensus sequences against local reference.
Moreover, the assembly based method has higher ability to handle
local short repeats.

Variant Calling With Binomial Model for HCs
For an HC site, Psi-caller simply uses the alternative base as
alternative allele if it is a single-allele site. The corresponding
genotype is inferred by a maximum likelihood strategy where
the likelihoods of three possible genotypes are computed by a
binomial model, assuming a diploid individual

L
( 0

0
)
=

1−prior
2 × (1− ε)SRRef × εSRAlt

L
( 0

1
)
= prior ×

( 1
2
)SRRef + SRAlt

L
( 1

1
)
=

1−prior
2 × (1− ε)SRAlt × εSRRef

(2)

where ε is the probability of a read being mapped to a
given allele mistakenly (default: 0.03), assuming it is constant
and independent between all observations; prior is the prior
probability for a heterozygous genotype. Herein, the prior
distribution is configured as equal for all the three genotypes, i.e.,
prior = 1/3, which was determined by empirical experiments;
SRRef and SRAlt are the numbers of the read alignments carrying
reference and alternative alleles, respectively.

Variant Calling With SIMD-Based POA Approach for
LCs
For an LC site, a more advanced POA-based approach is used
since the binomial model produces more false positives, mainly
caused by the more complicated read alignments. Variant calling
is implemented in the following four steps:

(1) Psi-caller traverses and merges the low confidence sites
from upstream to downstream. An LC site is merged by an
upstream site if their distance is shorter than a predefined
threshold Tlc (default value: 10 bp). Psi-caller considers a
set of merged LC sites as a new low confidence region
and extends it both upstream and downstream with f bp
(default value: 25 bp).

(2) For the extended region, Psi-caller extracts all the spanning
and overlapping alignments. Alignments with overlapped
ratio less than 0.5 are discarded. Further, Psi-caller employs
abPOA to generate one or more consensus sequences of the
involved read parts.

(3) Psi-caller aligns the generated consensus sequence(s)
against the reference sequence of the candidate region
(by KSW2 (Li, 2018; Suzuki and Kasahara, 2018)) and
recognizes alternative allele(s) from the detailed alignment
information. Moreover, it also records the numbers of
supporting reads to the reference and alternative allele(s).

(4) If the base quality of the reads is not available, Psi-caller
uses the binomial model same to that of high confidence
candidate variant site. Otherwise, Psi-caller implements
an all-to-all alignment for all the read parts and the
reference and alternative alleles to calculate the likelihoods
of various alleles. Further, a Bayesian model (refer to “The
Bayesian approach”) is used for computing the probability
of various genotypes.

To improve the accuracy of consensus sequence(s) in the
second step, Psi-caller clips the whole alignments at the starting
and ending positions to get homogeneous breakpoint.

Variant Calling With Local Reassembly Approach for
TRCs
For repeat-rich regions like tandem repeats and segmental
duplications, read mapping-based methods usually fail to give
reliable variant calls because of the difficulties of the accurate
alignment between short reads and local repeats. The de Bruijn
graph has been widely used and efficient for representation
of genomic repeats as a repeat graph by short-read assembly
approaches and variant callers. Thus, for a TRC site, Psi-caller
implements a four-step local assembly based method to handle
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the repeats and reference bias to make more accurate calls as
follows:

(1) Psi-caller traverses all the TRCs and combines candidate
variant sites into roughly 300-bp reassembly windows.

(2) For each reassembly window, all the overlapped reads are
used to construct a de Bruijn graph. Increasing length of
the k-mers (from 41 to 75, increased by 5) are flagged
and treated separately to avoid loops in the de Bruijn
graph. The generated contigs from previous iteration are
set as pseudoreads for next-round contig generation. One
or more haplotypes (default value: 2) are derived from the
de Bruijn-like graph using depth-first search by prioritizing
variants with the highest degree of read support and scored.

(3) KSW2 is then used to realign the candidate haplotypes
to local reference sequence and recognize variants
from the alignment.

(4) The inferring of genotype is the same to that of LCs.

The Bayesian Approach
To genotype a specific variant site in the donor genome, we apply
a simple Bayesian statistic relating Pr (Gi|Ri) to the likelihood of
sequencing errors in the reads used for POA or local assembly
and the prior likelihood of specific genotypes. For a given
genotype, we use simple Bayes’ rule to relate the probability of
a specific genotype quality of sequencing observations and with
prior expectations as follows:

Pr {G|R} =
Pr {G} · Pr {R|G}

Pr {R}
=

Pr {G} · Pr {R|G}∑
i Pr {Gi} · Pr {R|Gi}

(3)

where, Pr (Ri|Gi) is the probability of a sample genotype given
sequencing observations, which is represented by the following.

