AUTHOR=Chakritbudsabong Warunya , Chaiwattanarungruengpaisan Somjit , Sariya Ladawan , Pamonsupornvichit Sirikron , Ferreira Joao N. , Sukho Panithi , Gronsang Dulyatad , Tharasanit Theerawat , Dinnyes Andras , Rungarunlert Sasitorn TITLE=Exogenous LIN28 Is Required for the Maintenance of Self-Renewal and Pluripotency in Presumptive Porcine-Induced Pluripotent Stem Cells JOURNAL=Frontiers in Cell and Developmental Biology VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.709286 DOI=10.3389/fcell.2021.709286 ISSN=2296-634X ABSTRACT=
Porcine species have been used in preclinical transplantation models for assessing the efficiency and safety of transplants before their application in human trials. Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies in the reprogramming of piPSCs and the maintenance of their self-renewal and pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital role in the induction of pluripotency in humans. To investigate whether this factor is similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The colony morphology and chromosomal stability of these piPSC lines were examined and their pluripotency properties were characterized by investigating both their expression of pluripotency-associated genes and proteins and