Pr {R|G} =
∏

j

(
Pr
{
Rj|H1

}
2

+
Pr
{
Rj|H2

}
2

)
(4)

Assuming a diploid sample, H1 and H2 are two alternative
alleles on haplotypes, respectively. Pr (R|H) is the haploid
likelihood function, which can be related to a specific
combination of errors of sequencing observations. In practice,
Psi-caller aligns local reads to the consensus sequences and
contigs to collect the mismatches, Indels nearby, and then
Pr (R|H) can be calculated by the local mapping quality scores.

Pr (R|H) = 10−
∑

e
Qe

10.0 (5)

assuming there are e errors and they are independent at
different sites of the read. Qe is the Phred-scale base quality.

The Bayesian model is applied to compute the probability of
various genotypes after POA of local assembly by implementing
an all-to-all alignment for all the read parts and the reference and
alternative alleles when the base quality of the reads is available.

Variant Integration and Filtering
Psi-caller concatenates all the results (in VCF format) from
various tasks using vcfcat and then removes duplicated variants.
If a variant detected by an HC site can also be recognized from a

POA-based or assembly based result from another task, Psi-caller
chooses the one with higher variant quality as a final result.

MATERIALS

Simulated Data Sets for Benchmark
Using the curated benchmark sets for single-nucleotide (SNV),
small insertion and deletion (IDNEL) of HG001 sample from
the Genome in a Bottle (GIAB) consortium as ground truth,
269,554 SNVs and 42,136 Indels in chromosome 2 of human
reference genome (version: hs37d5) were selected to generate
simulated data sets and used to assess the “baseline” sensitivity
and accuracy of Psi-caller. In the simulation study, two donor
haplotypes carrying all the “homozygous” and “heterozygous”
variants were generated, and then 40× Illumina-like data sets
were simulated using the following three steps:

(1) Variant with genotypes equal to “0| 1” or “1| 1” were
extracted to generate the VCF file containing all variants
in the first in silico haplotype (termed as Hap1). Similarly,
variants with “1| 0” and “1| 1” genotypes were used to
generate the VCF file containing all the variants in the
second in silico haplotype (termed as Hap2).

(2) The two VCF files were used as inputs to generate two
in silico donor genomes by SimuG (Yue and Liti, 2019).

(3) ART simulator (Huang et al., 2012) was employed to
generate two 20× coverage data sets with both of the
two in silico donor genomes, respectively, and they were
merged as a 40× coverage data set for diploid genome.
Two such data sets with various read lengths (2 × 150 bp
and 2 × 250 bp) and same insert size (i.e., 500 bp) were
generated. Refer to the Supplementary Materials for used
command lines for the simulation.

Real Data Sets for Benchmark
Two data sets produced by the Illumina platforms from the well-
studied individual HG002, the son of the so-called Ashkenazi trio
in GIAB, were employed to assess the ability of Psi-caller on real
data sets. The data sets are paired end with different read lengths
(2 × 148 bp and 2 × 250 reads, respectively), downloaded from
the FTP server of GIAB (refer to Supplementary Materials).
Moreover, hs37d5 was used as reference in the benchmark,
and the high confidence SNV/INDEL benchmark set of HG002
provided by GIAB as ground truth callset, which has 3,452,896
SNVs and 585,700 Indels (with PASS filter tag). The download
links are in the Supplementary Materials.

Evaluation Metrics
The submodule vcfeval of RTG tool (v3.11) was used to evaluate
the results of variant callers by three metrics, i.e., Precision,
Recall, and F1 score, which are defined as follows:

Precision =
TPs

TPs+ FPs
(6)

Recall =
TPs

TPs+ FNs
(7)
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F1 =
2× Precision ∗ Recall
Precision+ Recall

(8)

where TP, FP, and FN are true positives, false positives, and false
negatives, respectively. FP are defined as variants existing in the
GIAB data set that are also identified as a variant by callers, but
with discrepant variant type, alternative allele. FN are defined
as the variants existing in the GIAB data set but identified as
non-variant by callers. F1 score is the harmonic mean of the
precision and recall.

RESULTS

Simulation Benchmarks
We assessed the baseline sensitivity and accuracy of Psi-caller
with the two 40× simulated data sets at first. The reads were
aligned to human reference genome (version: hs37d5) by BWA-
MEM (v0.7.15) and sorted by Samtools beforehand. Three state-
of-the-art variant callers, i.e., GATK HaplotypeCaller (v4.1.9.0),
FreeBayes (v1.3.5), and Clair (v2.1.1), were implemented on the
simulated data sets for comparison. The yields of Psi-caller and
the three state-of-the-art callers are shown in Table 1. SNVs and
Indels were assessed separately.

All the four callers achieved high and close precisions in SNV
calling. The sensitivities and F1 scores of Psi-caller and GATK
are close to each other for SNVs. For FreeBayes, its sensitivity is
about 3% lower than that of Psi-caller and GATK. This indicates
that there could be some intrinsic drawbacks in the design and
implementation of the Bayesian statistics method employed by
FreeBayes so that some SNVs were missed. Moreover, the yields
of Clair are also slightly lower than that of Psi-caller, especially
caused by lower precisions. This could be due to potential
overfitting as deep learning-based methods are used.

A similar trend was observed in Indel calling. The yields of Psi-
caller and GATK are also higher than that of Clair and FreeBayes.
More precisely, GATK achieved the highest F1 scores (95.20 and
95.20%) and outperformed Psi-caller by 0.5 and 0.4% for PE150
and PE250, respectively. This is mainly due to the relatively lower
sensitivity of Psi-caller, especially the ability to detect Indels in
repeat-rich loci (refer to “Discussion” section for more details),
although the precisions of Psi-caller and GATK are close. Both
Clair and FreeBayes had lower F1 scores; however, they had
different shortcomings. Clair had obviously lower precisions,
although its sensitivities were also slightly lower than that of
Psi-caller and GATK, suggesting that Indel calling is still a
difficult task to this deep learning-based method. The precision of
FreeBayes is high; however, its sensitivity is much lower, similar
to that of SNV calling.

Real Sequencing Data Benchmark
Psi-caller, GATK, FreeBayes, and Clair were further implemented
on two real sequencing data sets produced by Illumina platforms
(2 × 148 bp and 2 × 250 reads, refer to “Materials” section
for more details) to assess their ability. The total numbers of
variant calls are in the Supplementary Table 1. We assessed the
number of calls produced by various approaches as well as their

consistency at first. Psi-caller on average detected 3.8 million
SNVs and 0.88 million Indels for the two data sets (“PASS” filter
tag on auto chromosomes only). Meanwhile, the numbers of SNV
calls produced by GATK and FreeBayes are close to that of Psi-
caller. However, there are higher numbers of SNVs in the callset
of Clair, i.e., more than 4 million for both of the two data sets.
For Indels, the four approaches had more divergent numbers of
calls. Clair had much higher numbers of calls (>900K), while it is
much lower for that of FreeBayes (around 700K). Psi-caller and
GATK had similar numbers of calls for the 2 × 148 bp data set;
however, Psi-caller detected nearly 70K more Indels than GATK
on the 2× 250 bp data set (879K vs. 811K).

Venn diagrams of the callsets (along the whole genome)
are shown in Figures 2A,B, which helps in investigating the
consistency of the detected variants. Mainly, 4,315,869 and
4,254,729 SNV and Indel calls were commonly identified by
all the callers on the two real sequencing data, respectively.
Moreover, Psi-caller had the least number of unique calls
than other tools (57,841 for 148PE and 47,840 for 250PE),
meanwhile, GATK also had comparable unique calls. We also
investigated the intersect with the ground truth callset in the
high confidence region (Figures 2C,D). Psi-caller is still the
caller having least unique calls (3,903 and 2,414 for the two data
sets, respectively), indicating that there are less false positives
in its callsets.

The callsets of the four approaches were then compared with
the ground truth callset by vcfeval module of the RTG tool
(Figure 3). Moreover, Venn diagrams of the callsets produced by
the four callers (for high confidence regions only) as well as the
ground truth callsets are in Supplementary Figure 4 (SNVs and
Indels are provided separately) for more detailed information.
For SNV calling, Psi-caller achieved the highest precision and
F1 score, 99.47 and 99.51% on the two data sets in absolute
terms, respectively. Meanwhile, the F1 scores of GATK and Clair
are close to that of Psi-caller (i.e., GATK: 99.52 and 99.46%,
Clair: 99.49 and 99.48% for the PE148 and 250PE data sets,
respectively). The F1 scores of FreeBayes are lower (97.98 and
97.95% for the PE148 and 250PE data sets, respectively), mainly
due to its much lower recall rates, although its precision rates
are higher or comparable to other callers. This trend is similar to
that of the simulated data sets. It is also observed from the Venn
diagrams (Supplementary Figures 4A,C) that Psi-caller still has
the least numbers of unique calls.

For Indel calling, Psi-caller and GATK are the best two
callers with relatively higher F1 scores (all of them are >99%),
outperforming Clair and FreeBayes by 1 to 2%. For PE150
data, GATK is the best caller whose F1 score is slightly
higher (by 0.44%) than that of Psi-caller; meanwhile, Psi-
caller outperformed GATK by 0.17% for the PE250 data set.
The performance of Indel is similar to SNVs for FreeBayes,
i.e., low recalls with comparable precisions. The F1 scores
of Clair are lower than those of Psi-caller and GATK,
mainly due to its lowest precisions, while its recalls were
only higher than that of FreeBayes as well. We further
investigated the callsets of Psi-caller and GATK and found
that GATK has better ability to handle clipped reads with
its local assembly based approach, so that it enables to
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TABLE 1 | Results of simulation benchmarks for various callers.

Data set Method SNV INDEL

Precision Recall F1 Precision Recall F1

148PE GATK 0.9998 0.9980 0.9988 0.9971 0.9107 0.9520

FreeBayes 0.9995 0.9674 0.9832 0.9979 0.8624 0.9252

Clair 0.9986 0.9976 0.9981 0.9809 0.8979 0.9376

Psi-caller 0.9991 0.9981 0.9986 0.9943 0.9042 0.9471

250PE GATK 0.9998 0.9980 0.9988 0.9971 0.9108 0.9520

FreeBayes 0.9992 0.9675 0.9831 0.9988 0.8621 0.9254

Clair 0.9983 0.9974 0.9978 0.9815 0.8987 0.9383

Psi-caller 0.9993 0.9981 0.9988 0.9953 0.9051 0.9481

The bold values mean the best F1 scores in the two data sets respectively.

FIGURE 2 | (A,B) The Venn diagram of variant calls produced by different tools on Illumina 148PE and 250PE reads, respectively; (C,D) The Venn diagram of variant
calls produced by different tools and ground truth on Illumina 148PE and 250PE reads, respectively.

detect more Indels with shorter reads (148PE). Meanwhile,
the POA-based method of Psi-caller is more sensitive to
the Indel signatures implied by alignment details (CIGARs),

so that it achieved higher F1 score for the longer reads
(250PE). The Venn diagrams indicate that Psi-caller and GATK
had comparable least numbers of unique Indels, respectively,
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FIGURE 3 | Benchmark results of the variant callers on real sequencing data sets. (A,B) F1 scores on SNVs and Indels, respectively. (C,D) Precisions on SNVs and
Indels, respectively. (E,F) Recalls on SNVs and Indels, respectively.

which also partially indicates their similar ability to the
detection of Indels.

Performance of Psi-Caller
We assessed the speed of the callers since time cost is also a major
concern for the analysis of large-scale data sets or time-sensitive
tasks. The result is given in Table 2 and Figure 4. With eight CPU
cores, the speed of Psi-caller is tens of times faster than GATK, a
few times faster than FreeBayes and slightly outperformed Clair

as well. It is also worth noting that Clair is a deep learning-based
approach that needs time-consuming training process, although
it can be done in advance, which can be downloaded from http://
www.bio8.cs.hku.hk/clair_models/illumina/12345.tar. However,
Psi-caller does not need training as well as any extra requirement
on hardware such as GPUs. We also benchmark the speedup
of Psi-caller with different CPU cores (Figure 4); the results
show that Psi-caller has high scaling performance, i.e., it achieved
a quasi-linear speedup with the number CPU cores and its
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TABLE 2 | Performance of the benchmarked variant callers.

Running time (min) GATK FreeBayes Clair Psi-caller

148PE 1244 260 117 105

250PE 1293 313 124 101

clock time was greatly reduced. Considering its good sensitivity,
precision, and high speed, Psi-caller is suited to handle large-scale
short-read sequencing data sets, which has potentials to many
large-scale genomics studies.

The high-speed feature of Psi-caller derives from both of
its designs and implementations. Mainly, SKSV divides the
candidate variant sites into three categories, and the vast majority
of candidates belong to HCs (details shown in Supplementary
Table 2), which greatly speed up variant calling using the direct
binomial model. In addition, the POA-based method also helps
improve the speed compared to local assembly. Moreover, the
block division-based subtask implementation also helps Psi-caller
to achieve outstanding scaling performance. Psi-caller uses Pypy
(Rigo Aea, 2018), a Just-In-Time (JIT) compiler, other than
the native python interpreter to implement the operations of
subtasks. Because of the existence of Global Interpreter Lock
(GIL), the performance cannot be improved by using multiple
threading when sample processing. However, the JIT built-in
compiler and synchronous programming of Pypy greatly reduce
run-time for large programs.

DISCUSSION

The rapid development of HTS technologies is promising
to comprehensively discover genomic variants of various
populations. However, variant calling is still a computationally

intensive task whose cost is non-neglectable. Moreover, cutting-
edge genomics studies also have high requirements on the
sensitivity and accuracy of variant calling. Herein, we propose
Psi-caller, a novel lightweight short read-based variant calling
approach, as a solution to this important open problem. Mainly,
we show how to achieve higher yield and performance in
variant calling with tailored candidate variant sites recognition,
consensus sequence reconstruction, and variant calling and
genotyping methods for various kinds of candidate variant sites.
Benchmarks on simulated and real data sets suggest three features
of Psi-caller as follows:

(1) Psi-caller uses simple statistical rules to recognize
candidate variant sites from pileup alignments and
divides the candidate variant sites into three categories,
i.e., high confidence candidates (termed as HCs), low
confidence candidates (termed as LCs), and candidates
in tandem repeat regions (termed as TRCs), according
to the complexity and location of the sites with strict
definitions and thresholds. Two examples are shown
in Supplementary Figures 2, 3. They show candidate
variant sites with homogeneous and evident signatures
and complex signatures, respectively.

(2) Psi-caller employs various approaches, i.e., direct binomial
model, POA, and de Bruijn graph-based local assembly to
call and genotype SNVs and Indels in HCs, LCs, and TRCs,
respectively. An example is shown in Supplementary
Figure 5. The specifically designed POA and local assembly
based methods enable complicated signatures of SNV and
Indels to be well handled.

(3) Psi-caller has outstanding speed with the help of subtask
division strategy and JIT compiler in data processing. This
is suited to modern high-performance computing cluster
and also scalable to large-scale data analysis tasks.

FIGURE 4 | Performance of Psi-caller using different number of threads.
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The major advantage of Psi-caller is its outstanding speed,
which is tens of times faster than GATK. Meanwhile, benchmarks
on both of simulated and real sequencing data sets demonstrate
that Psi-caller has equal or higher good sensitivity and accuracy
to state-of-the-art variant callers. For SNV calling, Psi-caller
achieved comparable or higher F1 scores, and it also had the
least number of unique calls compared to other benchmarked
state-of-the-art callers. This indicates that Psi-caller is able to
produce accurate and reliable callsets. For Indel calling, Psi-
caller and GATK are the best two callers with relatively higher
F1 scores in the benchmark. In PE150, Psi-caller is the best
runner-up, but in PE250 real sequencing data set, Psi-caller
outperform GATK by 0.17%.

However, Psi-caller still has a few shortcomings like the
relatively lower recalls on Indels. We investigated the detailed
intermediate results of Psi-caller and observed the following
four issues, which could be important to further improve the
sensitivity of this approach.

(1) For some Indels in the ground truth callset, Psi-caller fails
to detect them due to that there is no candidate variant site
recognized from the input short-read alignments. Most of
them are located in short tandem repeat regions. It is still
a bottleneck for short read aligners to produce accurate
alignments in such regions, so that the detection of variant
is affected. An example is in Supplementary Figure 6. In
this case, the variant is in a typical short tandem repeat
region; however, no evident signature is implied by the
alignment of the reads around the variant site.

(2) For some Indels, Psi-caller can recognize the
corresponding variant site as candidates, although they are
also in repeat-rich regions. However, the assembly method
produces false-positive or false-negative variant calls due
to the failure of local assembly, mainly caused by the high
repetitiveness of local genomic sequences. The example
displayed in Supplementary Figure 7 illustrates that only
some of candidates can be detected as variants due the
power of assembly or fewer supporting alignments.

(3) Some of Indels are recognized by several nearby false
positives due to the scoring system of KSW2. An example
in Supplementary Figure 8, which obtains incorrect
variants using a small mismatch penalty score, which
causes SKW2 to regard alignment containing one deletion

and two mismatches (i.e., SNVs) as the best result.
However, it is still a difficult open problem to design a
highly effective scoring system to fit all kinds of variants;
hence, it could be a potential solution to use specifically
designed scoring system for some difficult regions.

(4) Some Indels in low confidence sites cannot be detected
by abPOA due to the ratio of supporting reads ratio and
the number of reads to recognize the contigs carrying
alternative alleles.

In order to improve the sensitivity of Indels, more advanced
recognition and filtration strategies for candidate variant sites
and more accurate partial order alignment and local assembly
algorithm for detecting variants should be employed in the
future works.
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